Show simple item record

The effects of advanced maternal age on T- cell subsets at the maternal- fetal interface prior to term labor and in the offspring: a mouse study

dc.contributor.authorLevenson, D.
dc.contributor.authorRomero, R.
dc.contributor.authorGarcia‐flores, V.
dc.contributor.authorMiller, D.
dc.contributor.authorXu, Y.
dc.contributor.authorSahi, A.
dc.contributor.authorHassan, S. S.
dc.contributor.authorGomez‐lopez, N.
dc.date.accessioned2020-07-02T20:32:50Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-07-02T20:32:50Z
dc.date.issued2020-07
dc.identifier.citationLevenson, D.; Romero, R.; Garcia‐flores, V. ; Miller, D.; Xu, Y.; Sahi, A.; Hassan, S. S.; Gomez‐lopez, N. (2020). "The effects of advanced maternal age on T- cell subsets at the maternal- fetal interface prior to term labor and in the offspring: a mouse study." Clinical & Experimental Immunology (1): 58-75.
dc.identifier.issn0009-9104
dc.identifier.issn1365-2249
dc.identifier.urihttps://hdl.handle.net/2027.42/155904
dc.publisherUnited Nations, Department of Economic and Social Affairs, Population Division
dc.publisherWiley Periodicals, Inc.
dc.subject.otherbirth weight
dc.subject.otheroffspring
dc.subject.otherpregnancy
dc.subject.otherpreterm labor
dc.subject.otherneonate
dc.titleThe effects of advanced maternal age on T- cell subsets at the maternal- fetal interface prior to term labor and in the offspring: a mouse study
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155904/1/cei13437.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155904/2/cei13437_am.pdf
dc.identifier.doi10.1111/cei.13437
dc.identifier.sourceClinical & Experimental Immunology
dc.identifier.citedreferenceMiller D, Romero R, Unkel R et al. CD71+ erythroid cells from neonates born to women with preterm labor regulate cytokine and cellular responses. J Leukoc Biol 2018; 103: 761 - 75.
dc.identifier.citedreferenceItoh M, Takahashi T, Sakaguchi N et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self- tolerance. J Immunol 1999; 162: 5317 - 26.
dc.identifier.citedreferenceFontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4: 330 - 6.
dc.identifier.citedreferenceKhattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003; 4: 337 - 42.
dc.identifier.citedreferenceFowell D, Mason D. Evidence that the T cell repertoire of normal rats contains cells with the potential to cause diabetes. Characterization of the CD4+ T cell subset that inhibits this autoimmune potential. J Exp Med 1993; 177: 627 - 36.
dc.identifier.citedreferenceHori S, Carvalho TL, Demengeot J. CD25+CD4+ regulatory T cells suppress CD4+ T cell- mediated pulmonary hyperinflammation driven by Pneumocystis carinii in immunodeficient mice. Eur J Immunol 2002; 32: 1282 - 91.
dc.identifier.citedreferenceSakaguchi S. Naturally arising Foxp3- expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non- self. Nat Immunol 2005; 6: 345 - 52.
dc.identifier.citedreferenceWalker MR, Kasprowicz DJ, Gersuk VH et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells. J Clin Invest 2003; 112: 1437 - 43.
dc.identifier.citedreferenceHeikkinen J, Mottonen M, Alanen A, Lassila O. Phenotypic characterization of regulatory T cells in the human decidua. Clin Exp Immunol 2004; 136: 373 - 8.
dc.identifier.citedreferenceSasaki Y, Sakai M, Miyazaki S, Higuma S, Shiozaki A, Saito S. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod 2004; 10: 347 - 53.
dc.identifier.citedreferenceAluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol 2004; 5: 266 - 71.
dc.identifier.citedreferenceFurcron AE, Romero R, Plazyo O et al. Vaginal progesterone, but not 17alpha- hydroxyprogesterone caproate, has antiinflammatory effects at the murine maternal- fetal interface. Am J Obstet Gynecol 2015; 213: 846.e1 - 19.
dc.identifier.citedreferenceKahn DA, Baltimore D. Pregnancy induces a fetal antigen- specific maternal T regulatory cell response that contributes to tolerance. Proc Natl Acad Sci USA 2010; 107: 9299 - 304.
dc.identifier.citedreferenceSamstein RM, Josefowicz SZ, Arvey A, Treuting PM, Rudensky AY. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal- fetal conflict. Cell 2012; 150: 29 - 38.
dc.identifier.citedreferenceRowe JH, Ertelt JM, Xin L, Way SS. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature 2012; 490: 102 - 6.
dc.identifier.citedreferenceCano F, Simon C, Remohi J, Pellicer A. Effect of aging on the female reproductive system: evidence for a role of uterine senescence in the decline in female fecundity. Fertil Steril 1995; 64: 584 - 9.
dc.identifier.citedreferencePellicer A, Simon C, Remohi J. Effects of aging on the female reproductive system. Hum Reprod 1995; 10 ( Suppl 2 ): 77 - 83.
dc.identifier.citedreferencePacker C, Tatar M, Collins A. Reproductive cessation in female mammals. Nature 1998; 392: 807 - 11.
