Show simple item record

Evolving concepts on the role of dyslipidemia, bioenergetics, and inflammation in the pathogenesis and treatment of diabetic peripheral neuropathy

dc.contributor.authorStino, Amro M.
dc.contributor.authorRumora, Amy E.
dc.contributor.authorKim, Bhumsoo
dc.contributor.authorFeldman, Eva L.
dc.date.accessioned2020-07-02T20:32:43Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-07-02T20:32:43Z
dc.date.issued2020-06
dc.identifier.citationStino, Amro M.; Rumora, Amy E.; Kim, Bhumsoo; Feldman, Eva L. (2020). "Evolving concepts on the role of dyslipidemia, bioenergetics, and inflammation in the pathogenesis and treatment of diabetic peripheral neuropathy." Journal of the Peripheral Nervous System 25(2): 76-84.
dc.identifier.issn1085-9489
dc.identifier.issn1529-8027
dc.identifier.urihttps://hdl.handle.net/2027.42/155898
dc.description.abstractDiabetic peripheral neuropathy (DPN) is one of the most widespread and disabling neurological conditions, accounting for half of all neuropathy cases worldwide. Despite its high prevalence, no approved disease modifying therapies exist. There is now a growing body of evidence that DPN secondary to type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) represents different disease processes, with T2DM DPN best understood within the context of metabolic syndrome rather than hyperglycemia. In this review, we highlight currently understood mechanisms of DPN, along with their corresponding potential therapeutic targets. We frame this discussion within a practical overview of how the field evolved from initial human observations to murine pathomechanistic and therapeutic models into ongoing and human clinical trials, with particular emphasis on T2DM DPN and metabolic syndrome.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpathophysiology
dc.subject.otherdiabetic peripheral neuropathy
dc.subject.othermetabolic syndrome
dc.subject.othermodern concepts
dc.subject.othernovel therapy
dc.titleEvolving concepts on the role of dyslipidemia, bioenergetics, and inflammation in the pathogenesis and treatment of diabetic peripheral neuropathy
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155898/1/jns12387.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155898/2/jns12387_am.pdf
dc.identifier.doi10.1111/jns.12387
dc.identifier.sourceJournal of the Peripheral Nervous System
dc.identifier.citedreferenceHinder LM, Murdock BJ, Park M, et al. Transcriptional networks of progressive diabetic peripheral neuropathy in the db/db mouse model of type 2 diabetes: an inflammatory story. Exp Neurol. 2018; 305: 33 ‐ 43.
dc.identifier.citedreferenceHan E, Yun Y, Kim G, et al. Effects of Omega‐3 fatty acid supplementation on diabetic nephropathy progression in patients with diabetes and hypertriglyceridemia. PLoS One. 2016; 11: e0154683.
dc.identifier.citedreferenceLewis EJH, Perkins BA, Lovblom LE, Bazinet RP, Wolever TMS, Bril V. Effect of omega‐3 supplementation on neuropathy in type 1 diabetes: A 12‐month pilot trial. Neurology. 2017; 88: 2294 ‐ 2301.
dc.identifier.citedreferenceSala‐Vila A, Díaz‐López A, Valls‐Pedret C, et al. Dietary marine ω‐3 fatty acids and incident sight‐threatening retinopathy in middle‐aged and older individuals with type 2 diabetes: prospective investigation from the PREDIMED trial. JAMA Ophthalmol. 2016; 134: 1142 ‐ 1149.
dc.identifier.citedreferenceKwon B, Lee HK, Querfurth HW. Oleate prevents palmitate‐induced mitochondrial dysfunction, insulin resistance and inflammatory signaling in neuronal cells. Biochim Biophys Acta. 2014; 1843: 1402 ‐ 1413.
dc.identifier.citedreferenceShevalye H, Yorek MS, Coppey LJ, et al. Effect of enriching the diet with menhaden oil or daily treatment with resolvin D1 on neuropathy in a mouse model of type 2 diabetes. J Neurophysiol. 2015; 114: 199 ‐ 208.
