Show simple item record

Drivers of community turnover differ between avian hemoparasite genera along a North American latitudinal gradient

dc.contributor.authorStarkloff, Naima C.
dc.contributor.authorKirchman, Jeremy J.
dc.contributor.authorJones, Andrew W.
dc.contributor.authorWinger, Benjamin M.
dc.contributor.authorHuang, Yen‐hua
dc.contributor.authorPulgarín‐r, Paulo C.
dc.contributor.authorTurner, Wendy C.
dc.date.accessioned2020-07-02T20:32:31Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-07-02T20:32:31Z
dc.date.issued2020-06
dc.identifier.citationStarkloff, Naima C.; Kirchman, Jeremy J.; Jones, Andrew W.; Winger, Benjamin M.; Huang, Yen‐hua ; Pulgarín‐r, Paulo C. ; Turner, Wendy C. (2020). "Drivers of community turnover differ between avian hemoparasite genera along a North American latitudinal gradient." Ecology and Evolution 10(12): 5402-5415.
dc.identifier.issn2045-7758
dc.identifier.issn2045-7758
dc.identifier.urihttps://hdl.handle.net/2027.42/155894
dc.description.abstractThe latitudinal diversity gradient (LDG) is an established macroecological pattern, but is poorly studied in microbial organisms, particularly parasites. In this study, we tested whether latitude, elevation, and host species predicted patterns of prevalence, alpha diversity, and community turnover of hemosporidian parasites. We expected parasite diversity to decrease with latitude, alongside the diversity of their hosts and vectors. Similarly, we expected infection prevalence to decrease with latitude as vector abundances decrease. Lastly, we expected parasite community turnover to increase with latitudinal distance and to be higher between rather than within host species. We tested these hypotheses by screening blood and tissue samples of three closely related avian species in a clade of North American songbirds (Turdidae: Catharus, n = 466) across 17.5° of latitude. We used a nested PCR approach to identify parasites in hemosporidian genera that are transmitted by different dipteran vectors. Then, we implemented linear- mixed effects and generalized dissimilarity models to evaluate the effects of latitude, elevation, and host species on parasite metrics. We found high diversity of hemosporidian parasites in Catharus thrushes (n = 44 lineages) but no evidence of latitudinal gradients in alpha diversity or prevalence. Parasites in the genus Leucocytozoon were most prevalent and lineage rich in this study system; however, there was limited turnover with latitude and host species. Contrastingly, Plasmodium parasites were less prevalent and diverse than Leucocytozoon parasites, yet communities turned over at a higher rate with latitude and host species. Leucocytozoon communities were skewed by the dominance of one or two highly prevalent lineages with broad latitudinal distributions. The few studies that evaluate the hemosporidian LDG do not find consistent patterns of prevalence and diversity, which makes it challenging to predict how they will respond to global climate change.Catharus thrushes are heavily infected by a diverse assemblage of hemosporidian parasites; however, these parasites did not follow a latitudinal diversity gradient or prevalence. Instead, we see high community turnover of Plasmodium communities with latitude and host species and moderate turnover of Leucocytozoon communities with latitude.
dc.publisherBirdLife International
dc.publisherWiley Periodicals, Inc.
dc.subject.otherhemosporidia
dc.subject.otherLeucocytozoon
dc.subject.othercommunity ecology
dc.subject.otherCatharus
dc.subject.otheravian malaria
dc.subject.otherlatitudinal diversity gradient
dc.titleDrivers of community turnover differ between avian hemoparasite genera along a North American latitudinal gradient
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155894/1/ece36283_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155894/2/ece36283.pdf
dc.identifier.doi10.1002/ece3.6283
dc.identifier.sourceEcology and Evolution
dc.identifier.citedreferenceNoon, B. R. ( 1981 ). The distribution of an avian guild along a temperate elevational gradient: The importance and expression of competition. Ecological Monographs, 51 ( 1 ), 105 - 124. https://doi.org/10.2307/2937309
dc.identifier.citedreferenceNekola, J. C., & White, P. S. ( 1999 ). The distance decay of similarity in biogeography and ecology. Journal of biogeography, 26 ( 4 ), 867 - 878. https://doi.org/10.1046/j.1365- 2699.1999.00305.x
dc.identifier.citedreferenceNuismer, S. L., & Kirkpatrick, M. ( 2003 ). Gene flow and the coevolution of parasite range. Evolution, 57 ( 4 ), 746 - 754. https://doi.org/10.1111/j.0014- 3820.2003.tb00286.x
dc.identifier.citedreferenceNunn, C. L., Altizer, S. M., Sechrest, W., & Cunningham, A. A. ( 2005 ). Latitudinal gradients of parasite species richness in primates. Diversity and Distributions, 11 ( 3 ), 249 - 256. https://doi.org/10.1111/j.1366- 9516.2005.00160.x
dc.identifier.citedreferenceOakgrove, K. S., Harrigan, R. J., Loiseau, C., Guers, S., Seppi, B., & Sehgal, R. N. ( 2014 ). Distribution, diversity and drivers of blood- borne parasite co- infections in Alaskan bird populations. International Journal for Parasitology, 44 ( 10 ), 717 - 727. https://doi.org/10.1016/j.ijpara.2014.04.011
dc.identifier.citedreferenceOksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R. B., - ¦ Oksanen, M. J. ( 2013 ). Package - vegan- . Community Ecology Package, version, 2 ( 9 ).
