Show simple item record

The scale dependency of trait‐based tree neighborhood models

dc.contributor.authorZambrano, Jenny
dc.contributor.authorBeckman, Noelle G.
dc.contributor.authorMarchand, Philippe
dc.contributor.authorThompson, Jill
dc.contributor.authorUriarte, Mar�a
dc.contributor.authorZimmerman, Jess K.
dc.contributor.authorUma�a, Mar�a N.
dc.contributor.authorSwenson, Nathan G.
dc.date.accessioned2020-07-02T20:32:48Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-07-02T20:32:48Z
dc.date.issued2020-07
dc.identifier.citationZambrano, Jenny; Beckman, Noelle G.; Marchand, Philippe; Thompson, Jill; Uriarte, Mar�a ; Zimmerman, Jess K.; Uma�a, Mar�a N. ; Swenson, Nathan G. (2020). "The scale dependency of trait‐based tree neighborhood models." Journal of Vegetation Science 31(4): 581-593.
dc.identifier.issn1100-9233
dc.identifier.issn1654-1103
dc.identifier.urihttps://hdl.handle.net/2027.42/155902
dc.description.abstractQuestionsWe asked: (a) whether the strength of conspecific and heterospecific neighborhood crowding effects on focal tree survival and growth vary with neighborhood radii; and (b) if the relative strength of the effect of neighborhood interactions on tree growth and survival varies with neighborhood scale.LocationLuquillo Forest Dynamics Plot, Puerto Rico.MethodsWe used tree survival and growth data and included information on species‐mean trait values related to several leaf traits, maximum height, seed mass and wood density. We incorporated a tree neighborhood modeling approach that uses an area around a focal tree with a specified radius, to describe the interactions between a focal tree and its neighbors. We constructed survival and growth models for each functional trait using a Bayesian approach, and varied the size of the radius from 5 m to 30 m, at 5‐m intervals.ResultsThe results suggested that the estimated effects of conspecific and heterospecific neighbors on tree performance do not vary based on the size of the neighborhood (5–30 m), suggesting that the effects of conspecific and heterospecific neighbors on the performance of a focal tree likely do not vary substantially beyond a neighborhood radius of 5 m in the Luquillo forest. In contrast, the estimated strength of the functional neighborhood (effect of neighbors based on their functional trait values) on tree performance was dependent on the neighborhood range. Our results also suggested that the effects of trait distances and trait hierarchies on tree survival and growth are acting simultaneously and at the same spatial scales.ConclusionFindings from this study highlight the importance of spatial scale in community assembly processes, and specifically, call for increased attention when selecting the radius that defines the neighborhood around a focal tree as the selected neighborhood radius influences the community patterns discovered, and affects the conclusions about the drivers that control community assembly.Neighborhood models have become popularized for studying drivers of tree community assembly. The models use an area around a focal tree with a specified radius to describe the interactions with close neighbors. Our results show that the choice of the neighborhood size is critical, as different radii may lead to very different conclusions on the drivers of community dynamics.
dc.publisherUniversity of Chicago Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherhierarchical competition
dc.subject.otherplant functional traits
dc.subject.otherniche differentiation
dc.subject.otherLuquillo Forest Dynamics Plot
dc.subject.othersubtropical forest
dc.titleThe scale dependency of trait‐based tree neighborhood models
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155902/1/jvs12880.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155902/2/jvs12880_am.pdf
dc.identifier.doi10.1111/jvs.12880
dc.identifier.sourceJournal of Vegetation Science
dc.identifier.citedreferenceUriarte, M., Hubbell, S., John, R., Condit, R., and Canham, C. D. ( 2005 ). Neighborhood effects on sapling growth and survival in a neotropical forest and the ecological equivalence hypothesis. Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferenceUriarte, M., Canham, C. D., Thompson, J., and Zimmerman, J. K. ( 2004 ). A neighborhood analysis of tree growth and survival in a hurricane‐driven tropical forest. Ecological Monographs, 74, 591 – 614.
dc.identifier.citedreferenceUriarte, M., Canham, C. D., Thompson, J., Zimmerman, J. K., and Brokaw, N. ( 2005 ). Seedling recruitment in a hurricane‐driven tropical forest: Light limitation, density‐dependence and the spatial distribution of parent trees. Journal of Ecology, 93, 291 – 304.