dc.identifier.citedreferenceYorek MS, Obrosov A, Shevalye H, Coppey LJ, Kardon RH, Yorek MA. Early vs. late intervention of high fat/low dose streptozotocin treated C57Bl/6J mice with enalapril, α‐lipoic acid, menhaden oil or their combination: effect on diabetic neuropathy related endpoints. Neuropharmacology. 2017; 116: 122 ‐ 131.
dc.identifier.citedreferenceHinder LM, Park M, Rumora AE, et al. Comparative RNA‐Seq transcriptome analyses reveal distinct metabolic pathways in diabetic nerve and kidney disease. J Cell Mol Med. 2017; 21: 2140 ‐ 2152.
dc.identifier.citedreferenceLiu JJ, Green P, John Mann J, Rapoport SI, Sublette ME. Pathways of polyunsaturated fatty acid utilization: implications for brain function in neuropsychiatric health and disease. Brain Res. 2015; 1597: 220 ‐ 246.
dc.identifier.citedreferenceLi MY, Wang YY, Cao R, et al. Dietary fish oil inhibits mechanical allodynia and thermal hyperalgesia in diabetic rats by blocking nuclear factor‐κB‐mediated inflammatory pathways. J Nutr Biochem. 2015; 26: 1147 ‐ 1155.
dc.identifier.citedreferenceLibby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002; 105: 1135 ‐ 1143.
dc.identifier.citedreferenceGoldberg RB. Cytokine and cytokine‐like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J Clin Endocrinol Metab. 2009; 94: 3171 ‐ 3182.
dc.identifier.citedreferenceCameron NE, Cotter MA. Pro‐inflammatory mechanisms in diabetic neuropathy: focus on the nuclear factor kappa B pathway. Curr Drug Targets. 2008; 9: 60 ‐ 67.
dc.identifier.citedreferenceCotter MA, Gibson TM, Nangle MR, Cameron NE. Effects of interleukin‐6 treatment on neurovascular function, nerve perfusion and vascular endothelium in diabetic rats. Diabetes Obes Metab. 2010; 12: 689 ‐ 699.
dc.identifier.citedreferenceAndriambeloson E, Baillet C, Vitte PA, Garotta G, Dreano M, Callizot N. Interleukin‐6 attenuates the development of experimental diabetes‐related neuropathy. Neuropathology. 2006; 26: 32 ‐ 42.
dc.identifier.citedreferenceMa J, Farmer KL, Pan P, et al. Heat shock protein 70 is necessary to improve mitochondrial bioenergetics and reverse diabetic sensory neuropathy following KU‐32 therapy. J Pharmacol Exp Ther. 2014; 348: 281 ‐ 292.
dc.identifier.citedreferenceLook AHEAD Research Group. Effects of a long‐term lifestyle modification programme on peripheral neuropathy in overweight or obese adults with type 2 diabetes: the look AHEAD study. Diabetologia. 2017; 60: 980 ‐ 988.
dc.identifier.citedreferenceSmith AG, Russell J, Feldman EL, et al. Lifestyle intervention for pre‐diabetic neuropathy. Diabetes Care. 2006; 29: 1294 ‐ 1299.
dc.identifier.citedreferenceSingleton JR, Marcus RL, Lessard MK, Jackson JE, Smith AG. Supervised exercise improves cutaneous reinnervation capacity in metabolic syndrome patients. Ann Neurol. 2015; 77: 146 ‐ 153.
dc.identifier.citedreferenceKluding PM, Pasnoor M, Singh R, et al. The effect of exercise on neuropathic symptoms, nerve function, and cutaneous innervation in people with diabetic peripheral neuropathy. J Diabetes Complications. 2012; 26: 424 ‐ 429.
dc.identifier.citedreferenceBalducci S, Iacobellis G, Parisi L, et al. Exercise training can modify the natural history of diabetic peripheral neuropathy. J Diabetes Complications. 2006; 20: 216 ‐ 223.
dc.identifier.citedreferenceKluding PM, Singleton JR, Pasnoor M, et al. Activity for diabetic polyneuropathy (ADAPT): Study design and protocol for a 2‐site randomized controlled trial. Phys Ther. 2017; 97: 20 ‐ 31.