dc.identifier.citedreferenceMain DM, Main EK, Moore DH II. The relationship between maternal age and uterine dysfunction: a continuous effect throughout reproductive life. Am J Obstet Gynecol 2000; 182: 1312 - 20.
dc.identifier.citedreferenceElmes M, Szyszka A, Pauliat C et al. Maternal age effects on myometrial expression of contractile proteins, uterine gene expression, and contractile activity during labor in the rat. Physiol Rep 2015; 3. pii: e12305. https://doi.org/10.14814/phy2.12305.
dc.identifier.citedreferenceFriedman CI, Danforth DR, Herbosa- Encarnacion C, Arbogast L, Alak BM, Seifer DB. Follicular fluid vascular endothelial growth factor concentrations are elevated in women of advanced reproductive age undergoing ovulation induction. Fertil Steril 1997; 68: 607 - 12.
dc.identifier.citedreferenceJiang X, Yan J, Sheng Y, Sun M, Cui L, Chen ZJ. Low anti- Mullerian hormone concentration is associated with increased risk of embryonic aneuploidy in women of advanced age. Reprod Biomed Online 2018; 37: 178 - 83.
dc.identifier.citedreferenceNapso T, Hung YP, Davidge ST, Care AS, Sferruzzi- Perri AN. Advanced maternal age compromises fetal growth and induces sex- specific changes in placental phenotype in rats. Sci Rep 2019; 9: 16916.
dc.identifier.citedreferenceDogan B, Karaer A, Tuncay G, Tecellioglu N, Mumcu A. High- resolution (1)H- NMR spectroscopy indicates variations in metabolomics profile of follicular fluid from women with advanced maternal age. J Assist Reprod Genet 2020; 37: 321 - 30.
dc.identifier.citedreferenceWang MH, vom Saal FS. Maternal age and traits in offspring. Nature 2000; 407: 469 - 70.
dc.identifier.citedreferenceTarin JJ, Gomez- Piquer V, Rausell F, Navarro S, Hermenegildo C, Cano A. Delayed motherhood decreases life expectancy of mouse offspring. Biol Reprod 2005; 72: 1336 - 43.
dc.identifier.citedreferenceCarnes BA, Riesch R, Schlupp I. The delayed impact of parental age on offspring mortality in mice. J Gerontol A Biol Sci Med Sci 2012; 67: 351 - 7.
dc.identifier.citedreferenceGarcia- Flores V, Romero R, Furcron AE et al. Prenatal maternal stress causes preterm birth and affects neonatal adaptive immunity in mice. Front Immunol 2020; 11: 254. https://doi.org/10.3389/fimmu.2020.00254.
dc.identifier.citedreferenceUnited Nations. World Fertility Report 2015. Contract no.: ST/ESA/SER.A/415. New York, NY: United Nations, Department of Economic and Social Affairs, Population Division; 2017.
dc.identifier.citedreferenceMartin JA, Hamilton BE, Osterman MJK, Driscoll AK, Drake P. Births: final data for 2016. Natl Vital Stat Rep 2018; 67: 1 - 55.
dc.identifier.citedreferenceDuckitt K, Harrington D. Risk factors for pre- eclampsia at antenatal booking: systematic review of controlled studies. BMJ 2005; 330: 565.
dc.identifier.citedreferenceJoseph KS, Allen AC, Dodds L, Turner LA, Scott H, Liston R. The perinatal effects of delayed childbearing. Obstet Gynecol 2005; 105: 1410 - 8.
dc.identifier.citedreferenceKhalil A, Syngelaki A, Maiz N, Zinevich Y, Nicolaides KH. Maternal age and adverse pregnancy outcome: a cohort study. Ultrasound Obstet Gynecol 2013; 42: 634 - 43.
dc.identifier.citedreferenceBerkowitz GS, Skovron ML, Lapinski RH, Berkowitz RL. Delayed childbearing and the outcome of pregnancy. N Engl J Med 1990; 322: 659 - 64.
dc.identifier.citedreferenceCleary- Goldman J, Malone FD, Vidaver J et al. Impact of maternal age on obstetric outcome. Obstet Gynecol 2005; 105: 983 - 90.
dc.identifier.citedreferenceTreacy A, Robson M, O- Herlihy C. Dystocia increases with advancing maternal age. Am J Obstet Gynecol 2006; 195: 760 - 3.
dc.identifier.citedreferenceLuke B, Brown MB. Elevated risks of pregnancy complications and adverse outcomes with increasing maternal age. Hum Reprod 2007; 22: 1264 - 72.
dc.identifier.citedreferenceKozinszky Z, Orvos H, Zoboki T et al. Risk factors for cesarean section of primiparous women aged over 35 years. Acta Obstet Gynecol Scand 2002; 81: 313 - 6.
dc.identifier.citedreferenceLin HC, Sheen TC, Tang CH, Kao S. Association between maternal age and the likelihood of a cesarean section: a population- based multivariate logistic regression analysis. Acta Obstet Gynecol Scand 2004; 83: 1178 - 83.
dc.identifier.citedreferenceJanoudi G, Kelly S, Yasseen A, Hamam H, Moretti F, Walker M. Factors associated with increased rates of caesarean section in women of advanced maternal age. J Obstet Gynaecol Can 2015; 37: 517 - 26.