dc.identifier.citedreferenceUriarte, M., Lasky, J. R., Boukili, V. K., and Chazdon, R. L. ( 2016 ). A trait‐mediated, neighbourhood approach to quantify climate impacts on successional dynamics of tropical rainforests. Functional Ecology, 30, 157 – 167.
dc.identifier.citedreferenceUriarte, M., Muscarella, R., and Zimmerman, J. K. ( 2018 ). Environmental heterogeneity and biotic interactions mediate climate impacts on tropical forest regeneration. Global Change Biology, 24, e692 – e704.
dc.identifier.citedreferenceUriarte, M., Swenson, N. G., Chazdon, R. L., Comita, L. S., John Kress, W., Erickson, D. et al. ( 2010 ). Trait similarity, shared ancestry and the structure of neighbourhood interactions in a subtropical wet forest: Implications for community assembly. Ecology Letters, 13, 1503 – 1514.
dc.identifier.citedreferenceWang, X., Wiegand, T., Wolf, A., Howe, R., Davies, S. J., and Hao, Z. ( 2011 ). Spatial patterns of tree species richness in two temperate forests. Journal of Ecology, 99, 1382 – 1393.
dc.identifier.citedreferenceWebb, C. O., Ackerly, D. D., McPeek, M. A., and Donoghue, M. J. ( 2002 ). Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475 – 505.
dc.identifier.citedreferenceWeiher, E., Clarke, G. D. P., and Keddy, P. A. ( 1998 ). Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos, 81, 309 – 322.
dc.identifier.citedreferenceWeiher, E., and Keddy, P. A. ( 1995a ). Assembly rules, null Models, and trait dispersion: New questions from old patterns. Oikos, 74, 159 – 164.
dc.identifier.citedreferenceWeiher, E., and Keddy, P. A. ( 1995b ). The assembly of experimental wetland plant‐communities. Oikos, 73, 323 – 335.
dc.identifier.citedreferenceWeiher, E., and Keddy, P. ( 2001 ). Assembly rules as general constraints on community composition. In E. Weiher, & P. A. Keddy (Eds.), Ecological assembly rules: Perspectives, advances and retreats (pp. 251 – 271 ). Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferenceWeiner, J. ( 1982 ). A neighborhood model of annual‐plant interference. Ecology, 63, 1237 – 1241.
dc.identifier.citedreferenceWestoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., and Wright, I. J. ( 2002 ). Plant ecological strategies: Some Llading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125 – 159.
dc.identifier.citedreferenceWestoby, M., and Wright, I. J. ( 2006 ). Land‐plant ecology on the basis of functional traits. Trends in Ecology and Evolution, 21, 261 – 268.
dc.identifier.citedreferenceWiegand, T., Gunatilleke, C. V., Gunatilleke, I. U., and Huth, A. ( 2007 ). How individual species structure diversity in tropical forests. Proceedings of the National Academy of Sciences, 104, 19029 – 19033.
dc.identifier.citedreferenceWiens, J. A. ( 1989 ). Spatial scaling in ecology. Functional Ecology, 3, 385 – 397.
dc.identifier.citedreferenceWills, C., Harms, K. E., Condit, R., King, D., Thompson, J., He, F. et al. ( 2006 ). Nonrandom processes maintain diversity in tropical forests. Science, 311, 527 – 531.
dc.identifier.citedreferenceWills, C., Harms, K. E., Wiegand, T., Punchi‐Manage, R., Gilbert, G. S., Erickson, D. et al. ( 2016 ). Persistence of neighborhood demographic influences over long phylogenetic distances may help drive post‐speciation adaptation in tropical forests. PLoS ONE, 11.
dc.identifier.citedreferenceWright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F. et al. ( 2004a ). The worldwide leaf economics spectrum. Nature, 428, 821 – 827.
dc.identifier.citedreferenceWright, I. J., Westoby, M., Reich, P. B., Oleksyn, J., Ackerly, D. D., Baruch, Z. et al. ( 2004b ). The worldwide leaf economics spectrum. Nature, 428, 821 – 827.
dc.identifier.citedreferenceWright, S. J., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J., Bunker, D. E. et al. ( 2010a ). Functional traits and the growth–mortality trade‐off in tropical trees. Ecology, 91, 3664 – 3674.
dc.identifier.citedreferenceYang, J., Swenson, N. G., Cao, M., Chuyong, G. B., Ewango, C. E. N., Howe, R. et al. ( 2013 ). A phylogenetic perspective on the individual species‐area relationship in temperate and tropical tree communities. PLoS ONE, 8, e63192.
