Show simple item record

Boosting Oxygen and Peroxide Reduction Reactions on PdCu Intermetallic Cubes

dc.contributor.authorZhang, Qingfeng
dc.contributor.authorLi, Fan
dc.contributor.authorLin, Lina
dc.contributor.authorPeng, Jiaheng
dc.contributor.authorZhang, Wencong
dc.contributor.authorChen, Wenlong
dc.contributor.authorXiang, Qian
dc.contributor.authorShi, Fenglei
dc.contributor.authorShang, Wen
dc.contributor.authorTao, Peng
dc.contributor.authorSong, Chengyi
dc.contributor.authorHuang, Rong
dc.contributor.authorZhu, Hong
dc.contributor.authorDeng, Tao
dc.contributor.authorWu, Jianbo
dc.date.accessioned2020-07-02T20:32:49Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-07-02T20:32:49Z
dc.date.issued2020-06-17
dc.identifier.citationZhang, Qingfeng; Li, Fan; Lin, Lina; Peng, Jiaheng; Zhang, Wencong; Chen, Wenlong; Xiang, Qian; Shi, Fenglei; Shang, Wen; Tao, Peng; Song, Chengyi; Huang, Rong; Zhu, Hong; Deng, Tao; Wu, Jianbo (2020). "Boosting Oxygen and Peroxide Reduction Reactions on PdCu Intermetallic Cubes." ChemElectroChem 7(12): 2614-2620.
dc.identifier.issn2196-0216
dc.identifier.issn2196-0216
dc.identifier.urihttps://hdl.handle.net/2027.42/155903
dc.description.abstractPalladium‐based nanocatalysts have the potential to replace platinum‐based catalysts for fuel‐cell reactions in alkaline electrolytes, especially PdCu intermetallic nanoparticles with high electrochemical activity and stability. However, unlike the synthetic methods for obtaining the nanoparticles, the effect of PdCu shape on the performance is relatively less well studied. Here, we demonstrate the facet dependence of PdCu intermetallics on the oxygen reduction reaction (ORR) and peroxide reduction, and reveal that the {100} dominant PdCu cubes have a much higher ORR mass activity and specific activity than spheres at 0.9 V vs. RHE, which is four and five times that of commercial Pd/C and Pt/C catalysts, respectively, and show only a 31.7 % decay after 30 000 cycles in the stability test. Moreover, cubic PdCu nanoparticles show higher peroxide electroreduction activity than Pd cubes and PdCu spheres. Density functional theory (DFT) calculation reveals that the huge difference originates from the reduction in oxygen adsorption energy and energy barrier of peroxide decomposition on the ordered {100} PdCu surface. Given the relationship between the shape and electrochemical performance, this study will contribute to further research on electrocatalytic improvements of catalysts in alkaline environments.Shape the future: PdCu intermetallic cubes and spheres are synthesized to investigate the facet dependence on the oxygen reduction reaction and peroxide reduction. The cubes show large improvements in mass activity towards both reactions, compared with the spheres. DFT calculation uncovers that the dominant {100} faces of the cubes offer more appropriate oxygen adsorption and are thermodynamically favorable for peroxide reduction compared to the surface of spheres.
dc.publisherWiley Periodicals, Inc.
dc.subject.otheroxygen reduction reaction
dc.subject.othernanoparticles
dc.subject.otherintermetallic phases
dc.subject.otherelectrocatalysts
dc.subject.otherperoxide reduction
dc.titleBoosting Oxygen and Peroxide Reduction Reactions on PdCu Intermetallic Cubes
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155903/1/celc202000381.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155903/2/celc202000381_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155903/3/celc202000381-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/celc.202000381
dc.identifier.sourceChemElectroChem
dc.identifier.citedreferenceY. Qiu, L. Xin, Y. Li, I. T. McCrum, F. Guo, T. Ma, Y. Ren, Q. Liu, L. Zhou, S. Gu, et al., J. Am. Chem. Soc. 2018, 1 – 20.
dc.identifier.citedreferenceL. Arroyo-Ramírez, R. Montano-Serrano, T. Luna-Pineda, F. R. Román, R. G. Raptis, C. R. Cabrera, ACS Appl. Mater. Interfaces 2013, 5, 11603 – 11612.
dc.identifier.citedreferenceM. Neergat, V. Gunasekar, R. Rahul, J. Electroanal. Chem. 2011, 658, 25 – 32.
dc.identifier.citedreferenceM. H. Shao, K. Sasaki, R. R. Adzic, J. Am. Chem. Soc. 2006, 128, 3526 – 3527.
dc.identifier.citedreferenceY. Dai, P. Yu, Q. Huang, K. Sun, Fuel Cells 2016, 16, 165 – 169.
dc.identifier.citedreferenceJ. Wu, S. Shan, J. Luo, P. Joseph, V. Petkov, C. J. Zhong, ACS Appl. Mater. Interfaces 2015, 7, 25906 – 25913.
