Show simple item record

Arctic Amplification of Global Warming Strengthened by Sunlight Oxidation of Permafrost Carbon to CO2

dc.contributor.authorBowen, J. C.
dc.contributor.authorWard, C. P.
dc.contributor.authorKling, G. W.
dc.contributor.authorCory, R. M.
dc.date.accessioned2020-07-02T20:32:40Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-07-02T20:32:40Z
dc.date.issued2020-06-28
dc.identifier.citationBowen, J. C.; Ward, C. P.; Kling, G. W.; Cory, R. M. (2020). "Arctic Amplification of Global Warming Strengthened by Sunlight Oxidation of Permafrost Carbon to CO2." Geophysical Research Letters 47(12): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/155897
dc.description.abstractOnce thawed, up to 15% of the ∼1,000 Pg of organic carbon (C) in arctic permafrost soils may be oxidized to carbon dioxide (CO2) by 2,100, amplifying climate change. However, predictions of this amplification strength ignore the oxidation of permafrost C to CO2 in surface waters (photomineralization). We characterized the wavelength dependence of permafrost dissolved organic carbon (DOC) photomineralization and demonstrate that iron catalyzes photomineralization of old DOC (4,000–6,300 a BP) derived from soil lignin and tannin. Rates of CO2 production from photomineralization of permafrost DOC are twofold higher than for modern DOC. Given that model predictions of future net loss of ecosystem C from thawing permafrost do not include the loss of CO2 to the atmosphere from DOC photomineralization, current predictions of an average of 208 Pg C loss by 2,299 may be too low by ~14%.Plain Language SummaryThe thawing of organic carbon stored in arctic permafrost soils, and its oxidation to carbon dioxide (a greenhouse gas), is predicted to be a major, positive feedback on global warming. However, current estimates of the magnitude of this feedback do not include the oxidation of permafrost soil organic carbon flushed to sunlit lakes and rivers. Here we show that ancient dissolved organic carbon (>4,000 years old) draining permafrost soils is readily oxidized to carbon dioxide by sunlight. As a consequence, current estimates of additional global warming from the permafrost carbon feedback are too low.Key PointsWavelength dependence of permafrost dissolved organic carbon (DOC) photomineralization revealed a high lability to visible lightIron catalyzes the photomineralization of old permafrost DOC (>4,000 a BP) derived from soil lignin and tannin to carbon dioxide (CO2)Photomineralization rates of permafrost DOC to CO2 are double that of modern DOC, which will increase future arctic amplification
dc.publisherOxford University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othercarbon cycling
dc.subject.otherpermafrost
dc.subject.otherphotochemistry
dc.subject.otherdissolved organic carbon
dc.subject.otherarctic
dc.titleArctic Amplification of Global Warming Strengthened by Sunlight Oxidation of Permafrost Carbon to CO2
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155897/1/grl60761.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155897/2/grl60761_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155897/3/grl60761-sup-0001-2020GL087085-SI.pdf
dc.identifier.doi10.1029/2020GL087085
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceSelvam, B. P., Lapierre, J. F., Guillemette, F., Voigt, C., Lamprecht, R. E., Biasi, C., Christensen, T. R., Martikainen, P. J., & Berggren, M. ( 2017 ). Degradation potentials of dissolved organic carbon (DOC) from thawed permafrost peat. Nature Scientific Reports, 7 ( 1 ), 45,811. https://doi.org/10.1038/srep45811