dc.identifier.citedreferenceMüller‐Stich BP, Fischer L, Kenngott HG, et al. Gastric bypass leads to improvement of diabetic neuropathy independent of glucose normalization—results of a prospective cohort study (DiaSurg 1 study). Ann Surg. 2013; 258: 760 ‐ 765. discussion 765‐766.
dc.identifier.citedreferencede Anda‐Jáuregui G, Guo K, McGregor BA, Feldman EL, Hur J. Pathway crosstalk perturbation network modeling for identification of connectivity changes induced by diabetic neuropathy and pioglitazone. BMC Syst Biol. 2019; 13: 1.
dc.identifier.citedreferenceFeldman EL, Callaghan BC, Pop‐Busui R, et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019; 5: 41.
dc.identifier.citedreferenceCallaghan BC, Little AA, Feldman EL, Hughes RA. Enhanced glucose control for preventing and treating diabetic neuropathy. Cochrane Database Syst Rev. 2012; CD007543.
dc.identifier.citedreferenceSavelieff MG, Callaghan BC, Feldman EL. The emerging role of dyslipidemia in diabetic microvascular complications. Curr Opin Endocrinol Diabetes Obes. 2020; 27: 115 ‐ 123.
dc.identifier.citedreferenceCallaghan BC, Hur J, Feldman EL. Diabetic neuropathy: one disease or two? Curr Opin Neurol. 2012; 25: 536 ‐ 541.
dc.identifier.citedreferenceEid S, Sas KM, Abcouwer SF, et al. New insights into the mechanisms of diabetic complications: role of lipids and lipid metabolism. Diabetologia. 2019; 62: 1539 ‐ 1549.
dc.identifier.citedreferenceChen WT, Yuan RY, Chiang SC, et al. OnabotulinumtoxinA improves tactile and mechanical pain perception in painful diabetic polyneuropathy. Clin J Pain. 2013; 29: 305 ‐ 310.
dc.identifier.citedreferenceGhasemi M, Ansari M, Basiri K, Shaigannejad V. The effects of intradermal botulinum toxin type a injections on pain symptoms of patients with diabetic neuropathy. J Res Med Sci. 2014; 19: 106 ‐ 111.
dc.identifier.citedreferenceNawfar SA, Yacob NB. Effects of monochromatic infrared energy therapy on diabetic feet with peripheral sensory neuropathy: a randomised controlled trial. Singapore Med J. 2011; 52: 669 ‐ 672.
dc.identifier.citedreferenceJude EB, Dang C, Boulton AJ. Effect of L‐arginine on the microcirculation in the neuropathic diabetic foot in type 2 diabetes mellitus: a double‐blind, placebo‐controlled study. Diabet Med. 2010; 27: 113 ‐ 116.
dc.identifier.citedreferenceSyngle A, Verma I, Krishan P, Garg N, Syngle V. Minocycline improves peripheral and autonomic neuropathy in type 2 diabetes: MIND study. Neurol Sci. 2014; 35: 1067 ‐ 1073.
dc.identifier.citedreferenceFraser DA, Diep LM, Hovden IA, et al. The effects of long‐term oral benfotiamine supplementation on peripheral nerve function and inflammatory markers in patients with type 1 diabetes: a 24‐month, double‐blind, randomized, placebo‐controlled trial. Diabetes Care. 2012; 35: 1095 ‐ 1097.
dc.identifier.citedreferenceZiegler D, Ametov A, Barinov A, et al. Oral treatment with alpha‐lipoic acid improves symptomatic diabetic polyneuropathy: the SYDNEY 2 trial. Diabetes Care. 2006; 29: 2365 ‐ 2370.
dc.identifier.citedreferenceAmetov AS, Barinov A, Dyck PJ, et al. The sensory symptoms of diabetic polyneuropathy are improved with alpha‐lipoic acid: the SYDNEY trial. Diabetes Care. 2003; 26: 770 ‐ 776.