dc.identifier.citedreferenceOliveira FC Jr, Costa ML, Cecatti JG, Pinto e Silva JL, Surita FG. Maternal morbidity and near miss associated with maternal age: the innovative approach of the 2006 Brazilian demographic health survey. Clinics 2013; 68: 922 - 7.
dc.identifier.citedreferenceLaopaiboon M, Lumbiganon P, Intarut N et al. Advanced maternal age and pregnancy outcomes: a multicountry assessment. BJOG 2014; 121 ( Suppl 1 ): 49 - 56.
dc.identifier.citedreferenceSacks GP, Studena K, Sargent K, Redman CW. Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am J Obstet Gynecol 1998; 179: 80 - 6.
dc.identifier.citedreferenceNaccasha N, Gervasi MT, Chaiworapongsa T et al. Phenotypic and metabolic characteristics of monocytes and granulocytes in normal pregnancy and maternal infection. Am J Obstet Gynecol 2001; 185: 1118 - 23.
dc.identifier.citedreferenceUnal ER, Cierny JT, Roedner C, Newman R, Goetzl L. Maternal inflammation in spontaneous term labor. Am J Obstet Gynecol 2011; 204: 223.e1 - 5.
dc.identifier.citedreferenceCierny JT, Unal ER, Flood P et al. Maternal inflammatory markers and term labor performance. Am J Obstet Gynecol 2014; 210: 447.e1 - 6.
dc.identifier.citedreferenceNeal JL, Lamp JM, Lowe NK, Gillespie SL, Sinnott LT, McCarthy DO. Differences in inflammatory markers between nulliparous women admitted to hospitals in preactive vs active labor. Am J Obstet Gynecol 2015; 212: 68.e1 - 8.
dc.identifier.citedreferenceHaddad R, Tromp G, Kuivaniemi H et al. Human spontaneous labor without histologic chorioamnionitis is characterized by an acute inflammation gene expression signature. Am J Obstet Gynecol 2006; 195: 394.e1 - 24.
dc.identifier.citedreferenceNhan- Chang CL, Romero R, Tarca AL et al. Characterization of the transcriptome of chorioamniotic membranes at the site of rupture in spontaneous labor at term. Am J Obstet Gynecol 2010; 202: 462.e1 - 41.
dc.identifier.citedreferenceHassan SS, Romero R, Haddad R et al. The transcriptome of the uterine cervix before and after spontaneous term parturition. Am J Obstet Gynecol 2006; 195: 778 - 86.
dc.identifier.citedreferenceHassan SS, Romero R, Tarca AL et al. Signature pathways identified from gene expression profiles in the human uterine cervix before and after spontaneous term parturition. Am J Obstet Gynecol 2007; 197: 250.e1 - 7.
dc.identifier.citedreferenceMittal P, Romero R, Tarca AL et al. Characterization of the myometrial transcriptome and biological pathways of spontaneous human labor at term. J Perinat Med 2010; 38: 617 - 43.
dc.identifier.citedreferenceChaemsaithong P, Madan I, Romero R et al. Characterization of the myometrial transcriptome in women with an arrest of dilatation during labor. J Perinat Med 2013; 41: 665 - 81.
dc.identifier.citedreferenceRomero R, Tarca AL, Chaemsaithong P et al. Transcriptome interrogation of human myometrium identifies differentially expressed sense- antisense pairs of protein- coding and long non- coding RNA genes in spontaneous labor at term. J Matern Fetal Neonatal Med 2014; 27: 1397 - 408.
dc.identifier.citedreferenceDudley DJ, Collmer D, Mitchell MD, Trautman MS. Inflammatory cytokine mRNA in human gestational tissues: implications for term and preterm labor. J Soc Gynecol Investig 1996; 3: 328 - 35.
dc.identifier.citedreferenceAmmala M, Nyman T, Salmi A, Rutanen EM. The interleukin- 1 system in gestational tissues at term: effect of labour. Placenta 1997; 18: 717 - 23.
dc.identifier.citedreferenceStephen GL, Lui S, Hamilton SA et al. Transcriptomic profiling of human choriodecidua during term labor: inflammation as a key driver of labor. Am J Reprod Immunol 2015; 73: 36 - 55.
dc.identifier.citedreferenceBukowski R, Sadovsky Y, Goodarzi H et al. Onset of human preterm and term birth is related to unique inflammatory transcriptome profiles at the maternal fetal interface. PeerJ 2017; 5: e3685.
dc.identifier.citedreferenceArenas- Hernandez M, Gomez- Lopez N, Garcia- Flores V et al. Choriodecidual leukocytes display a unique gene expression signature in spontaneous labor at term. Genes Immun 2019; 20: 56 - 68.
dc.identifier.citedreferenceLiggins CG. Cervical ripening as an inflammatory reaction. In: Elwood DA, Andersson ABM, eds. Cervix in pregnancy and labour. Edinburgh: Churchill Livingstone; 1981: 1 - 9.
dc.identifier.citedreferenceRomero R, Gotsch F, Pineles B, Kusanovic JP. Inflammation in pregnancy: its roles in reproductive physiology, obstetrical complications, and fetal injury. Nutr Rev 2007; 65: S194 - 202.
dc.identifier.citedreferenceNorman JE, Bollapragada S, Yuan M, Nelson SM. Inflammatory pathways in the mechanism of parturition. BMC Pregnancy Childbirth 2007; 7 ( Suppl 1 ): S7.