dc.identifier.citedreferenceHeslop, J. K., Winkel, M., Walter Anthony, K. M., Spencer, R. G. M., Podgorski, D. C., Zito, P., Kholodov, A., Zhang, M., & Liebner, S. ( 2019 ). Increasing organic carbon biolability with depth in yedoma permafrost: Ramifications for future climate change. Journal of Geophysical Research: Biogeosciences, 124, 2021 – 2038. https://doi.org/10.1029/2018JG004712
dc.identifier.citedreferenceHobbie, J. E., & Kling, G. W. (Eds) ( 2014 ). Alaska’s changing Arctic: Ecological consequences for tundra, streams, and lakes. Oxford, UK: Oxford University Press. https://doi.org/10.1093/acprof:osobl/9780199860401.001.0001
dc.identifier.citedreferenceMangiante, D. M., Schaller, R. D., Zarzycki, P., Banfield, J. F., & Gilbert, B. ( 2017 ). Mechanism of ferric oxalate photolysis. ACS Earth and Space Chemistry, 1 ( 5 ), 270 – 276. https://doi.org/10.1021/acsearthspacechem.7b00026
dc.identifier.citedreferenceMcGuire, A. D., Lawrence, D. M., Koven, C., Clein, J. S., Burke, E., Chen, G., Jafarov, E., MacDougall, A. H., Marchenko, S., Nicolsky, D., Peng, S., Rinke, A., Ciais, P., Gouttevin, I., Hayes, D. J., Ji, D., Krinner, G., Moore, J. C., Romanovsky, V., Schädel, C., Schaefer, K., Schuur, E. A. G., & Zhuang, Q. ( 2018 ). Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proceedings of the National Academy of Sciences of the United States of America, 115 ( 15 ), 3882 – 3887. https://doi.org/10.1073/pnas.1719903115
dc.identifier.citedreferenceMcNichol, A. P., Jones, G. A., Hutton, D. L., & Gagon, A. R. ( 1994 ). The rapid preparation of seawater ΣCO 2 for radiocarbon analysis at the National Ocean Sciences AMS facility. Radiocarbon, 36 ( 2 ), 237 – 246. https://doi.org/10.1017/S0033822200040522
dc.identifier.citedreferenceMcNichol, A. P., Jull, A. J. T., & Burr, G. S. ( 2001 ). Converting AMS data to radiocarbon values: Considerations and conventions. Radiocarbon, 43 ( 2A ), 313 – 320. https://doi.org/10.1017/S0033822200038169
dc.identifier.citedreferenceMiles, C., & Brezonik, P. ( 1981 ). Oxygen consumption in humic‐colored waters by a photochemical ferrous‐ferric catalytic cycle. Environmental Science & Technology, 15 ( 9 ), 1089 – 1095. https://doi.org/10.1021/es00091a010
dc.identifier.citedreferenceMiller, C. J., Rose, A. L., & Waite, T. D. ( 2009 ). Impact of natural organic matter on H 2 O 2 ‐mediated oxidation of Fe(II) in a simulated freshwater system. Geochimica et Cosmochimica Acta, 73 ( 10 ), 2758 – 2768. https://doi.org/10.1016/j.gca.2009.02.027
dc.identifier.citedreferenceMull, C. G., & Adams, K. E. (Eds) ( 1989 ). Bedrock geology of the eastern Koyukuk Basin, central Brooks Range, and east central Arctic Slope along the Dalton Highway, Yukon River to Prudhoe Bay, Alaska Guidebook 7, (Vol. 1 ). Anchorage, AK: Department of Natural Resources, Division of Geological and Geophysical Surveys.
dc.identifier.citedreferencePing, C. L., Bockheim, J. G., Kimble, J. M., Michaelson, G. J., & Walker, D. A. ( 1998 ). Characteristics of cryogenic soils along a latitudinal transect in Arctic Alaska. Journal of Geophysical Research, 103 ( D22 ), 28,917 – 28,928. https://doi.org/10.1029/98JD02024
dc.identifier.citedreferencePlaza, C., Pegoraro, E., Bracho, R., Celis, G., Crummer, K. G., Hutchings, J. A., Hicks Pries, C. E., Mauritz, M., Natali, S. M., Salmon, V. G., Schädel, C., Webb, E. E., & Schuur, E. A. G. ( 2019 ). Direct observation of permafrost degradation and rapid soil carbon loss in tundra. Nature Geoscience, 12 ( 8 ), 627 – 631. https://doi.org/10.1038/s41561-019-0387-6
dc.identifier.citedreferenceSchuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., & Vonk, J. E. ( 2015 ). Climate change and the permafrost carbon feedback. Nature, 520 ( 7546 ), 171 – 179. https://doi.org/10.1038/nature14338