dc.identifier.citedreferenceZiegler D, Hanefeld M, Ruhnau KJ, et al. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha‐lipoic acid: a 7‐month multicenter randomized controlled trial (ALADIN III Study). ALADIN III Study group. Alpha‐Lipoic acid in diabetic neuropathy. Diabetes Care. 1999; 22: 1296 ‐ 1301.
dc.identifier.citedreferenceZiegler D, Hanefeld M, Ruhnau KJ, et al. Treatment of symptomatic diabetic peripheral neuropathy with the anti‐oxidant alpha‐lipoic acid. A 3‐week multicentre randomized controlled trial (ALADIN Study). Diabetologia. 1995; 38: 1425 ‐ 1433.
dc.identifier.citedreferenceRuhnau KJ, Meissner HP, Finn JR, et al. Effects of 3‐week oral treatment with the antioxidant thioctic acid (alpha‐lipoic acid) in symptomatic diabetic polyneuropathy. Diabet Med. 1999; 16: 1040 ‐ 1043.
dc.identifier.citedreferenceVolchegorskii, I. A., Alekseev, M. N., Volchegorskaia, M. I. & Rassokhina, L. M. Effect of alpha‐lipoic acid and mexidol on neuro‐ and the affective status in patients at early stages of diabetic foot syndrome. Klin Med (Mosk) 2008; 86: 52 – 59.
dc.identifier.citedreferenceLaczy B, Cseh J, Mohás M, et al. Effects of pentoxifylline and pentosan polysulphate combination therapy on diabetic neuropathy in type 2 diabetes mellitus. Acta Diabetol. 2009; 46: 105 ‐ 111.
dc.identifier.citedreferenceAnsquer JC, Foucher C, Aubonnet P, Le Malicot K. Fibrates and microvascular complications in diabetes—insight from the FIELD study. Curr Pharm Des. 2009; 15: 537 ‐ 552.
dc.identifier.citedreferenceBril V, Hirose T, Tomioka S, Buchanan R, Ranirestat Study G. Ranirestat for the management of diabetic sensorimotor polyneuropathy. Diabetes Care. 2009; 32: 1256 ‐ 1260.
dc.identifier.citedreferenceFlorkowski CM, Rowe BR, Nightingale S, Harvey TC, Barnett AH. Clinical and neurophysiological studies of aldose reductase inhibitor ponalrestat in chronic symptomatic diabetic peripheral neuropathy. Diabetes. 1991; 40: 129 ‐ 133.
dc.identifier.citedreferenceHotta N, Akanuma Y, Kawamori R, et al. Long‐term clinical effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy: the 3‐year, multicenter, comparative aldose Reductase inhibitor‐diabetes complications trial. Diabetes Care. 2006; 29: 1538 ‐ 1544.
dc.identifier.citedreferenceRamirez MA, Borja NL. Epalrestat: an aldose reductase inhibitor for the treatment of diabetic neuropathy. Pharmacotherapy. 2008; 28: 646 ‐ 655.
dc.identifier.citedreferenceApfel SC. Nerve growth factor for the treatment of diabetic neuropathy: what went wrong, what went right, and what does the future hold? Int Rev Neurobiol. 2002; 50: 393 ‐ 413.
dc.identifier.citedreferenceApfel SC, Kessler JA, Adornato BT, Litchy WJ, Sanders C, Rask CA. Recombinant human nerve growth factor in the treatment of diabetic polyneuropathy. NGF Study Group. Neurology. 1998; 51: 695 ‐ 702.
dc.identifier.citedreferenceValk GD, Kappelle AC, Tjon‐A‐Tsien AML, et al. Treatment of diabetic polyneuropathy with the neurotrophic peptide ORG 2766. J Neurol. 1996; 243: 257 ‐ 263.
dc.identifier.citedreferenceErmis N, Gullu H, Caliskan M, Unsal A, Kulaksizoglu M, Muderrisoglu H. Gabapentin therapy improves heart rate variability in diabetic patients with peripheral neuropathy. J Diabetes Complications. 2010; 24: 229 ‐ 233.