dc.identifier.citedreferenceZambrano, J., Fagan, W. F., Worthy, S. J., Thompson, J., Uriarte, M., Zimmerman, J. K. et al. ( 2019 ). Tree crown overlap improves predictions of the functional neighbourhood effects on tree survival and growth. Journal of Ecology, 107, 887 – 900.
dc.identifier.citedreferenceZambrano, J., Marchand, P., and Swenson, N. G. ( 2017 ). Local neighbourhood and regional climatic contexts interact to explain tree performance. Proceedings of the Royal Society B: Biological Sciences, 284, 20170523.
dc.identifier.citedreferenceZhu, Y., Cai, H., Jiang, F., and Jin, G. ( 2017 ). Variation of the biotic neighbourhood and topographic effects on tree survival in an old‐growth temperate forest. Journal of Vegetation Science, 28, 1166 – 1177.
dc.identifier.citedreferenceZimmerman, J. K., Comita, L. S., Thompson, J., Uriarte, M., and Brokaw, N. ( 2010 ). Patch dynamics and community metastability of a subtropical forest: Compound effects of natural disturbance and human land use. Landscape Ecology, 25, 1099 – 1111.
dc.identifier.citedreferenceZimmerman, J. K., Everham, E. M., Waide, R. B., Lodge, D. J., Taylor, C. M., and Brokaw, N. V. L. ( 1994 ). Responses of Tree Species to Hurricane Winds in Subtropical Wet Forest in Puerto Rico: Implications for Tropical Tree Life‐ Histories. Journal of Ecology, 82 ( 4 ), 911 – 922.
dc.identifier.citedreferenceGrime, J. P. ( 2006 ). Trait convergence and trait divergence in herbaceous plant communities: Mechanisms and consequences. Journal of Vegetation Science, 17, 255 – 260.
dc.identifier.citedreferenceHarms, K. E., Condit, R., Hubbell, S. P., and Foster, R. B. ( 2001 ). Habitat associations of trees and shrubs in a 50‐ha neotropical forest plot. Journal of Ecology, 89, 947 – 959.
dc.identifier.citedreferenceBloom, A. J., Chapin, S. F., and Mooney, H. A. ( 1985 ). Resource limitation in plants‐ An economic analogy. Annual Review of Ecology and Systematics, 16, 363 – 392.
dc.identifier.citedreferenceBrown, J. H. ( 1995 ). Macroecology. Chicago, IL: University of Chicago Press.
dc.identifier.citedreferenceCanham, C. D., LePage, P. T., and Coates, K. D. ( 2004 ). A neighborhood analysis of canopy tree competition: Effects of shading versus crowding. Canadian Journal of Forest Research, 34, 778 – 787.
dc.identifier.citedreferenceChase, J. M. ( 2014 ). Spatial scale resolves the niche versus neutral theory debate. Journal of Vegetation Science, 25, 319 – 322.
dc.identifier.citedreferenceChave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., and Zanne, A. E. ( 2009 ). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351 – 366.
dc.identifier.citedreferenceChen, L., Mi, X., Comita, L. S., Zhang, L., Ren, H., and Ma, K. ( 2010 ). Community‐level consequences of density dependence and habitat association in a subtropical broad‐leaved forest. Ecology Letters, 13, 695 – 704.
dc.identifier.citedreferenceComita, L. S., Muller‐Landau, H. C., Aguilar, S., and Hubbell, S. P. ( 2010 ). Asymmetric density dependence shapes species abundances in a tropical tree community. Science, 329, 330 – 332.
dc.identifier.citedreferenceCoomes, D. A., and Grubb, P. J. ( 2003 ). Colonization, tolerance, competition and seed‐size variation within functional groups. Trends in Ecology and Evolution, 18, 283 – 291.
dc.identifier.citedreferenceDenwood, M. ( 2016 ). runjags: An R package providing interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGS. Journal of Statistical Software, 71, 1 – 25.
dc.identifier.citedreferenceDiaz, S., Cabido, M., and Casanoves, F. ( 1998 ). Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science, 9, 113 – 122.
dc.identifier.citedreferenceDíaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S. et al. ( 2016 ). The global spectrum of plant form and function. Nature, 529 ( 7585 ), 167 – 171. https://doi.org/10.1038/nature16489
dc.identifier.citedreferenceDiggle, P. J., Ribeiro, P. J. J., and Christensen, O. F. ( 2003 ). An introduction to model‐based geostatistics. Spatial statistics and computational methods (pp. 44 – 86 ). New York, NY: Springer.