dc.identifier.citedreferenceShirokova, L. S., Chupakov, A. V., Zabelina, S. A., Neverova, N. V., Payandi‐Rolland, D., Causseraund, C., et al. ( 2019 ). Humic surface waters of frozen peat bogs (permafrost zone) are highly resistant to bio‐ and photodegradation. Biogeosciences, 16 ( 12 ), 2511 – 2526. https://doi.org/10.5194/bg-16-2511-2019
dc.identifier.citedreferenceŠmejkalová, T., Edwards, M. E., & Dash, J. ( 2016 ). Arctic lakes show strong decadal trends in earlier spring ice‐out. Nature Scientific Reports, 6 ( 1 ), 38,449. https://doi.org/10.1038/srep38449
dc.identifier.citedreferenceSpencer, R. G. M., Stubbins, A., Hernes, P. J., Baker, A., Mopper, K., Aufdenkampe, A. K., Dyda, R. Y., Mwamba, V. L., Mangangu, A. M., Wabakanghanzi, J. N., & Six, J. ( 2009 ). Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River. Journal of Geophysical Research, 114, G03010. https://doi.org/10.1029/2009JG000968
dc.identifier.citedreferenceStubbins, A., Mann, P. J., Powers, L., Bittar, T. B., Dittmar, T., McIntyre, C. P., Eglinton, T. I., Zimov, N., & Spencer, R. G. M. ( 2016 ). Low photolability of yedoma permafrost dissolved organic carbon. Journal of Geophysical Research: Biogeosciences, 122, 200 – 211. https://doi.org/10.1002/2016JG003688
dc.identifier.citedreferenceStuiver, M., & Polach, H. A. ( 1977 ). Discussion: Reporting of 14 C data. Radiocarbon, 19 ( 3 ), 355 – 363. https://doi.org/10.1017/S0033822200003672
dc.identifier.citedreferenceTrusiak, A., Treibergs, L. A., Kling, G. W., & Cory, R. M. ( 2019 ). The controls of iron and oxygen on hydroxyl radical (•OH) production in soils. Soil System, 3 ( 1 ), 1. https://doi.org/10.3390/soilsystems3010001
dc.identifier.citedreferenceWalker, D. A., Raynolds, M. K., Daniëls, F. J. A., Einarsson, E., Elvebakk, A., Gould, W. A., Katenin, A. E., Kholod, S. S., Markon, C. J., Melnikov, E. S., Moskalenko, N. G., Talbot, S. S., Yurtsev, B. A.(†)., & The other members of the CAVM Team ( 2005 ). The circumpolar Arctic vegetation map. Journal of Vegetation Science, 16 ( 3 ), 267 – 282. https://doi.org/10.1111/j.1654-1103.2005.tb02365.x
dc.identifier.citedreferenceWard, C. P., Armstrong, C. J., Walsh, A. N., Jackson, J. J., & Reddy, C. M. ( 2019 ). Sunlight converts polystyrene into carbon dioxide and dissolved organic carbon. Environmental Science & Technology Letters, 6 ( 11 ), 669 – 674. https://doi.org/10.1021/acs.estlett.9b00532
dc.identifier.citedreferenceWard, C. P., & Cory, R. M. ( 2016 ). Complete and partial photo‐oxidation of dissolved organic matter draining permafrost soils. Environmental Science & Technology, 50 ( 7 ), 3545 – 3553. https://doi.org/10.1021/acs.est.5b05354
dc.identifier.citedreferenceWard, C. P., Nalven, S. G., Crump, B. C., Kling, G. W., & Cory, R. M. ( 2017 ). Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration. Nature Communications, 8 ( 1 ), 772 – 778. https://doi.org/10.1038/s41467-017-00759-2
dc.identifier.citedreferenceXie, H., Zafiriou, O. C., Cai, W. ‐J., Zepp, R. G., & Wang, Y. ( 2004 ). Photooxidation and its effects on the carboxyl content of dissolved organic matter in two coastal rivers in the southeastern United States. Environmental Science & Technology, 38 ( 15 ), 4113 – 4119. https://doi.org/10.1021/es035407t
dc.identifier.citedreferenceKana, T. M., Darkangelo, C., Hunt, M. D., Oldham, J. B., Bennett, G. E., & Cornwell, J. C. ( 1994 ). Membrane inlet mass spectrometer for rapid high‐precision determination of N2, O2, and Ar in environmental water samples. Analytical Chemistry, 66 ( 23 ), 4166 – 4170. https://doi.org/10.1021/ac00095a009
dc.identifier.citedreferenceLongworth, B. E., von Reden, K. F., Long, P., & Roberts, M. L. ( 2015 ). A high output, large acceptance injector for the NOSAMS Tandetron AMS system. Nuclear Instruments and Methods in Physics Research B, 361, 211 – 216. https://doi.org/10.1016/j.nimb.2015.04.005