dc.identifier.citedreferenceJ. Mao, Y. Liu, Z. Chen, D. Wang, Y. Li, Chem. Commun. 2014, 50, 4588 – 4591.
dc.identifier.citedreferenceW. P. Wu, A. P. Periasamy, G. L. Lin, Z. Y. Shih, H. T. Chang, J. Mater. Chem. A 2015, 3, 9675 – 9681.
dc.identifier.citedreferenceY. Yang, C. Dai, D. Wu, Z. Liu, D. Cheng, ChemElectroChem 2018, 5, 2571 – 2576.
dc.identifier.citedreferenceZ. Yin, W. Zhou, Y. Gao, D. Ma, C. J. Kiely, X. Bao, Chem. Eur. J. 2012, 18, 4887 – 4893.
dc.identifier.citedreferenceL. Zhang, S. Il Choi, J. Tao, H. C. Peng, S. Xie, Y. Zhu, Z. Xie, Y. Xia, Adv. Funct. Mater. 2014, 24, 7520 – 7529.
dc.identifier.citedreferenceX. Wu, Q. Xu, Y. Yan, J. Huang, X. Li, Y. Jiang, H. Zhang, D. Yang, RSC Adv. 2018, 8, 34853 – 34859.
dc.identifier.citedreferenceA. Dasgupta, R. M. Rioux, Catal. Today 2019, 330, 2 – 15.
dc.identifier.citedreferenceY. Yan, J. S. Du, K. D. Gilroy, D. Yang, Y. Xia, H. Zhang, Adv. Mater. 2017, 29, 1605997.
dc.identifier.citedreferenceC. Wang, D. P. Chen, X. Sang, R. R. Unocic, S. E. Skrabalak, ACS Nano 2016, 10, 6345 – 6353.
dc.identifier.citedreferenceK. Jiang, P. Wang, S. Guo, X. Zhang, X. Shen, G. Lu, D. Su, X. Huang, Angew. Chem. Int. Ed. 2016, 55, 9030 – 9035; Angew. Chem. 2016, 128, 9176 – 9181.
dc.identifier.citedreferenceC. Wang, X. Sang, J. T. L. Gamler, D. P. Chen, R. R. Unocic, S. E. Skrabalak, Nano Lett. 2017, 17, 5526 – 5532.
dc.identifier.citedreferenceL. Zhang, F. Hou, Y. Tan, Chem. Commun. 2012, 48, 7152 – 7154.
dc.identifier.citedreferenceJ. T. L. Gamler, A. Leonardi, H. M. Ashberry, N. N. Daanen, Y. Losovyj, R. R. Unocic, M. Engel, S. E. Skrabalak, ACS Nano 2019, 13, 4008 – 4017.
dc.identifier.citedreferenceD. Wu, C. Dai, S. Li, D. Cheng, Chem. Lett. 2015, 44, 1101 – 1103.
dc.identifier.citedreferenceQ. Gao, Y. Ju, D. An, M. Gao, C. Cui, J. Liu, H.-P. Cong, S.-H. Yu, ChemSusChem 2013, 6, 1878 – 1882.
dc.identifier.citedreferenceM. Jin, H. Liu, H. Zhang, Z. Xie, J. Liu, Y. Xia, Nano Res. 2011, 4, 83 – 91.
dc.identifier.citedreferenceM. Shao, J. H. Odell, S. Il Choi, Y. Xia, Electrochem. Commun. 2013, 31, 46 – 48.
dc.identifier.citedreferenceS. Rudi, C. Cui, L. Gan, P. Strasser, Electrocatalysis 2014, 5, 408 – 418.
dc.identifier.citedreferenceJ. Greeley, I. E. L. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J. K. Nørskov, Nat. Chem. 2009, 1, 552 – 556.
dc.identifier.citedreferenceX. Li, L. An, X. Wang, F. Li, R. Zou, D. Xia, J. Mater. Chem. 2012, 22, 6047 – 6052.
dc.identifier.citedreferenceY. Xiong, H. Shan, Z. Zhou, Y. Yan, W. Chen, Y. Yang, Y. Liu, H. Tian, J. Wu, H. Zhang, et al., Small 2017, 13, 1603423.
dc.identifier.citedreferenceJ. Wu, P. Li, Y. T. Pan, S. Warren, X. Yin, H. Yang, Chem. Soc. Rev. 2012, 41, 8066 – 8074.
dc.identifier.citedreferenceF. Xiao, Y. Li, X. Zan, K. Liao, R. Xu, H. Duan, Adv. Funct. Mater. 2012, 22, 2487 – 2494.
dc.identifier.citedreferenceM. Luo, Y. Sun, Y. Qin, S. Chen, Y. Li, C. Li, Y. Yang, D. Wu, N. Xu, Y. Xing, et al., Chem. Mater. 2018, 30, 6660 – 6667.