dc.identifier.citedreferencePagenkopp, K. M., Klicka, J., Durrant, K. L., Garvin, J. C., & Fleischer, R. C. ( 2008 ). Geographic variation in malarial parasite lineages in the common yellowthroat (Geothlypis trichas). Conservation Genetics, 9 ( 6 ), 1577 - 1588. https://doi.org/10.1007/s10592- 007- 9497- 6
dc.identifier.citedreferencePérez- Tris, J., & Bensch, S. ( 2005 ). Dispersal increases local transmission of avian malarial parasites. Ecology Letters, 8 ( 8 ), 838 - 845. https://doi.org/10.1111/j.1461- 0248.2005.00788.x
dc.identifier.citedreferencePianka, E. R. ( 1966 ). Latitudinal gradients in species diversity: A review of concepts. The American Naturalist, 100 ( 910 ), 33 - 46. https://doi.org/10.1086/282398
dc.identifier.citedreferencePoulin, R. ( 1995 ). Phylogeny, ecology, and the richness of parasite communities in vertebrates. Ecological Monographs, 65 ( 3 ), 283 - 302. https://doi.org/10.2307/2937061
dc.identifier.citedreferencePreisser, W. ( 2019 ). Latitudinal gradients of parasite richness: A review and new insights from helminths of cricetid rodents. Ecography, 42 ( 7 ), 1315 - 1330. https://doi.org/10.1111/ecog.04254
dc.identifier.citedreferencePulgarín- R, P. C., Gómez, C., Bayly, N. J., Bensch, S., FitzGerald, A. M., Starkloff, N., - ¦ Cadena, C. D. ( 2018 ). Migratory birds as vehicles for parasite dispersal? Infection by avian haemosporidians over the year and throughout the range of a long- distance migrant. Journal of Biogeography, 46 ( 1 ), 83 - 96. https://doi.org/10.1111/jbi.13453
dc.identifier.citedreferenceR Core Team. ( 2018 ). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R- project.org/. ISBN 3- 900051- 07- 0.
dc.identifier.citedreferenceRabosky, D. L., Title, P. O., & Huang, H. ( 2015 ). Minimal effects of latitude on present- day speciation rates in New World birds. Proceedings of the Royal Society B: Biological Sciences, 282 ( 1809 ), 20142889. https://doi.org/10.1098/rspb.2014.2889
dc.identifier.citedreferenceRamey, A. M., Fleskes, J. P., Schmutz, J. A., & Yabsley, M. J. ( 2013 ). Evaluation of blood and muscle tissues for molecular detection and characterization of hematozoa infections in northern pintails (Anas acuta) wintering in California. International Journal for Parasitology: Parasites and Wildlife, 2, 102 - 109. https://doi.org/10.1016/j.ijppaw.2013.02.001
dc.identifier.citedreferenceRicklefs, R. E., Swanson, B. L., Fallon, S. M., Martà nez- Abraà n, A., Scheuerlein, A., Gray, J., & Latta, S. C. ( 2005 ). Community relationships of avian malaria parasites in southern Missouri. Ecological Monographs, 75 ( 4 ), 543 - 559. https://doi.org/10.1890/04- 1820
dc.identifier.citedreferenceRohde, K. ( 1978 ). Latitudinal differences in host- specificity of marine Monogenea and Digenea. Marine Biology, 47 ( 2 ), 125 - 134. https://doi.org/10.1890/04- 1820
dc.identifier.citedreferenceSchliep, K. P. ( 2011 ). phangorn: Phylogenetic analysis in R. Bioinformatics, 27 ( 4 ), 592 - 593. https://doi.org/10.1093/bioinformatics/btq706
dc.identifier.citedreferenceSexton, J. P., McIntyre, P. J., Angert, A. L., & Rice, K. J. ( 2009 ). Evolution and ecology of species range limits. Annual Review of Ecology, Evolution and Systematics, 40, 415 - 436.