dc.identifier.citedreferenceNorwitz ER, Bonney EA, Snegovskikh VV et al. Molecular regulation of parturition: the role of the decidual clock. Cold Spring Harb Perspect Med 2015; 5. pii: a023143. https://doi.org/10.1101/cshperspect.a023143.
dc.identifier.citedreferenceBokstrom H, Brannstrom M, Alexandersson M, Norstrom A. Leukocyte subpopulations in the human uterine cervical stroma at early and term pregnancy. Hum Reprod 1997; 12: 586 - 90.
dc.identifier.citedreferenceMackler AM, Iezza G, Akin MR, McMillan P, Yellon SM. Macrophage trafficking in the uterus and cervix precedes parturition in the mouse. Biol Reprod 1999; 61: 879 - 83.
dc.identifier.citedreferenceYoung A, Thomson AJ, Ledingham M, Jordan F, Greer IA, Norman JE. Immunolocalization of proinflammatory cytokines in myometrium, cervix, and fetal membranes during human parturition at term. Biol Reprod 2002; 66: 445 - 9.
dc.identifier.citedreferenceKelly RW. Inflammatory mediators and cervical ripening. J Reprod Immunol 2002; 57: 217 - 24.
dc.identifier.citedreferenceOsman I, Young A, Ledingham MA et al. Leukocyte density and pro- inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labour at term. Mol Hum Reprod 2003; 9: 41 - 5.
dc.identifier.citedreferenceYellon SM, Mackler AM, Kirby MA. The role of leukocyte traffic and activation in parturition. J Soc Gynecol Investig 2003; 10: 323 - 38.
dc.identifier.citedreferenceSakamoto Y, Moran P, Bulmer JN, Searle RF, Robson SC. Macrophages and not granulocytes are involved in cervical ripening. J Reprod Immunol 2005; 66: 161 - 73.
dc.identifier.citedreferenceYellon SM, Ebner CA, Sugimoto Y. Parturition and recruitment of macrophages in cervix of mice lacking the prostaglandin F receptor. Biol Reprod 2008; 78: 438 - 44.
dc.identifier.citedreferenceTimmons BC, Fairhurst AM, Mahendroo MS. Temporal changes in myeloid cells in the cervix during pregnancy and parturition. J Immunol 2009; 182: 2700 - 7.
dc.identifier.citedreferenceYellon SM, Oshiro BT, Chhaya TY et al. Remodeling of the cervix and parturition in mice lacking the progesterone receptor B isoform. Biol Reprod 2011; 85: 498 - 502.
dc.identifier.citedreferenceClyde LA, Lechuga TJ, Ebner CA, Burns AE, Kirby MA, Yellon SM. Transection of the pelvic or vagus nerve forestalls ripening of the cervix and delays birth in rats. Biol Reprod 2011; 84: 587 - 94.
dc.identifier.citedreferencePayne KJ, Clyde LA, Weldon AJ, Milford TA, Yellon SM. Residency and activation of myeloid cells during remodeling of the prepartum murine cervix. Biol Reprod 2012; 87: 106.
dc.identifier.citedreferenceMyers DA. The recruitment and activation of leukocytes into the immune cervix: further support that cervical remodeling involves an immune and inflammatory mechanism. Biol Reprod 2012; 87: 107.
dc.identifier.citedreferenceThomson AJ, Telfer JF, Young A et al. Leukocytes infiltrate the myometrium during human parturition: further evidence that labour is an inflammatory process. Hum Reprod 1999; 14: 229 - 36.
dc.identifier.citedreferenceShynlova O, Tsui P, Dorogin A, Lye SJ. Monocyte chemoattractant protein- 1 (CCL- 2) integrates mechanical and endocrine signals that mediate term and preterm labor. J Immunol 2008; 181: 1470 - 9.
dc.identifier.citedreferenceShynlova O, Tsui P, Jaffer S, Lye SJ. Integration of endocrine and mechanical signals in the regulation of myometrial functions during pregnancy and labour. Eur J Obstet Gynecol Reprod Biol 2009; 144 ( Suppl 1 ): S2 - 10.
dc.identifier.citedreferenceShynlova O, Lee YH, Srikhajon K, Lye SJ. Physiologic uterine inflammation and labor onset: integration of endocrine and mechanical signals. Reprod Sci 2013; 20: 154 - 67.
dc.identifier.citedreferenceFidel PL Jr, Romero R, Ramirez M et al. Interleukin- 1 receptor antagonist (IL- 1ra) production by human amnion, chorion, and decidua. Am J Reprod Immunol 1994; 32: 1 - 7.
dc.identifier.citedreferenceKeelan JA, Marvin KW, Sato TA, Coleman M, McCowan LM, Mitchell MD. Cytokine abundance in placental tissues: evidence of inflammatory activation in gestational membranes with term and preterm parturition. Am J Obstet Gynecol 1999; 181: 1530 - 6.
dc.identifier.citedreferenceLonergan M, Aponso D, Marvin KW et al. Tumor necrosis factor- related apoptosis- inducing ligand (TRAIL), TRAIL receptors, and the soluble receptor osteoprotegerin in human gestational membranes and amniotic fluid during pregnancy and labor at term and preterm. J Clin Endocrinol Metab 2003; 88: 3835 - 44.