dc.identifier.citedreferenceH. S. Wroblowa, Y.-C. Pan, G. Razumney, J. Electroanal. Chem. Interfacial Electrochem. 1976, 69, 195 – 201.
dc.identifier.citedreferenceN. M. Marković, T. J. Schmidt, V. Stamenković, P. N. Ross, Fuel Cells 2001, 1, 105 – 116.
dc.identifier.citedreferenceJ. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B 2004, 108, 17886 – 17892.
dc.identifier.citedreferenceY. Sha, T. H. Yu, B. V. Merinov, W. A. Goddard, ACS Catal. 2014, 4, 1189 – 1197.
dc.identifier.citedreferenceW. Zhang, G. Fan, H. Yi, G. Jia, Z. Li, C. Yuan, Y. Bai, D. Fu, Small 2018, 14, 1703713.
dc.identifier.citedreferenceJ. Wu, H. Yang, Acc. Chem. Res. 2013, 46, 1848 – 1857.
dc.identifier.citedreferenceZ. Peng, H. Yang, Nano Today 2009, 4, 143 – 164.
dc.identifier.citedreferenceM. Shao, Q. Chang, J. P. Dodelet, R. Chenitz, Chem. Rev. 2016, 116, 3594 – 3657.
dc.identifier.citedreferenceJ. Wu, J. Zhang, Z. Peng, S. Yang, F. T. Wagner, H. Yang, J. Am. Chem. Soc. 2010, 132, 4984 – 4985.
dc.identifier.citedreferenceJ. Wu, L. Qi, H. You, A. Gross, J. Li, H. Yang, J. Am. Chem. Soc. 2012, 134, 11880 – 11883.
dc.identifier.citedreferenceX. Tian, X. Zhao, Y. Su, L. Wang, H. Wang, D. Dang, B. Chi, H. Liu, E. J. M. Hensen, X. W. Lou, B. Y. Xia, Science 2019, 856, 850 – 856.
dc.identifier.citedreferenceA. Chalgin, F. Shi, F. Li, Q. Xiang, W. Chen, C. Song, P. Tao, W. Shang, T. Deng, J. Wu, CrystEngComm 2017, 19, 6964 – 6971.
dc.identifier.citedreferenceY. Ma, W. Gao, H. Shan, W. Chen, W. Shang, P. Tao, C. Song, C. Addiego, T. Deng, X. Pan, et al., Adv. Mater. 2017, 29, 1 – 8.
dc.identifier.citedreferenceJ. Wu, A. Gross, H. Yang, Nano Lett. 2011, 11, 798 – 802.
dc.identifier.citedreferenceJ. Wu, H. Yang, Nano Res. 2011, 4, 72 – 82.
dc.identifier.citedreferenceF. Li, Y. Qin, A. Chalgin, X. Gu, W. Chen, Y. Ma, Q. Xiang, Y. Wu, F. Shi, Y. Zong, et al., ChemistrySelect 2019, 4, 5264 – 5268.
dc.identifier.citedreferenceM. Luo, Z. Zhao, Y. Zhang, Y. Sun, Y. Xing, F. Lv, Y. Yang, X. Zhang, S. Hwang, Y. Qin, et al., Nature 2019, 574, 81 – 85.
dc.identifier.citedreferenceD. Wang, H. L. Xin, Y. Yu, H. Wang, E. Rus, D. A. Muller, H. D. Abruña, J. Am. Chem. Soc. 2010, 132, 17664 – 17666.
dc.identifier.citedreferenceF. Liao, T. W. B. Lo, S. C. E. Tsang, ChemCatChem 2015, 7, 1998 – 2014.
dc.identifier.citedreferenceM. Shao, T. Yu, J. H. Odell, M. Jin, Y. Xia, Chem. Commun. 2011, 47, 6566.
dc.identifier.citedreferenceT. C. Nagaiah, D. Schäfer, W. Schuhmann, N. Dimcheva, Anal. Chem. 2013, 85, 7897 – 7903.
dc.identifier.citedreferenceG. J. DeYulia, J. M. Cárcamo, O. Bórquez-Ojeda, C. C. Shelton, D. W. Golde, Proc. Natl. Acad. Sci. USA 2005, 102, 5044 – 5049.
dc.identifier.citedreferenceY. Zhang, M. Janyasupab, C.-W. Liu, P.-Y. Lin, K.-W. Wang, J. Xu, C.-C. Liu, Int. J. Electrochem. 2012, 2012, 1 – 8.
dc.identifier.citedreferenceB. D. Adams, C. K. Ostrom, A. Chen, J. Electrochem. Soc. 2011, 158, 434 – 439.
dc.identifier.citedreferenceX. Sun, S. Guo, Y. Liu, S. Sun, Nano Lett. 2012, 12, 4859 – 4863.
dc.identifier.citedreferenceB. Li, J. Prakash, Electrochem. Commun. 2009, 11, 1162 – 1165.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.