Show simple item record

Cooperative Switching in Large‐Area Assemblies of Magnetic Janus Particles

dc.contributor.authorHwang, Sangyeul
dc.contributor.authorNguyen, Trung Dac
dc.contributor.authorBhaskar, Srijanani
dc.contributor.authorYoon, Jaewon
dc.contributor.authorKlaiber, Marvin
dc.contributor.authorLee, Kyung Jin
dc.contributor.authorGlotzer, Sharon C.
dc.contributor.authorLahann, Joerg
dc.date.accessioned2020-07-02T20:32:39Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-07-02T20:32:39Z
dc.date.issued2020-06
dc.identifier.citationHwang, Sangyeul; Nguyen, Trung Dac; Bhaskar, Srijanani; Yoon, Jaewon; Klaiber, Marvin; Lee, Kyung Jin; Glotzer, Sharon C.; Lahann, Joerg (2020). "Cooperative Switching in Large‐Area Assemblies of Magnetic Janus Particles." Advanced Functional Materials 30(26): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/155896
dc.description.abstractMagnetic Janus particles (MJPs) have received considerable attention for their rich assembly behavior and their potential technological role in applications ranging from simple magnetophoretic displays to smart cloaking devices. However, further progress is hampered by the lack of predictive understanding of the cooperative self‐assembly behavior of MJPs and appropriate dynamic control mechanisms. In this paper, a detailed experimental and theoretical investigation into the magnetically directed spatiotemporal self‐assembly and switching of MJPs is presented. For this purpose, a novel type of MJPs with defined hemispherical compartments carrying superparamagnetic iron oxide nanoparticles as well as a novel simulation model to describe their cooperative switching behavior is established. Combination of the theoretical and experimental work culminates in a simple method to direct assemblies of MJPs, even at high particle concentrations. In addition, a magnetophoretic display with switchable MJPs is developed on the basis of the theoretical findings to demonstrate the potential usefulness of controlled large‐area assemblies of magnetic Janus particles.Anisotropic particles that have one hemisphere selectively loaded with magnetite nanoparticles rotate in response to magnetic fields as indicated by visually observable color changes.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherJanus particles
dc.subject.othermagnetic actuation
dc.subject.otherself‐assembly
dc.subject.otherstimuli‐responsive materials
dc.subject.otherbicompartmental
dc.titleCooperative Switching in Large‐Area Assemblies of Magnetic Janus Particles
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155896/1/adfm201907865-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155896/2/adfm201907865.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155896/3/adfm201907865_am.pdf
dc.identifier.doi10.1002/adfm.201907865
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferenceJ. Lahann, Small 2011, 7, 1149.
dc.identifier.citedreferenceB. Comiskey, J. D. Albert, H. Yoshizawa, J. Jacobson, Nature 1998, 394, 253.
dc.identifier.citedreferenceT. Nisisako, T. Torii, T. Takahashi, Y. Takizawa, Adv. Mater. 2006, 18, 1152.
dc.identifier.citedreferenceA. Snezhko, J. Phys.: Condens. Matter 2011, 23, 153101.
dc.identifier.citedreferenceB. A. Grzybowski, K. Fitzner, J. Paczesny, S. Granick, Chem. Soc. Rev. 2017, 46, 5647.
dc.identifier.citedreferenceR. M. Erb, N. J. Jenness, R. L. Clark, B. B. Yellen, Adv. Mater. 2009, 21, 4825.
dc.identifier.citedreferenceJ. Yan, M. Bloom, S. C. Bae, E. Luijten, S. Granick, Nature 2012, 491, 578.
dc.identifier.citedreferenceS. K. Smoukov, S. Gangwal, M. Marquez, O. D. Velev, Soft Matter 2009, 5, 1285.
dc.identifier.citedreferenceK. P. Yuet, D. K. Hwang, R. Haghgooie, P. S. Doyle, Langmuir 2009, 26, 4281.
dc.identifier.citedreferenceL. Zhang, F. Zhang, W.‐F. Dong, J.‐F. Song, Q.‐S. Huo, H.‐B. Sun, Chem. Commun. 2011, 47, 1225.
dc.identifier.citedreferenceS. Kim, J. Y. Sim, J. Lim, S. Yang, Angew. Chem., Int. Ed. 2010, 49, 3786.