dc.identifier.citedreferenceDanis RP, Sheetz MJ. Ruboxistaurin: PKC‐beta inhibition for complications of diabetes. Expert Opin Pharmacother. 2009; 10: 2913 ‐ 2925.
dc.identifier.citedreferenceEkberg K, Johansson BL. Effect of C‐peptide on diabetic neuropathy in patients with type 1 diabetes. Exp Diabetes Res. 2008; 2008: 457912.
dc.identifier.citedreferenceEvans JD, Jacobs TF, Evans EW. Role of acetyl‐L‐carnitine in the treatment of diabetic peripheral neuropathy. Ann Pharmacother. 2008; 42: 1686 ‐ 1691.
dc.identifier.citedreferenceZiegler D, Movsesyan L, Mankovsky B, Gurieva I, Abylaiuly Z, Strokov I. Treatment of symptomatic polyneuropathy with actovegin in type 2 diabetic patients. Diabetes Care. 2009; 32: 1479 ‐ 1484.
dc.identifier.citedreferenceYuen KC, Baker NR, Rayman G. Treatment of chronic painful diabetic neuropathy with isosorbide dinitrate spray: a double‐blind placebo‐controlled cross‐over study. Diabetes Care. 2002; 25: 1699 ‐ 1703.
dc.identifier.citedreferenceCakici N, Fakkel TM, van Neck JW, Verhagen AP, Coert JH. Systematic review of treatments for diabetic peripheral neuropathy. Diabet Med. 2016; 33: 1466 ‐ 1476.
dc.identifier.citedreferenceVincent AM, Callaghan BC, Smith AL, Feldman EL. Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat Rev Neurol. 2011; 7: 573 ‐ 583.
dc.identifier.citedreferenceCallaghan BC, Gao LL, Li Y, et al. Diabetes and obesity are the main metabolic drivers of peripheral neuropathy. Ann Clin Transl Neurol. 2018; 5: 397 ‐ 405.
dc.identifier.citedreferenceCallaghan BC, Xia R, Reynolds E, et al. Association between metabolic syndrome components and polyneuropathy in an obese population. JAMA Neurol. 2016; 73: 1468 ‐ 1476.
dc.identifier.citedreferenceCallaghan BC, Xia R, Banerjee M, et al. Metabolic syndrome components are associated with symptomatic polyneuropathy independent of glycemic status. Diabetes Care. 2016; 39: 801 ‐ 807.
dc.identifier.citedreferenceHanewinckel R, Drenthen J, Ligthart S, et al. Metabolic syndrome is related to polyneuropathy and impaired peripheral nerve function: a prospective population‐based cohort study. J Neurol Neurosurg Psychiatry. 2016; 87: 1336 ‐ 1342.
dc.identifier.citedreferenceLu B, Hu J, Wen J, et al. Determination of peripheral neuropathy prevalence and associated factors in Chinese subjects with diabetes and pre‐diabetes—ShangHai diabetic neuRopathy epidemiology and molecular genetics Study (SH‐DREAMS). PLoS One. 2013; 8: e61053.
dc.identifier.citedreferenceSchlesinger S, Herder C, Kannenberg JM, et al. General and abdominal obesity and incident distal sensorimotor polyneuropathy: insights into inflammatory biomarkers as potential mediators in the KORA F4/FF4 cohort. Diabetes Care. 2019; 42: 240 ‐ 247.
dc.identifier.citedreferenceSmith AG, Singleton JR. Obesity and hyperlipidemia are risk factors for early diabetic neuropathy. J Diabetes Complications. 2013; 27: 436 ‐ 442.
dc.identifier.citedreferenceHughes RA, Umapathi T, Gray IA, et al. A controlled investigation of the cause of chronic idiopathic axonal polyneuropathy. Brain. 2004; 127: 1723 ‐ 1730.
dc.identifier.citedreferenceWiggin TD, Sullivan KA, Pop‐Busui R, Amato A, Sima AAF, Feldman EL. Elevated triglycerides correlate with progression of diabetic neuropathy. Diabetes. 2009; 58: 1634 ‐ 1640.