dc.identifier.citedreferenceSoares, L., Latta, S. C., & Ricklefs, R. E. ( 2019 ). Neotropical migratory and resident birds occurring in sympatry during winter have distinct haemosporidian parasite assemblages. Journal of Biogeography,, 47, 748 - 759. https://doi.org/10.1111/jbi.13760
dc.identifier.citedreferenceSvensson- Coelho, M., Silva, G. T., Santos, S. S., Miranda, L. S., Araújo- Silva, L. E., Ricklefs, R. E., - ¦ Maldonado- Coelho, M. ( 2016 ). Lower detection probability of avian plasmodium in blood compared to other tissues. Journal of Parasitology, 102 ( 5 ), 559 - 561. https://doi.org/10.1645/16- 8
dc.identifier.citedreferenceThieltges, D. W., Ferguson, M. A., Jones, C. S., Noble, L. R., & Poulin, R. ( 2009 ). Biogeographical patterns of marine larval trematode parasites in two intermediate snail hosts in Europe. Journal of Biogeography, 36 ( 8 ), 1493 - 1501. https://doi.org/10.1111/j.1365- 2699.2008.02066.x
dc.identifier.citedreferenceValkiunas, G. ( 2005 ). Avian malaria parasites and other haemosporidia. Boca Raton, FL: CRC Press.
dc.identifier.citedreferenceVoelker, G., Bowie, R. C., & Klicka, J. ( 2013 ). Gene trees, species trees and Earth history combine to shed light on the evolution of migration in a model avian system. Molecular Ecology, 22 ( 12 ), 3333 - 3344. https://doi.org/10.1111/mec.12305
dc.identifier.citedreferenceWaldenström, J., Bensch, S., Kiboi, S., Hasselquist, D., & Ottosson, U. ( 2002 ). Cross- species infection of blood parasites between resident and migratory songbirds in Africa. Molecular Ecology, 11 ( 8 ), 1545 - 1554. https://doi.org/10.1046/j.1365- 294x.2002.01523.x
dc.identifier.citedreferenceWarburton, E. M., Kohler, S. L., & Vonhof, M. J. ( 2016 ). Patterns of parasite community dissimilarity: The significant role of land use and lack of distance- decay in a bat- helminth system. Oikos, 125, 374 - 385. https://doi.org/10.5061/dryad.f5124
dc.identifier.citedreferenceWatters, G. T. ( 1992 ). Unionids, fishes, and the species- area curve. Journal of Biogeography, 19, 481 - 490. https://doi.org/10.2307/2845767
dc.identifier.citedreferenceWilliamson, J. L., Wolf, C. J., Barrow, L. N., Baumann, M. J., Galen, S. C., Schmitt, C. J., - ¦ Witt, C. C. ( 2019 ). Ecology, not distance, explains community composition in parasites of sky- island Audubon’s Warblers. International Journal of Parasitology, 49 ( 6 ), 437 - 448. https://doi.org/10.1016/j.ijpara.2018.11.012
dc.identifier.citedreferenceZamora- Vilchis, I., Williams, S. E., & Johnson, C. N. ( 2012 ). Environmental temperature affects prevalence of blood parasites of birds on an elevation gradient: Implications for disease in a warming climate. PLoS ONE, 7 ( 6 ), e39208. https://doi.org/10.1371/journal.pone.0039208
dc.identifier.citedreferenceAble, K. P., & Noon, B. R. ( 1976 ). Avian community structure along elevational gradients in the northeastern United States. Oecologia, 26, 275 - 294. https://doi.org/10.1007/BF00345296
dc.identifier.citedreferenceAltizer, S., Bartel, R., & Han, B. A. ( 2011 ). Animal migration and infectious disease risk. Science, 331, 296 - 302. https://doi.org/10.1126/science.1194694
dc.identifier.citedreferenceAsghar, M., Hasselquist, D., Hansson, B., Zehtindjiev, P., Westerdahl, H., & Bensch, S. ( 2015 ). Hidden costs of infection: Chronic malaria accelerates telomere degradation and senescence in wild birds. Science, 347 ( 6220 ), 436 - 438. https://doi.org/10.1126/science.1261121
dc.identifier.citedreferenceBensch, S., Hellgren, O., & Pérez- Tris, J. ( 2009 ). MalAvi: A public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Molecular Ecology Resources, 9 ( 5 ), 1353 - 1358. https://doi.org/10.1111/j.1755- 0998.2009.02692.x
dc.identifier.citedreferenceBensch, S., Pérez- Tris, J., Waldenströum, J., & Hellgren, O. ( 2004 ). Linkage between nuclear and mitochondrial DNA sequences in avian malaria parasites: Multiple cases of cryptic speciation? Evolution, 58 ( 7 ), 1617 - 1621. https://doi.org/10.1111/j.0014- 3820.2004.tb01742.x
dc.identifier.citedreferenceBernotienÄ , R., ŽiegytÄ , R., VaitkutÄ , G., & ValkiÅ«nas, G. ( 2019 ). Identification of a new vector species of avian haemoproteids, with a description of methodology for the determination of natural vectors of haemosporidian parasites. Parasites and Vectors, 12 ( 1 ), 307. https://doi.org/10.1186/s13071- 019- 3559- 8
dc.identifier.citedreferenceBirdLife International and NatureServe. ( 2014 ). Bird species distribution maps of the world. Cambridge, UK: BirdLife International.