dc.identifier.citedreferenceBall, G. I., & Aluwihare, L. I. ( 2014 ). CuO‐oxidized dissolved organic matter (DOM) investigated with comprehensive two dimensional gas chromatography‐time of flight‐mass spectrometry (GC × GC‐TOF‐MS). Organic Geochemistry, 75, 87 – 98. https://doi.org/10.1016/j.orggeochem.2014.06.010
dc.identifier.citedreferenceBeaupré, S. R., Druffel, E. R. M., & Griffin, S. ( 2007 ). A low‐blank photochemical extraction system for concentration and isotopic analyses of marine dissolved organic carbon. Limnology and Oceanography: Methods, 5 ( 6 ), 174 – 184. https://doi.org/10.4319/lom.2007.5.174
dc.identifier.citedreferenceBenner, R., Fogel, M. L., Sprague, E. K., & Hodson, R. E. ( 1987 ). Depletion of 13 C in lignin and its implications for stable carbon isotope studies. Nature, 329 ( 6141 ), 708 – 710. https://doi.org/10.1038/329708a0
dc.identifier.citedreferenceCooley, S. W., Smith, L. C., Ryan, J. C., Pitcher, L. H., & Pavelsky, T. M. ( 2019 ). Arctic‐boreal lake dynamics revealed using CubeSat imagery. Geophysical Research Letters, 46, 2111 – 2120. https://doi.org/10.1029/2018GL081584
dc.identifier.citedreferenceCoplen, T. B., Brand, W. A., Gehre, M., Gröning, M., Meijer, H. A. J., Toman, B., & Verkouteren, R. M. ( 2006 ). New guidelines for δ 13 C measurements. Analytical Chemistry, 78 ( 7 ), 2439 – 2441. https://doi.org/10.1021/ac052027c
dc.identifier.citedreferenceCory, R. M., Crump, B. C., Dobkowski, J. A., & Kling, G. W. ( 2013 ). Surface exposure to sunlight stimulates CO 2 release from permafrost soil carbon in the Arctic. Proceedings of the National Academy of Sciences of the United States of America, 110 ( 9 ), 3429 – 3434. https://doi.org/10.1073/pnas.1214104110
dc.identifier.citedreferenceCory, R. M., Harrold, K. H., Neilson, B. T., & Kling, G. W. ( 2015 ). Controls on dissolved organic matter (DOM) degradation in a headwater stream: The influence of photochemical and hydrological conditions in determining light‐limitation or substrate‐limitation of photo‐degradation. Biogeosciences, 12 ( 22 ), 6669 – 6685. https://doi.org/10.5194/bg-12-6669-2015
dc.identifier.citedreferenceCory, R. M., Ward, C. P., Crump, B. C., & Kling, G. W. ( 2014 ). Sunlight controls water column processing of carbon in arctic fresh waters. Science, 345 ( 6199 ), 925 – 928. https://doi.org/10.1126/science.1253119
dc.identifier.citedreferenceFeng, X., Vonk, J. E., Griffin, C., Zimov, N., Montluçon, D. B., Wacker, L., & Eglinton, T. I. ( 2017 ). 14 C variation of dissolved lignin in arctic river systems. ACS Earth Space Chem., 1 ( 6 ), 334 – 344. https://doi.org/10.1021/acsearthspacechem.7b00055
dc.identifier.citedreferenceFranke, D., Hamilton, M. W., & Ziegler, S. E. ( 2012 ). Variation in the photochemical lability of dissolved organic matter in a large boreal watershed. Aquatic Sciences, 74 ( 4 ), 751 – 768. https://doi.org/10.1007/s00027-012-0258-3
dc.identifier.citedreferenceGao, H., & Zepp, R. G. ( 1998 ). Factors influencing photoreactions of dissolved organic matter in a coastal river of the southeastern United States. Environmental Science & Technology, 32 ( 19 ), 2940 – 2946. https://doi.org/10.1021/es9803660
dc.identifier.citedreferenceGu, Y., Lensu, A., Perämäki, S., Ojala, A., & Vähätalo, A. V. ( 2017 ). Iron and pH regulating the photochemical mineralization of dissolved organic carbon. ACS Omega, 2 ( 5 ), 1905 – 1914. https://doi.org/10.1021/acsomega.7b00453
dc.identifier.citedreferenceHerndon, E. M., Yang, Z., Bargar, J., Janot, N., Regier, T. Z., Graham, D. E., Wullschleger, S. D., Gu, B., & Liang, L. ( 2015 ). Geochemical drivers of organic matter decomposition in arctic tundra soils. Biogeochemistry, 126 ( 3 ), 397 – 414. https://doi.org/10.1007/s10533-015-0165-5
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.