dc.identifier.citedreferenceCallaghan BC, Feldman E, Liu J, et al. Triglycerides and amputation risk in patients with diabetes: ten‐year follow‐up in the DISTANCE study. Diabetes Care. 2011; 34: 635 ‐ 640.
dc.identifier.citedreferenceDavis TM, Yeap BB, Davis WA, Bruce DG. Lipid‐lowering therapy and peripheral sensory neuropathy in type 2 diabetes: the Fremantle diabetes Study. Diabetologia. 2008; 51: 562 ‐ 566.
dc.identifier.citedreferenceKang EY, Chen TH, Garg SJ, et al. Association of statin therapy with prevention of vision‐threatening diabetic retinopathy. JAMA Ophthalmol. 2019; 137: 363 ‐ 371.
dc.identifier.citedreferenceRajamani K, Colman PG, Li LP, et al. Effect of fenofibrate on amputation events in people with type 2 diabetes mellitus (FIELD study): a prespecified analysis of a randomised controlled trial. Lancet. 2009; 373: 1780 ‐ 1788.
dc.identifier.citedreferenceZiegler D, Rathmann W, Dickhaus T, Meisinger C, Mielck A, KORA Study Group. Neuropathic pain in diabetes, prediabetes and normal glucose tolerance: the MONICA/KORA Augsburg surveys S2 and S3. Pain Med. 2009; 10: 393 ‐ 400.
dc.identifier.citedreferenceLee CC, Perkins BA, Kayaniyil S, et al. Peripheral neuropathy and nerve dysfunction in individuals at high risk for type 2 diabetes: the PROMISE cohort. Diabetes Care. 2015; 38: 793 ‐ 800.
dc.identifier.citedreferenceSumner CJ, Sheth S, Griffin JW, Cornblath DR, Polydefkis M. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology. 2003; 60: 108 ‐ 111.
dc.identifier.citedreferencePolydefkis M, Hauer P, Sheth S, Sirdofsky M, Griffin JW, McArthur JC. The time course of epidermal nerve fibre regeneration: studies in normal controls and in people with diabetes, with and without neuropathy. Brain. 2004; 127: 1606 ‐ 1615.
dc.identifier.citedreferenceAlam U, Jeziorska M, Petropoulos IN, et al. Diagnostic utility of corneal confocal microscopy and intra‐epidermal nerve fibre density in diabetic neuropathy. PLoS One. 2017; 12: e0180175.
dc.identifier.citedreferenceJiang MS, Yuan Y, Gu ZX, Zhuang SL. Corneal confocal microscopy for assessment of diabetic peripheral neuropathy: a meta‐analysis. Br J Ophthalmol. 2016; 100: 9 ‐ 14.
dc.identifier.citedreferenceTavakoli M, Quattrini C, Abbott C, et al. Corneal confocal microscopy: a novel noninvasive test to diagnose and stratify the severity of human diabetic neuropathy. Diabetes Care. 2010; 33: 1792 ‐ 1797.
dc.identifier.citedreferenceTavakoli M, Mitu‐Pretorian M, Petropoulos IN, et al. Corneal confocal microscopy detects early nerve regeneration in diabeticneuropathy after simultaneous pancreas and kidney transplantation. Diabetes. 2013; 62: 254 ‐ 260.
dc.identifier.citedreferenceJimenez‐Cohl P, Grekin C, Leyton C, Vargas C, Villaseca R. Thermal threshold: research study on small fiber dysfunction in distal diabetic polyneuropathy. J Diabetes Sci Technol. 2012; 6: 177 ‐ 183.
dc.identifier.citedreferenceMedici C, Barraza G, Castillo CD, et al. Disturbed sensory perception of changes in thermoalgesic stimuli in patients with small fiber neuropathies. Pain. 2013; 154: 2100 ‐ 2107.
dc.identifier.citedreferenceBakkers M, Faber CG, Peters MJH, et al. Temperature threshold testing: a systematic review. J Peripher Nerv Syst. 2013; 18: 7 ‐ 18.