dc.identifier.citedreferenceEsplin MS, Peltier MR, Hamblin S et al. Monocyte chemotactic protein- 1 expression is increased in human gestational tissues during term and preterm labor. Placenta 2005; 26: 661 - 71.
dc.identifier.citedreferenceGomez- Lopez N, Estrada- Gutierrez G, Jimenez- Zamudio L, Vega- Sanchez R, Vadillo- Ortega F. Fetal membranes exhibit selective leukocyte chemotaxic activity during human labor. J Reprod Immunol 2009; 80: 122 - 31.
dc.identifier.citedreferenceGomez- Lopez N, Vadillo- Perez L, Nessim S, Olson DM, Vadillo- Ortega F. Choriodecidua and amnion exhibit selective leukocyte chemotaxis during term human labor. Am J Obstet Gynecol 2011; 204: 364.e9 - 16.
dc.identifier.citedreferenceHadley EE, Sheller- Miller S, Saade G et al. Amnion epithelial cell- derived exosomes induce inflammatory changes in uterine cells. Am J Obstet Gynecol 2018; 219: 478.e1 - e21.
dc.identifier.citedreferenceVince GS, Starkey PM, Jackson MC, Sargent IL, Redman CW. Flow cytometric characterisation of cell populations in human pregnancy decidua and isolation of decidual macrophages. J Immunol Methods 1990; 132: 181 - 9.
dc.identifier.citedreferenceGomez- Lopez N, Guilbert LJ, Olson DM. Invasion of the leukocytes into the fetal- maternal interface during pregnancy. J Leukoc Biol 2010; 88: 625 - 33.
dc.identifier.citedreferenceHamilton S, Oomomian Y, Stephen G et al. Macrophages infiltrate the human and rat decidua during term and preterm labor: evidence that decidual inflammation precedes labor. Biol Reprod 2012; 86: 39.
dc.identifier.citedreferenceHori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299: 1057 - 61.
dc.identifier.citedreferenceHamilton SA, Tower CL, Jones RL. Identification of chemokines associated with the recruitment of decidual leukocytes in human labour: potential novel targets for preterm labour. PLOS ONE 2013; 8: e56946.
dc.identifier.citedreferenceXu Y, Romero R, Miller D et al. An M1- like macrophage polarization in decidual tissue during spontaneous preterm labor that is attenuated by rosiglitazone treatment. J Immunol 2016; 196: 2476 - 91.
dc.identifier.citedreferenceArenas- Hernandez M, Romero R, Xu Y et al. Effector and activated T cells induce preterm labor and birth that is prevented by treatment with progesterone. J Immunol 2019; 202: 2585 - 608.
dc.identifier.citedreferenceGomez- Lopez N, Vega- Sanchez R, Castillo- Castrejon M, Romero R, Cubeiro- Arreola K, Vadillo- Ortega F. Evidence for a role for the adaptive immune response in human term parturition. Am J Reprod Immunol 2013; 69: 212 - 30.
dc.identifier.citedreferenceArenas- Hernandez M, Romero R, St Louis D, Hassan SS, Kaye EB, Gomez- Lopez N. An imbalance between innate and adaptive immune cells at the maternal- fetal interface occurs prior to endotoxin- induced preterm birth. Cell Mol Immunol 2016; 13: 462 - 73.
dc.identifier.citedreferenceGomez- Lopez N, StLouis D, Lehr MA, Sanchez- Rodriguez EN, Arenas- Hernandez M. Immune cells in term and preterm labor. Cell Mol Immunol 2014; 11: 571 - 81.
dc.identifier.citedreferencePique- Regi R, Romero R, Tarca AL, Sendler ED, Xu Y, Garcia- Flores V, et al. Single cell transcriptional signatures of the human placenta in term and preterm parturition. Elife 2019; 8. pii: e52004. https://doi.org/10.7554/eLife.52004.
dc.identifier.citedreferenceFlood TM, Brink SJ, Gleason RE. Increased incidence of type I diabetes in children of older mothers. Diabetes Care 1982; 5: 571 - 3.
dc.identifier.citedreferenceMetcalfe MA, Baum JD. Family characteristics and insulin dependent diabetes. Arch Dis Child 1992; 67: 731 - 6.
dc.identifier.citedreferenceBingley PJ, Douek IF, Rogers CA, Gale EA. Influence of maternal age at delivery and birth order on risk of type 1 diabetes in childhood: prospective population based family study. Bart- s- Oxford Family Study Group. BMJ 2000; 321: 420 - 4.
dc.identifier.citedreferenceDioun AF, Harris SK, Hibberd PL. Is maternal age at delivery related to childhood food allergy? Pediatr Allergy Immunol 2003; 14: 307 - 11.
dc.identifier.citedreferenceTarin JJ, Vidal E, Perez- Hoyos S, Cano A, Balasch J. Delayed motherhood increases the probability of sons to be infertile. J Assist Reprod Genet 2001; 18: 650 - 4.
dc.identifier.citedreferenceSmits LJ, Willemsen WN, Zielhuis GA, Jongbloet PH. Conditions at conception and risk of menstrual disorders. Epidemiology 1997; 8: 524 - 9.