dc.identifier.citedreferenceEvans, J. R. ( 1989 ). Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 78, 9 – 19.
dc.identifier.citedreferenceFortunel, C., Valencia, R., Wright, S. J., Garwood, N. C., and Kraft, N. J. B. ( 2016 ). Functional trait differences influence neighbourhood interactions in a hyperdiverse Amazonian forest. Ecology Letters, 19, 1062 – 1070.
dc.identifier.citedreferenceFreckleton, R. P., and Watkinson, A. R. ( 2001 ). Asymmetric competition between plant species. Functional Ecology, 15, 615 – 623.
dc.identifier.citedreferenceGarzon‐Lopez, C. X., Jansen, P. A., Bohlman, S. A., Ordonez, A., and Olff, H. ( 2014 ). Effects of sampling scale on patterns of habitat association in tropical trees. Journal of Vegetation Science, 25, 349 – 362.
dc.identifier.citedreferenceGaudet, C. L., and Keddy, P. A. ( 1988 ). A comparative approach to predicting competitive ability from plant traits. Nature, 334, 242 – 243.
dc.identifier.citedreferenceGelman, A., and Rubin, D. B. ( 1992 ). Inference from Iterative Simulation Using Multiple Sequences. Statistical Science, 7, 457 – 511.
dc.identifier.citedreferenceGoldberg, D. E., and Miller, T. E. ( 1990 ). Effects of different resource additions on species diversity in an annual plant community. Ecological Society of America 71, 213 – 225.
dc.identifier.citedreferenceHarms, K. E., Wright, S. J., Calderón, O., Hernández, A., and Herre, E. A. ( 2000 ). Pervasive density‐dependent recruitment enhances seedling diversity in a tropical forest. Nature, 404, 493 – 495.
dc.identifier.citedreferenceHilleRisLambers, J., Clark, J. S., Beckage, B., Hille, J., Lambers, R., Clark, J. S., and Beckage, B. ( 2002 ). Density‐dependent mortality and the latitudinal gradient in species diversity. Nature, 417, 732 – 735.
dc.identifier.citedreferenceHogan, J. A., Zimmerman, J. K., Thompson, J., Nytch, C. J., and Uriarte, M. ( 2016 ). The interaction of land‐use legacies and hurricane disturbance in subtropical wet forest: Twenty‐one years of change. Ecosphere, 7, e01405.
dc.identifier.citedreferenceHogan, J. A., Zimmerman, J. K., Thompson, J., Uriarte, M., Swenson, N. G., Condit, R. et al. ( 2018 ). The frequency of cyclonic wind storms shapes tropical forest dynamism and functional trait dispersion. Forests, 9, 404.
dc.identifier.citedreferenceHorn, H. S. ( 1971 ). Adaptive geometry of trees. Princeton, NJ: Princeton University Press.
dc.identifier.citedreferenceHubbell, S. P., Ahumada, J. A., Condit, R., and Foster, R. B. ( 2001a ). Local neighborhood effects on long‐term survival of individual trees in a neotropical forest. Ecological Research, 16, 859 – 875.
dc.identifier.citedreferenceIida, Y., Kohyama, T. S., Swenson, N. G., Su, S. H., Chen, C. T., Chiang, J. M., and Sun, I. F. ( 2014a ). Linking functional traits and demographic rates in a subtropical tree community: The importance of size dependency. Journal of Ecology, 102, 641 – 650.
dc.identifier.citedreferenceIida, Y., Poorter, L., Sterck, F., Kassim, A. R., Potts, M. D., Kubo, T., and Kohyama, T. S. ( 2014b ). Linking size‐dependent growth and mortality with architectural traits across 145 co‐occurring tropical tree species. Ecology, 95, 353 – 363.
dc.identifier.citedreferenceIllian, J., Penttinen, A., Stoyan, H., and Stoyan, D. ( 2008 ). Statistical analysis and modelling of spatial point patterns. Chichester, UK: John Wiley and Sons.
dc.identifier.citedreferenceJohn, J. A., and Draper, N. R. ( 1980 ). An alternative family of transformations. Applied Statistics, 29, 190.