dc.identifier.citedreferenceBlaylock, R. B., Margolis, L., & Holmes, J. C. ( 1998 ). Zoogeography of the parasites of Pacific halibut ( Hippoglossus stenolepis ) in the northeast Pacific. Canadian Journal of Zoology, 76 ( 12 ), 2262 - 2273. https://doi.org/10.1139/z98- 172
dc.identifier.citedreferenceBordes, F., Morand, S., Krasnov, B. R., & Poulin, R. ( 2010 ). Parasite diversity and latitudinal gradients in terrestrial mammals. In S. Morand, & B. R. Krasnov (Eds.), The biogeography of host- parasite interactions (pp. 89 - 98 ). New York, NY: Oxford University Press.
dc.identifier.citedreferenceBorner, J., Pick, C., Thiede, J., Kolawole, O. M., Kingsley, M. T., Schulze, J., - ¦ Burmester, T. ( 2016 ). Phylogeny of haemosporidian blood parasites revealed by a multi- gene approach. Molecular Phylogenetics and Evolution, 94, 221 - 231. https://doi.org/10.1016/j.ympev.2015.09.003
dc.identifier.citedreferenceBrooks, D. R., & Ferrao, A. L. ( 2005 ). The historical biogeography of coevolution: Emerging infectious diseases are evolutionary accidents waiting to happen. Journal of Biogeography, 32, 1291 - 1299. https://doi.org/10.1111/j.1365- 2699.2005.01315.x
dc.identifier.citedreferenceBurnham, K. P., & Anderson, D. R. ( 2004 ). Multimodel inference: Understanding AIC and BIC in model selection. Sociological Methods and Research, 33 ( 2 ), 261 - 304. https://doi.org/10.1177/0049124104268644
dc.identifier.citedreferenceCalvete, C., Estrada, R., Lucientes, J., Estrada, A., & Telletxea, I. ( 2003 ). Correlates of helminth community in the red- legged partridge ( Alectoris rufa L.) in Spain. Journal of Parasitology, 89 ( 3 ), 445 - 451. https://doi.org/10.1645/0022- 3395(2003)089[0445:COHCIT]2.0.CO;2
dc.identifier.citedreferenceCarlson, C. J., Phillips, A. J., Dallas, T. A., Alexander, L. W., Phelan, A., & Bansal, S. ( 2020 ). What would it take to describe the global diversity of parasites? bioRxiv, 815902. https://doi.org/10.1101/815902
dc.identifier.citedreferenceChoudhury, A., & Dick, T. A. ( 2000 ). Richness and diversity of helminth communities in tropical freshwater fishes: Empirical evidence. Journal of Biogeography, 27 ( 4 ), 935 - 956. https://doi.org/10.1046/j.1365- 2699.2000.00450.x
dc.identifier.citedreferenceClark, K., Karsch- Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. ( 2015 ). GenBank. Nucleic Acids Research, 44 ( D1 ), D67 - D72. https://doi.org/10.1093/nar/gkv1276
dc.identifier.citedreferenceClark, N. J. ( 2018 ). Phylogenetic uniqueness, not latitude, explains the diversity of avian blood parasite communities worldwide. Global Ecology and Biogeography, 27 ( 6 ), 744 - 755. https://doi.org/10.1111/geb.12741
dc.identifier.citedreferenceClark, N. J., Clegg, S. M., Sam, K., Goulding, W., Koane, B., & Wells, K. ( 2018 ). Climate, host phylogeny and the connectivity of host communities govern regional parasite assembly. Diversity and Distributions, 24 ( 1 ), 13 - 23. https://doi.org/10.1111/ddi.12661
dc.identifier.citedreferenceClement, P. ( 2000 ). Thrushes. Princeton, NJ: Princeton University Press.