dc.identifier.citedreferenceYip BH, Pawitan Y, Czene K. Parental age and risk of childhood cancers: a population- based cohort study from Sweden. Int J Epidemiol 2006; 35: 1495 - 503.
dc.identifier.citedreferenceLopez- Castroman J, Gomez DD, Belloso JJ et al. Differences in maternal and paternal age between schizophrenia and other psychiatric disorders. Schizophr Res 2010; 116: 184 - 90.
dc.identifier.citedreferenceSandin S, Hultman CM, Kolevzon A, Gross R, MacCabe JH, Reichenberg A. Advancing maternal age is associated with increasing risk for autism: a review and meta- analysis. J Am Acad Child Adolesc Psychiatry 2012; 51: 477 - 86.e1.
dc.identifier.citedreferenceLi S, Hua J, Hong H, Wang Y, Zhang J. Interpregnancy interval, maternal age, and offspring’s BMI and blood pressure at 7 years of age. J Hum Hypertens 2018; 32: 349 - 58.
dc.identifier.citedreferenceImterat M, Wainstock T, Sheiner E, Kapelushnik J, Fischer L, Walfisch A. Advanced maternal age during pregnancy and the risk for malignant morbidity in the childhood. Eur J Pediatr 2018; 177: 879 - 86.
dc.identifier.citedreferenceRios L, Vasquez L, Oscanoa M, Maza I, Geronimo J. Advancing parental age and risk of solid tumors in children: a case- control study in peru. J Oncol 2018; 2018: 3924635.
dc.identifier.citedreferenceKollias C, Dimitrakopoulos S, Xenaki LA, Stefanis N, Papageorgiou C. Evidence of advanced parental age linked to sporadic schizophrenia. Psychiatriki 2019; 30: 24 - 31.
dc.identifier.citedreferenceTarin JJ, Garcia- Perez MA, Cano A. Potential risks to offspring of intrauterine exposure to maternal age- related obstetric complications. Reprod Fertil Dev 2017; 29: 1468 - 76.
dc.identifier.citedreferenceLangley- Evans SC. Developmental programming of health and disease. Proc Nutr Soc 2006; 65: 97 - 105.
dc.identifier.citedreferenceGluckman PD, Hanson MA, Buklijas T. A conceptual framework for the developmental origins of health and disease. J Dev Orig Health Dis 2010; 1: 6 - 18.
dc.identifier.citedreferenceChen T, Liu HX, Yan HY, Wu DM, Ping J. Developmental origins of inflammatory and immune diseases. Mol Hum Reprod 2016; 22: 858 - 65.
dc.identifier.citedreferenceShirasuna K, Iwata H. Effect of aging on the female reproductive function. Contracept Reprod Med 2017; 2: 23.
dc.identifier.citedreferenceAghaeepour N, Ganio EA, McIlwain D et al. An immune clock of human pregnancy. Sci Immunol 2017; 2. pii: eaan2946. https://doi.org/10.1126/sciimmunol.aan2946.
dc.identifier.citedreferenceAghaeepour N, Lehallier B, Baca Q et al. A proteomic clock of human pregnancy. Am J Obstet Gynecol 2018; 218: 347.e1 - e14.
dc.identifier.citedreferenceTarca AL, Romero R, Xu Z et al. Targeted expression profiling by RNA- Seq improves detection of cellular dynamics during pregnancy and identifies a role for T cells in term parturition. Sci Rep 2019; 9: 848.
dc.identifier.citedreferenceGomez- Lopez N, Romero R, Hassan SS et al. The cellular transcriptome in the maternal circulation during normal pregnancy: a longitudinal study. Front Immunol 2019; 10: 2863.
dc.identifier.citedreferenceArenas- Hernandez M, Sanchez- Rodriguez EN, Mial TN, Robertson SA, Gomez- Lopez N. Isolation of leukocytes from the murine tissues at the maternal- fetal interface. J Vis Exp 2015; 99: e52866.
dc.identifier.citedreferenceBehringer R, Gertsenstein M, Nagy KV, Nagy A. Manipulating the mouse embryo: a laboratory manual. Cold Spring Habor, NY: Cold Spring Habor Laboratory Press; 2014.
dc.identifier.citedreferenceSt Louis D, Romero R, Plazyo O et al. Invariant NKT cell activation induces late preterm birth that is attenuated by rosiglitazone. J Immunol 2016; 196: 1044 - 59.
dc.identifier.citedreferenceGarcia- Flores V, Romero R, Miller D et al. Inflammation- induced adverse pregnancy and neonatal outcomes can be improved by the immunomodulatory peptide exendin- 4. Front Immunol 2018; 9: 1291.
dc.identifier.citedreferenceSengupta P. A scientific review of age determination for a laboratory rat: how old is it in comparison with human age. Biomed Int 2011; 2: 81 - 9.
dc.identifier.citedreferenceGomez- Lopez N, Vadillo- Perez L, Hernandez- Carbajal A, Godines- Enriquez M, Olson DM, Vadillo- Ortega F. Specific inflammatory microenvironments in the zones of the fetal membranes at term delivery. Am J Obstet Gynecol 2011; 205: 235.e15 - 24.