dc.identifier.citedreferenceC. Chen, A. R. Abate, D. Lee, E. M. Terentjev, D. A. Weitz, Adv. Mater. 2009, 21, 3201.
dc.identifier.citedreferenceB. H. McNaughton, K. A. Kehbein, J. N. Anker, R. Kopelman, J. Phys. Chem. B 2006, 110, 18958.
dc.identifier.citedreferenceJ. Yan, S. C. Bae, S. Granick, Soft Matter 2015, 11, 147.
dc.identifier.citedreferenceK.‐H. Roh, D. C. Martin, J. Lahann, Nat. Mater. 2005, 4, 759.
dc.identifier.citedreferenceJ. Yan, S. C. Bae, S. Granick, Adv. Mater. 2015, 27, 874.
dc.identifier.citedreferenceS. Bhaskar, K. M. Pollock, M. Yoshida, J. Lahann, Small 2010, 6, 404.
dc.identifier.citedreferenceK.‐H. Roh, D. C. Martin, J. Lahann, J. Am. Chem. Soc. 2006, 128, 6796.
dc.identifier.citedreferenceS. Hwang, K.‐H. Roh, D. W. Lim, G. Wang, C. Uher, J. Lahann, Phys. Chem. Chem. Phys. 2010, 12, 11894.
dc.identifier.citedreferenceT. O. Paine, L. I. Mendelsohn, F. E. Luborsky, Phys. Rev. 1955, 100, 1055.
dc.identifier.citedreferenceA. T. Skjeltorp, Phys. Rev. Lett. 1983, 51, 2306.
dc.identifier.citedreferenceJ. Ge, Y. Hu, T. Zhang, T. Huynh, Y. Yin, Langmuir 2008, 24, 3671.
dc.identifier.citedreferenceS. Rahmani, J. Lahann, MRS Bull. 2014, 39, 251.
dc.identifier.citedreferenceS. Bhaskar, J. Hitt, S. L. Chang, J. Lahann, Angew. Chem., Int. Ed. 2009, 48, 4589.
dc.identifier.citedreferenceK. J. Lee, J. Yoon, S. Rahmani, S. Hwang, S. Bhaskar, S. Mitragotri, J. Lahann, Proc. Natl. Acad. Sci. USA 2012, 109, 16057.
dc.identifier.citedreferenceS. Bhaskar, K. Roh, X. Jiang, G. L. Baker, J. Lahann, Macromol. Rapid Commun. 2008, 29, 1655.
dc.identifier.citedreferenceJ. A. Anderson, C. D. Lorenz, A. Travesset, J. Comput. Phys. 2008, 227, 5342.
dc.identifier.citedreferenceS. Plimpton, J. Comput. Phys. 1995, 117, 1.
dc.identifier.citedreferenceL. H. Gabrielli, J. Cardenas, C. B. Poitras, M. Lipson, Nat. Photonics 2009, 3, 461.
dc.identifier.citedreferenceJ. J. Weis, Mol. Phys. 2002, 100, 579.
dc.identifier.citedreferenceA. Ghazali, J.‐C. Lévy, Phys. Rev. B 2003, 67, 64409.
dc.identifier.citedreferenceM. Lattuada, T. A. Hatton, J. Am. Chem. Soc. 2007, 129, 12878.
dc.identifier.citedreferenceS. Kantorovich, R. Weeber, J. J. Cerdà, C. Holm, J. Magn. Magn. Mater. 2011, 323, 1269.
dc.identifier.citedreferenceJ. D. Weeks, D. Chandler, H. C. Andersen, J. Chem. Phys. 1971, 54, 5237.
dc.identifier.citedreferenceT. Kato, Science 2002, 295, 2414.
dc.identifier.citedreferenceJ. W. Goodby, Curr. Opin. Solid State Mater. Sci. 1999, 4, 361.
dc.identifier.citedreferenceJ. Lahann, S. Mitragotri, T. N. Tran, H. Kaido, J. Sundaram, I. S. Choi, S. Hoffer, G. A. Somorjai, R. Langer, Science 2003, 299, 371.
dc.identifier.citedreferenceY. Y. Luk, N. L. Abbott, Science 2003, 301, 623.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.