dc.identifier.citedreferenceCogbill, C. V., & White, P. S. ( 1991 ). The latitude- elevation relationship for spruce- fir forest and treeline along the Appalachian mountain chain. Vegetatio, 94 ( 2 ), 153 - 175. https://doi.org/10.1007/BF00032629
dc.identifier.citedreferenceConnell, J. H., & Orias, E. ( 1964 ). The ecological regulation of species diversity. The American Naturalist, 98, 399 - 414. https://doi.org/10.1086/282335
dc.identifier.citedreferenceCozzarolo, C. S., Jenkins, T., Toews, D. P., Brelsford, A., & Christe, P. ( 2018 ). Prevalence and diversity of haemosporidian parasites in the yellow- rumped warbler hybrid zone. Ecology and Evolution, 8 ( 19 ), 9834 - 9847. https://doi.org/10.1002/ece3.4469
dc.identifier.citedreferenceCuevas, E., Vianna, J. A., Botero- Delgadillo, E., Doussang, D., González- Acuña, D., Barroso, O., - ¦ Quirici, V. ( 2020 ). Latitudinal gradients of haemosporidian parasites: Prevalence, diversity and drivers of infection in the Thorn- tailed Rayadito ( Aphrastura spinicauda ). International Journal for Parasitology: Parasites and Wildlife, 11, 1 - 11. https://doi.org/10.1016/j.ijppaw.2019.11.002
dc.identifier.citedreferenceCumming, G. S. ( 2000 ). Using habitat models to map diversity: Pan- African species richness of ticks (Acari: Ixodida). Journal of Biogeography, 27 ( 2 ), 425 - 440. https://doi.org/10.1046/j.1365- 2699.2000.00419.x
dc.identifier.citedreferenceDavies, T. J., & Buckley, L. B. ( 2011 ). Phylogenetic diversity as a window into the evolutionary and biogeographic histories of present- day richness gradients for mammals. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366 ( 1576 ), 2414 - 2425. https://doi.org/10.1098/rstb.2011.0058
dc.identifier.citedreferenceDavies, T. J., Savolainen, V., Chase, M. W., Moat, J., & Barraclough, T. G. ( 2004 ). Environmental energy and evolutionary rates in flowering plants. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271 ( 1553 ), 2195 - 2200. https://doi.org/10.1098/rspb.2004.2849
dc.identifier.citedreferenceDodge, M., Guers, S. L., SekercioÄ lu, Ã . H., & Sehgal, R. N. ( 2013 ). North American transmission of Haemosporidian parasites in the Swainson’s thrush ( Catharus ustulatus ), a migratory songbird. Journal of Parasitology, 99 ( 3 ), 548 - 553. https://doi.org/10.1645/GE- 3134.1
dc.identifier.citedreferenceEverson, K. M., McLaughlin, J. F., Cato, I. A., Evans, M. M., Gastaldi, A. R., Mills, K. K., - ¦ Winker, K. ( 2019 ). Speciation, gene flow, and seasonal migration in Catharus thrushes (Aves: Turdidae). Molecular Phylogenetics and Evolution, 139, 106564. https://doi.org/10.1016/j.ympev.2019.106564
dc.identifier.citedreferenceFecchio, A., Bell, J. A., Bosholn, M., Vaughan, J. A., Tkach, V. V., Lutz, H. L., - ¦ Kvasager, D. ( 2019 ). An inverse latitudinal gradient in infection probability and phylogenetic diversity for Leucocytozoon blood parasites in New World birds. Journal of Animal Ecology, 89 ( 2 ), 423 - 435. https://doi.org/10.1111/1365- 2656.13117
dc.identifier.citedreferenceFerraguti, M., Martínez- de la Puente, J., Bensch, S., Roiz, D., Ruiz, S., Viana, D. S., - ¦ Figuerola, J. ( 2018 ). Ecological determinants of avian malaria infections: An integrative analysis at landscape, mosquito and vertebrate community levels. Journal of Animal Ecology, 87 ( 3 ), 727 - 740. https://doi.org/10.1111/1365- 2656.12805
dc.identifier.citedreferenceFerrier, S., Manion, G., Elith, J., & Richardson, K. ( 2007 ). Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions, 13 ( 3 ), 252 - 264. https://doi.org/10.1111/j.1472- 4642.2007.00341.x
dc.identifier.citedreferenceFitzGerald, A. M. ( 2017 ). Division within the North American boreal forest: Ecological niche divergence between the Bicknell’s Thrush ( Catharus bicknelli ) and Gray- cheeked Thrush ( C. minimus ). Ecology and Evolution, 7 ( 14 ), 5285 - 5295. https://doi.org/10.1002/ece3.3080
dc.identifier.citedreferenceFitzGerald, A. M., Weir, J., Ralston, J., Warkentin, I. G., Whitaker, D. M., & Kirchman, J. J. ( 2020 ). Genetic structure and biogeographic history of the Bicknell- s Thrush/Gray- cheeked Thrush species complex. The Auk, 137 ( 1 ), ukz066. https://doi.org/10.1093/auk/ukz066