dc.identifier.citedreferenceJohn, R., Dalling, J. W., Harms, K. E., Yavitt, J. B., Stallard, R. F., Mirabello, M. et al. ( 2007 ). Soil nutrients influence spatial distributions of tropical trees species. Proceedings of the National Academy of Sciences of USA, 104, 864 – 869.
dc.identifier.citedreferenceJohnson, D. J., Beaulieu, W. T., Bever, J. D., and Clay, K. ( 2012 ). Conspecific negative density dependence and forest diversity. Science (New York, N.Y.) 336, 904 – 947.
dc.identifier.citedreferenceKindt, R., & Kindt, M. R. ( 2019 ). Package ‘BiodiversityR’. Package for Community Ecology and Suitability Analysis. CRAN.
dc.identifier.citedreferenceKraft, N. J. B., and Ackerly, D. D. ( 2010 ). Functional tests of trait and community assembly phylogenetic across scales in an Amazonian forest. Ecological Monographs, 80, 401 – 422.
dc.identifier.citedreferenceKraft, N. J. B., Crutsinger, G. M., Forrestel, E. J., and Emery, N. C. ( 2014 ). Functional trait differences and the outcome of community assembly: An experimental test with vernal pool annual plants. Oikos, 123, 1391 – 1399.
dc.identifier.citedreferenceKraft, N. J. B., Godoy, O., and Levine, J. M. ( 2015 ). Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences, 112, 797 – 802.
dc.identifier.citedreferenceKunstler, G., Lavergne, S., Courbaud, B., Thuiller, W., Vieilledent, G., Zimmermann, N. E. et al. ( 2012 ). Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: Implications for forest community assembly. Ecology Letters, 15, 831 – 840.
dc.identifier.citedreferenceLasky, J. R., Uriarte, M., Boukili, V. K., and Chazdon, R. L. ( 2014 ). Trait‐mediated assembly processes predict successional changes in community diversity of tropical forests. Proceedings of the National Academy of Sciences, 111, 5616 – 5621.
dc.identifier.citedreferenceLegendre, P., and Legendre, L. ( 2012 ). Complex ecological data sets. Developments in Environmental Modelling, Vol. 24. Amsterdam, the Netherlands: Elsevier.
dc.identifier.citedreferenceLevin, S. A. ( 1992 ). The problem of pattern and scale in ecology. Ecology, 73, 1943 – 1967.
dc.identifier.citedreferenceLiu, X., Swenson, N. G., Lin, D., Mi, X., Umaña, M. N., Schmid, B., & Ma, K. ( 2016 ). Linking individual level functional traits to tree growth in a subtropical forest. Ecology, 97, 2396 – 2405.
dc.identifier.citedreferenceMacarthur, R., and Levins, R. ( 1967 ). The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101, 377 – 385.
dc.identifier.citedreferenceMason, N. W. H., De Bello, F., Doležal, J., and Lepš, J. ( 2011 ). Niche overlap reveals the effects of competition, disturbance and contrasting assembly processes in experimental grassland communities. Journal of Ecology, 99, 788 – 796.
dc.identifier.citedreferenceMayfield, M. M., and Levine, J. M. ( 2010 ). Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13, 1085 – 1093.
dc.identifier.citedreferenceMcGill, B. J., Enquist, B. J., Weiher, E., and Westoby, M. ( 2006 ). Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 21, 178 – 185.
dc.identifier.citedreferenceMuller‐Landau, H. C. ( 2010 ). The tolerance‐fecundity trade‐off and the maintenance of diversity in seed size. Proceedings of the National Academy of Sciences, 107, 4242 – 4247.
dc.identifier.citedreferencePacala, S. W., and Silander, J. A. ( 1985 ). Neighborhood models of plant population dynamics. I. Single‐species models of annuals. The American Naturalist, 125, 385 – 411.
dc.identifier.citedreferencePaine, C. E. T., Norden, N., Chave, J., Forget, P.‐M., Fortunel, C., Dexter, K. G., and Baraloto, C. ( 2012 ). Phylogenetic density dependence and environmental filtering predict seedling mortality in a tropical forest. Ecology Letters, 15, 34 – 41.
dc.identifier.citedreferencePlummer, M. ( 2003 ). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of the 3rd International Workshop on Distributed Statistical Computing, Vol. 24, pp. 1 – 10.