dc.identifier.citedreferenceHur J, Dauch JR, Hinder LM, et al. The metabolic syndrome and microvascular complications in a murine model of type 2 diabetes. Diabetes. 2015; 64: 3294 ‐ 3304.
dc.identifier.citedreferenceO’Brien PD, Hur J, Hayes JM, Backus C, Sakowski SA, Feldman EL. BTBR Ob/Ob mice as a novel diabetic neuropathy model: neurological characterization and gene expression analyses. Neurobiol Dis. 2015; 73: 348 ‐ 355.
dc.identifier.citedreferenceMcGregor BA, Eid S, Rumora AE, et al. Conserved transcriptional signatures in human and murine diabetic peripheral neuropathy. Sci Rep. 2018; 8: 17678.
dc.identifier.citedreferenceHinder LM, O’Brien PD, Hayes JM, et al. Dietary reversal of neuropathy in a murine model of prediabetes and metabolic syndrome. Dis Model Mech. 2017; 10: 717 ‐ 725.
dc.identifier.citedreferenceVincent AM, Hayes JM, McLean LL, Vivekanandan‐Giri A, Pennathur S, Feldman EL. Dyslipidemia‐induced neuropathy in mice: the role of oxLDL/LOX‐1. Diabetes. 2009; 58: 2376 ‐ 2385.
dc.identifier.citedreferenceO’Brien PD, Hinder LM, Rumora AE, et al. Juvenile murine models of prediabetes and type 2 diabetes develop neuropathy. Dis Model Mech. 2018; 11: 2 – 4.
dc.identifier.citedreferenceRumora AE, Savelieff MG, Sakowski SA, Feldman EL. Disorders of mitochondrial dynamics in peripheral neuropathy: clues from hereditary neuropathy and diabetes. Int Rev Neurobiol. 2019; 145: 127 ‐ 176.
dc.identifier.citedreferenceRumora AE, LoGrasso G, Hayes JM, et al. The divergent roles of dietary saturated and monounsaturated fatty acids on nerve function in murine models of obesity. J Neurosci. 2019; 39: 3770 ‐ 3781.
dc.identifier.citedreferenceRumora AE, Lentz SI, Hinder LM, et al. Dyslipidemia impairs mitochondrial trafficking and function in sensory neurons. FASEB J. 2018; 32: 195 ‐ 207.
dc.identifier.citedreferenceRumora AE, LoGrasso G, Haidar JA, Dolkowski JJ, Lentz SI, Feldman EL. Chain length of saturated fatty acids regulates mitochondrial trafficking and function in sensory neurons. J Lipid Res. 2019; 60: 58 ‐ 70.
dc.identifier.citedreferenceViader A, Sasaki Y, Kim S, et al. Aberrant Schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy. Neuron. 2013; 77: 886 ‐ 898.
dc.identifier.citedreferenceO’Brien PD, Guo K, Eid SA, et al. Integrated lipidomic and transcriptomic analyses identify altered nerve triglycerides in mouse models of prediabetes and type 2 diabetes. Dis Model Mech. 2020; 13: 2 – 5.
dc.identifier.citedreferenceHamid HS, Mervak CM, Münch AE, et al. Hyperglycemia‐ and neuropathy‐induced changes in mitochondria within sensory nerves. Ann Clin Transl Neurol. 2014; 1: 799 ‐ 812.
dc.identifier.citedreferenceCasanova‐Molla J, Morales M, Garrabou G, et al. Mitochondrial loss indicates early axonal damage in small fiber neuropathies. J Peripher Nerv Syst. 2012; 17: 147 ‐ 157.
dc.identifier.citedreferencePande M, Hur J, Hong Y, et al. Transcriptional profiling of diabetic neuropathy in the BKS db/db mouse: a model of type 2 diabetes. Diabetes. 2011; 60: 1981 ‐ 1989.
dc.identifier.citedreferenceHur J, Sullivan KA, Pande M, et al. The identification of gene expression profiles associated with progression of human diabetic neuropathy. Brain. 2011; 134: 3222 ‐ 3235.