dc.identifier.citedreferenceFitzpatrick, M. C., Sanders, N. J., Normand, S., Svenning, J. C., Ferrier, S., Gove, A. D., & Dunn, R. R. ( 2013 ). Environmental and historical imprints on beta diversity: Insights from variation in rates of species turnover along gradients. Proceedings of the Royal Society B: Biological Sciences, 280 ( 1768 ), 20131201. https://doi.org/10.1111/j.1472- 4642.2007.00341.x
dc.identifier.citedreferenceFoley, D. H., Rueda, L. M., & Wilkerson, R. C. ( 2007 ). Insight into global mosquito biogeography from country species records. Journal of Medical Entomology, 44 ( 4 ), 554 - 567. https://doi.org/10.1603/0022- 2585(2007)44[554:iigmbf]2.0.co;2
dc.identifier.citedreferenceGage, K. L., Burkot, T. R., Eisen, R. J., & Hayes, E. B. ( 2008 ). Climate and vectorborne diseases. American Journal of Preventive Medicine, 35 ( 5 ), 436 - 450. https://doi.org/10.1016/j.amepre.2008.08.030
dc.identifier.citedreferenceGalen, S. C., Nunes, R., Sweet, P. R., & Perkins, S. L. ( 2018 ). Integrating coalescent species delimitation with analysis of host specificity reveals extensive cryptic diversity despite minimal mitochondrial divergence in the malaria parasite genus Leucocytozoon. BMC Evolutionary Biology, 18 ( 1 ), 128. https://doi.org/10.1186/s12862-018-1242-xç10.1186/s12862-018-1242-x
dc.identifier.citedreferenceGarcia- Longoria, L., Marzal, A., De Lope, F., & Garamszegi, L. ( 2019 ). Host- parasite interaction explains variation in the prevalence of avian haemosporidians at the community level. PLoS ONE, 14 ( 3 ), e0205624. https://doi.org/10.1371/journal.pone.0205624
dc.identifier.citedreferenceGreiner, E. C., Bennett, G. F., White, E. M., & Coombs, R. F. ( 1975 ). Distribution of the avian hematozoa of North America. Canadian Journal of Zoology, 53 ( 12 ), 1762 - 1787.
dc.identifier.citedreferenceGuernier, V., Hochberg, M. E., & Guégan, J. F. ( 2004 ). Ecology drives the worldwide distribution of human diseases. PLoS Biology, 2 ( 6 ), e141. https://doi.org/10.1371/journal.pbio.0020141
dc.identifier.citedreferenceGuilhaumon, F., Krasnov, B. R., Poulin, R., Shenbrot, G. I., & Mouillot, D. ( 2012 ). Latitudinal mismatches between the components of mammal- flea interaction networks. Global Ecology and Biogeography, 21 ( 7 ), 725 - 731. https://doi.org/10.1111/j.1466- 8238.2011.00714.x
dc.identifier.citedreferenceHaas, M., Lukán, M., Kisková, J., & Hrehová, Z. ( 2012 ). Occurrence of blood parasites and intensity of infection in Prunella modularis in the montane and subalpine zone in the Slovak Carpathians. Acta Parasitologica, 57, 221 - 227. https://doi.org/10.2478/s11686- 012- 0041- 6
dc.identifier.citedreferenceHawkins, B. A., Porter, E. E., & Felizola Diniz- Filho, J. A. ( 2003 ). Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds. Ecology, 84 ( 6 ), 1608 - 1623. https://doi.org/10.1890/0012- 9658(2003)084[1608:PAHAPO]2.0.CO;2
dc.identifier.citedreferenceHechinger, R. F., & Lafferty, K. D. ( 2005 ). Host diversity begets parasite diversity: bird final hosts and trematodes in snail intermediate hosts. Proceedings of the Royal Society B: Biological Sciences, 272 ( 1567 ), 1059 - 1066. https://doi.org/10.1098/rspb.2005.3070
dc.identifier.citedreferenceHellgren, O., Pérez- Tris, J., & Bensch, S. ( 2009 ). A jack- of- all- trades and still a master of some: Prevalence and host range in avian malaria and related blood parasites. Ecology, 90 ( 10 ), 2840 - 2849. https://doi.org/10.1890/08- 1059.1
dc.identifier.citedreferenceHellgren, O., Waldenström, J., & Bensch, S. ( 2004 ). A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. Journal of Parasitology, 90 ( 4 ), 797 - 802. https://doi.org/10.1645/GE- 184R1
dc.identifier.citedreferenceHesson, J. C., à stman, à ., Schäfer, M., & Lundström, J. O. ( 2011 ). Geographic distribution and relative abundance of the sibling vector species Culex torrentium and Culex pipiens in Sweden. Vector- Borne and Zoonotic Diseases, 11 ( 10 ), 1383 - 1389. https://doi.org/10.1089/vbz.2011.0630
dc.identifier.citedreferenceHillebrand, H. ( 2004 ). On the generality of the latitudinal diversity gradient. The American Naturalist, 163 ( 2 ), 192 - 211. https://doi.org/10.1086/381004
dc.identifier.citedreferenceHolt, R. D. ( 2003 ). On the evolutionary ecology of species’ ranges. Evolutionary Ecology Research, 5 ( 2 ), 159 - 178.