dc.identifier.citedreferenceGomez- Lopez N, Olson DM, Robertson SA. Interleukin- 6 controls uterine Th9 cells and CD8(+) T regulatory cells to accelerate parturition in mice. Immunol Cell Biol 2016; 94: 79 - 89.
dc.identifier.citedreferenceSlutsky R, Romero R, Xu Y et al. Exhausted and senescent t cells at the maternal- fetal interface in preterm and term labor. J Immunol Res 2019; 2019: 3128010.
dc.identifier.citedreferenceKim CJ, Romero R, Kusanovic JP, Yoo W, Dong Z, Topping V, et al. The frequency, clinical significance, and pathological features of chronic chorioamnionitis: a lesion associated with spontaneous preterm birth. Mod Pathol 2010; 23: 1000 - 11.
dc.identifier.citedreferenceLee J, Kim JS, Park JW et al. Chronic chorioamnionitis is the most common placental lesion in late preterm birth. Placenta 2013; 34: 681 - 9.
dc.identifier.citedreferenceKim CJ, Romero R, Chaemsaithong P, Kim JS. Chronic inflammation of the placenta: definition, classification, pathogenesis, and clinical significance. Am J Obstet Gynecol 2015; 213 ( Suppl 4 ): S53 - 69.
dc.identifier.citedreferenceGomez- Lopez N, Romero R, Arenas- Hernandez M et al. In vivo T- cell activation by a monoclonal alphaCD3epsilon antibody induces preterm labor and birth. Am J Reprod Immunol 2016; 76: 386 - 90.
dc.identifier.citedreferenceMosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986; 136: 2348 - 57.
dc.identifier.citedreferenceMosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989; 7: 145 - 73.
dc.identifier.citedreferenceRenauld JC, Goethals A, Houssiau F, Merz H, Van Roost E, Van Snick J. Human P40/IL- 9. Expression in activated CD4+ T cells, genomic organization, and comparison with the mouse gene. J Immunol 1990; 144: 4235 - 41.
dc.identifier.citedreferenceSchmitt E, Germann T, Goedert S et al. IL- 9 production of naive CD4+ T cells depends on IL- 2, is synergistically enhanced by a combination of TGF- beta and IL- 4, and is inhibited by IFN- gamma. J Immunol 1994; 153: 3989 - 96.
dc.identifier.citedreferenceDardalhon V, Awasthi A, Kwon H et al. IL- 4 inhibits TGF- beta- induced Foxp3+ T cells and together with TGF- beta, generates IL- 9+ IL- 10+ Foxp3(- ) effector T cells. Nat Immunol 2008; 9: 1347 - 55.
dc.identifier.citedreferenceVeldhoen M, Uyttenhove C, van Snick J et al. Transforming growth factor- beta - reprograms- the differentiation of T helper 2 cells and promotes an interleukin 9- producing subset. Nat Immunol 2008; 9: 1341 - 6.
dc.identifier.citedreferencePark H, Li Z, Yang XO et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6: 1133 - 41.
dc.identifier.citedreferenceKisielewicz A, Schaier M, Schmitt E et al. A distinct subset of HLA- DR+- regulatory T cells is involved in the induction of preterm labor during pregnancy and in the induction of organ rejection after transplantation. Clin Immunol 2010; 137: 209 - 20.
dc.identifier.citedreferenceXiong H, Zhou C, Qi G. Proportional changes of CD4+CD25+Foxp3+ regulatory T cells in maternal peripheral blood during pregnancy and labor at term and preterm. Clin Invest Med 2010; 33: E422.
dc.identifier.citedreferenceSteinborn A, Schmitt E, Kisielewicz A et al. Pregnancy- associated diseases are characterized by the composition of the systemic regulatory T cell (Treg) pool with distinct subsets of Tregs. Clin Exp Immunol 2012; 167: 84 - 98.
dc.identifier.citedreferenceSchober L, Radnai D, Schmitt E, Mahnke K, Sohn C, Steinborn A. Term and preterm labor: decreased suppressive activity and changes in composition of the regulatory T- cell pool. Immunol Cell Biol 2012; 90: 935 - 44.
dc.identifier.citedreferenceGomez- Lopez N, Laresgoiti- Servitje E. T regulatory cells: regulating both term and preterm labor? Immunol Cell Biol 2012; 90: 919 - 20.
dc.identifier.citedreferenceHaines CJ, Rogers MS, Leung DH. Neonatal outcome and its relationship with maternal age. Aust NZ J Obstet Gynaecol 1991; 31: 209 - 12.
dc.identifier.citedreferenceBahtiyar MO, Funai EF, Rosenberg V et al. Stillbirth at term in women of advanced maternal age in the United States: when could the antenatal testing be initiated? Am J Perinatol 2008; 25: 301 - 4.
dc.identifier.citedreferenceLean SC, Derricott H, Jones RL, Heazell AEP. Advanced maternal age and adverse pregnancy outcomes: A systematic review and meta- analysis. PLOS ONE 2017; 12: e0186287.
dc.identifier.citedreferenceRincon MR, Oppenheimer K, Bonney EA. Selective accumulation of Th2- skewing immature erythroid cells in developing neonatal mouse spleen. Int J Biol Sci 2012; 8: 719 - 30.
dc.identifier.citedreferenceElahi S, Ertelt JM, Kinder JM et al. Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection. Nature 2013; 504: 158 - 62.