dc.identifier.citedreferenceHardin H, Guo Z, Shan W, et al. The roles of the epithelial‐mesenchymal transition marker PRRX1 and miR‐146b‐5p in papillary thyroid carcinoma progression. Am J Pathol. 2014; 184: 2342 ‐ 2354.
dc.identifier.citedreferenceCermenati G, Abbiati F, Cermenati S, et al. Diabetes‐induced myelin abnormalities are associated with an altered lipid pattern: protective effects of LXR activation. J Lipid Res. 2012; 53: 300 ‐ 310.
dc.identifier.citedreferenceKemp K, Griffiths J, Campbell S, Lovell K. An exploration of the follow‐up up needs of patients with inflammatory bowel disease. J Crohns Colitis. 2013; 7: e386 ‐ e395.
dc.identifier.citedreferenceChowdhury SK, Smith DR, Fernyhough P. The role of aberrant mitochondrial bioenergetics in diabetic neuropathy. Neurobiol Dis. 2013; 51: 56 ‐ 65.
dc.identifier.citedreferenceFernyhough P. Mitochondrial dysfunction in diabetic neuropathy: a series of unfortunate metabolic events. Curr Diab Rep. 2015; 15: 89.
dc.identifier.citedreferenceO’Brien PD, Sakowski SA, Feldman EL. Mouse models of diabetic neuropathy. ILAR J. 2014; 54: 259 ‐ 272.
dc.identifier.citedreferenceStavniichuk R, Shevalye H, Lupachyk S, et al. Peroxynitrite and protein nitration in the pathogenesis of diabetic peripheral neuropathy. Diabetes Metab Res Rev. 2014; 30: 669 ‐ 678.
dc.identifier.citedreferenceJang ER, Lee CS. 7‐ketocholesterol induces apoptosis in differentiated PC12 cells via reactive oxygen species‐dependent activation of NF‐κB and Akt pathways. Neurochem Int. 2011; 58: 52 ‐ 59.
dc.identifier.citedreferenceNowicki M, Müller K, Serke H, et al. Oxidized low‐density lipoprotein (oxLDL)‐induced cell death in dorsal root ganglion cell cultures depends not on the lectin‐like oxLDL receptor‐1 but on the toll‐like receptor‐4. J Neurosci Res. 2010; 88: 403 ‐ 412.
dc.identifier.citedreferenceVincent AM, Perrone L, Sullivan KA, et al. Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress. Endocrinology. 2007; 148: 548 ‐ 558.
dc.identifier.citedreferenceLupachyk S, Watcho P, Hasanova N, Julius U, Obrosova IG. Triglyceride, nonesterified fatty acids, and prediabetic neuropathy: role for oxidative‐nitrosative stress. Free Radic Biol Med. 2012; 52: 1255 ‐ 1263.
dc.identifier.citedreferenceElzinga S, Murdock BJ, Guo K, et al. Toll‐like receptors and inflammation in metabolic neuropathy; a role in early versus late disease? Exp Neurol. 2019; 320: 112967.
dc.identifier.citedreferenceShoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006; 116: 1793 ‐ 1801.
dc.identifier.citedreferenceKellogg AP, Wiggin TD, Larkin DD, Hayes JM, Stevens MJ, Pop‐Busui R. Protective effects of cyclooxygenase‐2 gene inactivation against peripheral nerve dysfunction and intraepidermal nerve fiber loss in experimental diabetes. Diabetes. 2007; 56: 2997 ‐ 3005.
dc.identifier.citedreferenceAsea A, Kraeft SK, Kurt‐Jones EA, et al. HSP70 stimulates cytokine production through a CD14‐dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med. 2000; 6: 435 ‐ 442.
dc.identifier.citedreferenceMa J, Pan P, Anyika M, Blagg BS, Dobrowsky RT. Modulating molecular chaperones improves mitochondrial bioenergetics and decreases the inflammatory Transcriptome in diabetic sensory neurons. ACS Chem Nerosci. 2015; 6: 1637 ‐ 1648.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.