dc.identifier.citedreferenceHsieh, T. C., Ma, K. H., & Chao, A. ( 2016 ). iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7 ( 12 ), 1451 - 1456.
dc.identifier.citedreferenceIllera, J. C., Fernández- à lvarez, à ., Hernández- Flores, C. N., & Foronda, P. ( 2015 ). Unforeseen biogeographical patterns in a multiple parasite system in Macaronesia. Journal of Biogeography, 42 ( 10 ), 1858 - 1870. https://doi.org/10.1371/journal.pone.0184587
dc.identifier.citedreferenceJones, M. R., Cheviron, Z. A., & Carling, M. D. ( 2013 ). Spatial patterns of avian malaria prevalence in Zonotrichia capensis on the western slope of the Peruvian Andes. Journal of Parasitology, 99 ( 5 ), 903 - 905. https://doi.org/10.1645/12- 147.1
dc.identifier.citedreferenceJones, W., Kulma, K., Bensch, S., CichoÅ , M., Kerimov, A., Krist, M., - ¦ SzöllÅ si, E. ( 2018 ). Interspecific transfer of parasites following a range- shift in Ficedula flycatchers. Ecology and Evolution, 8 ( 23 ), 12183 - 12192. https://doi.org/10.1002/ece3.4677
dc.identifier.citedreferenceKamiya, T., O- Dwyer, K., Nakagawa, S., & Poulin, R. ( 2014 ). What determines species richness of parasitic organisms? A meta- analysis across animal, plant and fungal hosts. Biological Reviews, 89, 123 - 134. https://doi.org/10.1111/brv.12046
dc.identifier.citedreferenceKlopfer, P. H. ( 1959 ). Environmental determinants of faunal diversity. The American Naturalist, 93, 337 - 342.
dc.identifier.citedreferenceKrasnov, B. R., & Poulin, R. ( 2010 ). Ecological properties of a parasite: Species- specific stability and geographic variation. In S. Morand, & B. R. Krasnov (Eds.), The biogeography of host- parasite interactions (pp. 99 - 114 ). New York, NY: Oxford University Press.
dc.identifier.citedreferenceKrasnov, B. R., Shenbrot, G. I., Khokhlova, I. S., & Degen, A. A. ( 2004 ). Flea species richness and parameters of host body, host geography and host - milieu- . Journal of Animal Ecology, 73 ( 6 ), 1121 - 1128. https://doi.org/10.1111/j.0021- 8790.2004.00883.x
dc.identifier.citedreferenceKumar, S., Stecher, G., & Tamura, K. ( 2016 ). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33 ( 7 ), 1870 - 1874. https://doi.org/10.1093/molbev/msw054
dc.identifier.citedreferenceLachish, S., Knowles, S. C. L., Alves, R., Sepil, I., Davies, A., Lee, S., - ¦ Sheldon, B. C. ( 2013 ). Spatial determinants of infection risk in a multi- species avian malaria system. Ecography, 36 ( 5 ), 587 - 598. https://doi.org/10.1111/j.1600- 0587.2012.07801.x
dc.identifier.citedreferenceLaPointe, D. A., Atkinson, C. T., & Samuel, M. D. ( 2012 ). Ecology and conservation biology of avian malaria. Annals of the New York Academy of Sciences, 1249 ( 1 ), 211 - 226. https://doi.org/10.1111/j.1749- 6632.2011.06431.x
dc.identifier.citedreferenceLinardi, P. M., & Krasnov, B. R. ( 2013 ). Patterns of diversity and abundance of fleas and mites in the Neotropics: Host- related, parasite- related and environment- related factors. Medical and Veterinary Entomology, 27 ( 1 ), 49 - 58. https://doi.org/10.1111/j.1365- 2915.2012.01025.x
dc.identifier.citedreferenceLindenfors, P., Nunn, C. L., Jones, K. E., Cunningham, A. A., Sechrest, W., & Gittleman, J. L. ( 2007 ). Parasite species richness in carnivores: Effects of host body mass, latitude, geographical range and population density. Global Ecology and Biogeography, 16 ( 4 ), 496 - 509. https://doi.org/10.1111/j.1466- 8238.2006.00301.x