dc.identifier.citedreferenceElahi S. New insight into an old concept: role of immature erythroid cells in immune pathogenesis of neonatal infection. Front Immunol 2014; 5: 376.
dc.identifier.citedreferenceNamdar A, Koleva P, Shahbaz S, Strom S, Gerdts V, Elahi S. CD71(+) erythroid suppressor cells impair adaptive immunity against Bordetella pertussis. Sci Rep 2017; 7: 7728.
dc.identifier.citedreferenceDunsmore G, Bozorgmehr N, Delyea C, Koleva P, Namdar A, Elahi S. Erythroid suppressor cells compromise neonatal immune response against bordetella pertussis. J Immunol 2017; 199: 2081 - 95.
dc.identifier.citedreferenceShahbaz S, Bozorgmehr N, Koleva P et al. CD71+VISTA+ erythroid cells promote the development and function of regulatory T cells through TGF- beta. PLOS Biol 2018; 16: e2006649.
dc.identifier.citedreferenceGomez- Lopez N, Romero R, Xu Y et al. Umbilical cord CD71+ erythroid cells are reduced in neonates born to women in spontaneous preterm labor. Am J Reprod Immunol 2016; 76: 280 - 4.
dc.identifier.citedreferenceGomez- Lopez N, Hernandez- Santiago S, Lobb AP, Olson DM, Vadillo- Ortega F. Normal and premature rupture of fetal membranes at term delivery differ in regional chemotactic activity and related chemokine/cytokine production. Reprod Sci 2013; 20: 276 - 84.
dc.identifier.citedreferenceSindram- Trujillo A, Scherjon S, Kanhai H, Roelen D, Claas F. Increased T- cell activation in decidua parietalis compared to decidua basalis in uncomplicated human term pregnancy. Am J Reprod Immunol 2003; 49: 261 - 8.
dc.identifier.citedreferenceSindram- Trujillo AP, Scherjon SA, van Hulst- van Miert PP, Kanhai HH, Roelen DL, Claas FH. Comparison of decidual leukocytes following spontaneous vaginal delivery and elective cesarean section in uncomplicated human term pregnancy. J Reprod Immunol 2004; 62: 125 - 37.
dc.identifier.citedreferenceTilburgs T, Roelen DL, van der Mast BJ et al. Differential distribution of CD4(+)CD25(bright) and CD8(+)CD28(- ) T- cells in decidua and maternal blood during human pregnancy. Placenta 2006; 27 ( Suppl A ): S47 - 53.
dc.identifier.citedreferenceTilburgs T, Scherjon SA, Roelen DL, Claas FH. Decidual CD8+CD28- T cells express CD103 but not perforin. Hum Immunol 2009; 70: 96 - 100.
dc.identifier.citedreferenceTilburgs T, van der Mast BJ, Nagtzaam NM, Roelen DL, Scherjon SA, Claas FH. Expression of NK cell receptors on decidual T cells in human pregnancy. J Reprod Immunol 2009; 80: 22 - 32.
dc.identifier.citedreferenceTilburgs T, Schonkeren D, Eikmans M et al. Human decidual tissue contains differentiated CD8+ effector- memory T cells with unique properties. J Immunol 2010; 185: 4470 - 7.
dc.identifier.citedreferencePowell RM, Lissauer D, Tamblyn J et al. Decidual T cells exhibit a highly differentiated phenotype and demonstrate potential fetal specificity and a strong transcriptional response to IFN. J Immunol 2017; 199: 3406 - 17.
dc.identifier.citedreferencevan der Zwan A, Bi K, Norwitz ER et al. Mixed signature of activation and dysfunction allows human decidual CD8(+) T cells to provide both tolerance and immunity. Proc Natl Acad Sci USA 2018; 115: 385 - 90.
dc.identifier.citedreferenceRobertson SA, Christiaens I, Dorian CL et al. Interleukin- 6 is an essential determinant of on- time parturition in the mouse. Endocrinology 2010; 151: 3996 - 4006.
dc.identifier.citedreferenceSaito S, Tsukaguchi N, Hasegawa T, Michimata T, Tsuda H, Narita N. Distribution of Th1, Th2, and Th0 and the Th1/Th2 cell ratios in human peripheral and endometrial T cells. Am J Reprod Immunol 1999; 42: 240 - 5.
dc.identifier.citedreferenceSaito S. Cytokine network at the feto- maternal interface. J Reprod Immunol 2000; 47: 87 - 103.
dc.identifier.citedreferenceHsieh CS, Macatonia SE, Tripp CS, Wolf SF, O- Garra A, Murphy KM. Development of TH1 CD4+ T cells through IL- 12 produced by Listeria- induced macrophages. Science 1993; 260: 547 - 9.
dc.identifier.citedreferenceAfkarian M, Sedy JR, Yang J et al. T- bet is a STAT1- induced regulator of IL- 12R expression in naive CD4+ T cells. Nat Immunol 2002; 3: 549 - 57.
dc.identifier.citedreferenceTrinchieri G, Pflanz S, Kastelein RA. The IL- 12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 2003; 19: 641 - 4.
dc.identifier.citedreferenceKaplan MH. Th9 cells: differentiation and disease. Immunol Rev 2013; 252: 104 - 15.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.