dc.identifier.citedreferencePlummer, M. ( 2016 ). rjags: Bayesian Graphical Models using MCMC. R package version 4–6. https://CRAN.R-project.org/package=rjags274
dc.identifier.citedreferencePoorter, L., Wright, S. J., Paz, H., Ackerly, D. D., Condit, R., Ibarra‐Manríquez, G. et al. ( 2008 ). Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89, 1908 – 1920.
dc.identifier.citedreferenceReich, P. B., Walters, M. B., and Ellsworth, D. S. ( 1992 ). Leaf life‐span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs, 62, 365 – 392.
dc.identifier.citedreferenceReich, P. B., Walters, M. B., and Ellsworth, D. S. ( 1997 ). From tropics to tundra: Global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94, 13730 – 13734.
dc.identifier.citedreferenceRipley, B. D. ( 1976 ). The second‐order analysis of stationary point processes. Journal of Applied Probability, 13, 255 – 266.
dc.identifier.citedreferenceSchamp, B. S., and Aarssen, L. W. ( 2009 ). The assembly of forest communities according to maximum species height along resource and disturbance gradients. Oikos, 118, 564 – 572.
dc.identifier.citedreferenceShen, G., He, F., Waagepetersen, R., Sun, I.‐F., Hao, Z., Chen, Z.‐S., and Yu, M. ( 2013 ). Quantifying effects of habitat heterogeneity and other clustering processes on spatial distributions of tree species. Ecology, 94, 2436 – 2443.
dc.identifier.citedreferenceSpasojevic, M. J., and Suding, K. N. ( 2012 ). Inferring community assembly mechanisms from functional diversity patterns: The importance of multiple assembly processes. Journal of Ecology, 100, 652 – 661.
dc.identifier.citedreferenceStoyan, D., and Stoyan, H. ( 1994 ). Fractals, random shapes, and point fields: Methods of geometrical statistics. Biometrical Journal, 37, 978 – 978.
dc.identifier.citedreferenceStubbs, W. J., and Wilson, J. B. ( 2004 ). Evidence for limiting similarity in a sand dune community. Journal of Ecology, 92, 557 – 567.
dc.identifier.citedreferenceSuding, K. N., Collins, S. L., Gough, L., Clark, C., Cleland, E. E., Gross, K. L. et al. ( 2005 ). Functional‐ and abundance‐based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences of the United States of America, 102, 4387 – 4392.
dc.identifier.citedreferenceSwenson, N. G., and Enquist, B. J. ( 2009 ). Opposing assembly mechanisms in a Neotropical dry forest: Implications for phylogenetic and functional community ecology. Ecology, 90, 2161 – 2170.
dc.identifier.citedreferenceSwenson, N. G., Enquist, B. J., Pither, J., Thompson, J., and Zimmerman, J. K. ( 2006 ). The problem and promise of scale dependency in community phylogenetics. Ecology, 87, 2418 – 2424.
dc.identifier.citedreferenceSwenson, N. G., Erickson, D. L., Mi, X., Bourg, N. A., Forero‐Montaña, J., Ge, X. et al. ( 2012a ). Phylogenetic and functional alpha and beta diversity in temperate and tropical tree communities. Ecology, 93 ( sp8 ), S112 – S125.
dc.identifier.citedreferenceSwenson, N. G., Stegen, J. C., Davies, S. J., Erickson, D. L., Forero‐Montana, J., Hurlbert, A. H. et al. ( 2012b ). Temporal turnover in the composition of tropical tree communities: Functional determinism and phylogenetic stochasticity. Ecology, 93, 490 – 499.
dc.identifier.citedreferenceSwenson, N. G. and Umaña, M. N. ( 2015 ). Data from: Interspecific functional convergence and divergence and intraspecific negative density dependence underlie the seed‐to‐seedling transition in tropical trees. American Naturalist. Dryad Digital Repository, https://doi.org/10.5061/dryad.j2r53
dc.identifier.citedreferenceThompson, J., Brokaw, N., Zimmerman, J. K., Waide, R. B., Everham, E. M., Lodge, D. J. et al. ( 2002 ). Land use history, environment, and tree composition in a tropical forest. Ecological Applications, 12, 1344 – 1363.
dc.identifier.citedreferenceUmaña, M. N., Forero‐Montaña, J., Muscarella, R., Nytch, C. J., Thompson, J., Uriarte, M. et al. ( 2016 ). Interspecific functional convergence and divergence and intraspecific negative density dependence underlie the seed‐to‐seedling transition in tropical trees. The American Naturalist, 187, 99 – 109.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.