dc.identifier.citedreferenceLindsay, S. W., & Birley, M. H. ( 1996 ). Climate change and malaria transmission. Annals of Tropical Medicine and Parasitology, 90 ( 5 ), 573 - 588. https://doi.org/10.1080/00034983.1996.11813087
dc.identifier.citedreferenceMannion, P. D., Upchurch, P., Benson, R. B., & Goswami, A. ( 2014 ). The latitudinal biodiversity gradient through deep time. Trends in Ecology and Evolution, 29 ( 1 ), 42 - 50. https://doi.org/10.1016/j.tree.2013.09.012
dc.identifier.citedreferenceMarroquin- Flores, R. A., Williamson, J. L., Chavez, A. N., Bauernfeind, S. M., Baumann, M. J., Gadek, C. R., - ¦ Barrow, L. N. ( 2017 ). Diversity, abundance, and host relationships of avian malaria and related haemosporidians in New Mexico pine forests. PeerJ, 5, e3700. https://doi.org/10.7717/peerj.3700
dc.identifier.citedreferenceMartinsen, E. S., McFarland, K. P., & Rimmer, C. C. ( 2018 ). Documentation of a hybrid Bicknell’s Thrush ( Catharus bicknelli ) Ã Veery ( C. fuscescens) using vocalization and genetic data. The. Wilson Journal of Ornithology, 130 ( 1 ), 70 - 80. https://doi.org/10.1676/16- 061.1
dc.identifier.citedreferenceMcCreadie, J. W., & Adler, P. H. ( 2014 ). Abundance- occupancy relationships of larval black flies (Diptera: Simuliidae) in temperate Nearctic streams. Insect Conservation and Diversity, 7 ( 6 ), 523 - 532. https://doi.org/10.1111/icad.12075
dc.identifier.citedreferenceMcCreadie, J. W., Williams, R. H., Stutsman, S., Finn, D. S., & Adler, P. H. ( 2017 ). The influence of habitat heterogeneity and latitude on gamma diversity of the Nearctic Simuliidae, a ubiquitous group of stream- dwelling insects. Insect Science, 25 ( 4 ), 712 - 720. https://doi.org/10.1111/1744- 7917.12442
dc.identifier.citedreferenceMedeiros, M. C., Ellis, V. A., & Ricklefs, R. E. ( 2014 ). Specialized avian Haemosporida trade reduced host breadth for increased prevalence. Journal of Evolutionary Biology, 27 ( 11 ), 2520 - 2528. https://doi.org/10.1111/jeb.12514
dc.identifier.citedreferenceMerino, S., Moreno, J., Vásquez, R. A., Martínez, J., Sánchez- monsálvez, I., Estades, C. F., - ¦ Mcgehee, S. ( 2008 ). Haematozoa in forest birds from southern Chile: Latitudinal gradients in prevalence and parasite lineage richness. Austral Ecology, 33 ( 3 ), 329 - 340. https://doi.org/10.1111/j.1442- 9993.2008.01820.x
dc.identifier.citedreferenceMittelbach, G. G., Schemske, D. W., Cornell, H. V., Allen, A. P., Brown, J. M., Bush, M. B., - ¦ Turelli, M. ( 2007 ). Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography. Ecology Letters, 10 ( 4 ), 315 - 331. https://doi.org/10.1111/j.1461- 0248.2007.01020.x
dc.identifier.citedreferenceMullens, B. A., Gerry, A. C., Lysyk, T. J., & Schmidtmann, E. T. ( 2004 ). Environmental effects on vector competence and virogenesis of bluetongue virus in Culicoides: Interpreting laboratory data in a field context. Vet Ital, 40 ( 3 ), 160 - 166.
dc.identifier.citedreferenceMurdock, C. C., Foufopoulos, J., & Simon, C. P. ( 2013 ). A transmission model for the ecology of an avian blood parasite in a temperate ecosystem. PLoS ONE, 8 ( 9 ), e76126. https://doi.org/10.1371/journal.pone.0076126
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.