Show simple item record

Characterization of novel calcium hydroxide- mediated highly porous chitosan- calcium scaffolds for potential application in dentin tissue engineering

dc.contributor.authorSoares, Diana Gabriela
dc.contributor.authorBordini, Ester Alves Ferreira
dc.contributor.authorCassiano, Fernanda Balestrero
dc.contributor.authorBronze‐uhle, Erika Soares
dc.contributor.authorPacheco, Leandro Edgar
dc.contributor.authorZabeo, Giovana
dc.contributor.authorHebling, Josimeri
dc.contributor.authorLisboa‐filho, Paulo Noronha
dc.contributor.authorBottino, Marco Cicero
dc.contributor.authorSouza Costa, Carlos Alberto
dc.date.accessioned2020-07-02T20:32:52Z
dc.date.availableWITHHELD_14_MONTHS
dc.date.available2020-07-02T20:32:52Z
dc.date.issued2020-08
dc.identifier.citationSoares, Diana Gabriela; Bordini, Ester Alves Ferreira; Cassiano, Fernanda Balestrero; Bronze‐uhle, Erika Soares ; Pacheco, Leandro Edgar; Zabeo, Giovana; Hebling, Josimeri; Lisboa‐filho, Paulo Noronha ; Bottino, Marco Cicero; Souza Costa, Carlos Alberto (2020). "Characterization of novel calcium hydroxide- mediated highly porous chitosan- calcium scaffolds for potential application in dentin tissue engineering." Journal of Biomedical Materials Research Part B: Applied Biomaterials 108(6): 2546-2559.
dc.identifier.issn1552-4973
dc.identifier.issn1552-4981
dc.identifier.urihttps://hdl.handle.net/2027.42/155906
dc.description.abstractThe aim of this study was to develop a highly porous calcium- containing chitosan scaffold suitable for dentin regeneration. A calcium hydroxide (Ca[OH]2) suspension was used to modulate the degree of porosity and chemical composition of chitosan scaffolds. The chitosan solution concentration and freezing protocol were adjusted to optimize the porous architecture using the phase- separation technique. Scanning electron microscopy/energy- dispersive spectroscopy demonstrated the fabrication of a highly porous calcium- linked chitosan scaffold (CH- Ca), with a well- organized and interconnected porous network. Scaffolds were cross- linked on glutaraldehyde (GA) vapor. Following a 28- day incubation in water, cross- linked CH scaffold had no changes on humid mass, and CH- Ca featured a controlled degradability profile since the significant humid mass loss was observed only after 21 (26.0%) and 28- days (42.2%). Fourier- transform infrared spectroscopy indicated the establishment of Schiff base on cross- linked scaffolds, along with calcium complexation for CH- Ca. Cross- linked CH- Ca scaffold featured a sustained Ca2+ release up to 21- days in a humid environment. This porous and stable architecture allowed for human dental pulp cells (HDPCs) to spread throughout the scaffold, with cells exhibiting a widely stretched cytoplasm; whereas, the cells seeded onto CH scaffold were organized in clusters. HDPCs seeded onto CH- Ca featured significantly higher ALP activity, and gene expressions for ALP, Col1, DMP- 1, and DSPP in comparison to CH, leading to a significant 3.5 times increase in calcium- rich matrix deposition. In sum, our findings suggest that CH- Ca scaffolds are attractive candidates for creating a highly porous and bioactive substrate for dentin tissue engineering.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othercalcium hydroxide
dc.subject.otherchitosan
dc.subject.otherdental pulp
dc.subject.otherdentin
dc.subject.otherporous scaffolds
dc.titleCharacterization of novel calcium hydroxide- mediated highly porous chitosan- calcium scaffolds for potential application in dentin tissue engineering
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelBiomedical Engineering
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155906/1/jbmb34586.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155906/2/jbmb34586_am.pdf
dc.identifier.doi10.1002/jbm.b.34586
dc.identifier.sourceJournal of Biomedical Materials Research Part B: Applied Biomaterials
dc.identifier.citedreferenceSavija Rashid, F., Shiba, H., Mizuno, N., Mouri, Y., Fujita, T., Shinohara, H., - ¦ Kurihara, H. ( 2003 ). The effect of extracellular calcium ion on gene expression of bone- related proteins in human pulp cells. Journal of Endodontics, 29 ( 2 ), 104 - 107.
dc.identifier.citedreferenceLi, F., Liu, X., Zhao, S., Wu, H., & Xu, H. H. ( 2014 ). Porous chitosan bilayer membrane containing TGF- β1 loaded microspheres for pulp capping and reparative dentin formation in a dog model. Dental Materials, 30 ( 2 ), 172 - 181.
dc.identifier.citedreferenceLi, S., Hu, J., Zhang, G., Qi, W., Zhang, P., Li, P., - ¦ Tan, Y. ( 2015 ). Extracellular Ca 2+ promotes odontoblastic differentiation of dental pulp stem cells via BMP2- mediated Smad1/5/8 and Erk1/2 pathways. Journal of Cellular Physiology, 230 ( 9 ), 2164 - 2173.
dc.identifier.citedreferenceLiu, Y., Wang, S., & Zhang, R. ( 2017 ). Composite poly(lactic acid)/chitosan nanofibrous scaffolds for cardiac tissue engineering. International Journal of Biological Macromolecules, 103, 1130 - 1137.
dc.identifier.citedreferenceMadihally, S. V., & Matthew, H. W. ( 1999 ). Porous chitosan scaffolds for tissue engineering. Biomaterials, 20 ( 12 ), 1133 - 1142.
dc.identifier.citedreferenceMohan, N., Palangadan, R., Fernandez, F. B., & Varma, H. ( 2018 ). Preparation of hydroxyapatite porous scaffold from a ’coral- like’ synthetic inorganic precursor for use as a bone substitute and a drug delivery vehicle. Materials Science and Engineering C: Materials for Biological Applications, 92, 329 - 337.
dc.identifier.citedreferenceMurray, P. E. ( 2012 ). Constructs and scaffolds employed to regenerate dental tissue. Dental Clinics of North America, 56 ( 3 ), 577 - 588.
dc.identifier.citedreferenceNitta, S., Komatsu, A., Ishii, T., Ohnishi, M., Inoue, A., & Iwamoto, H. ( 2017 ). Fabrication and characterization of water- dispersed chitosan nanofiber/poly(ethylene glycol) diacrylate/calcium phosphate- based porous composites. Carbohydrate Polymer, 174, 1034 - 1040.
dc.identifier.citedreferencePark, S. J., Li, Z., Hwang, I. N., Huh, K. M., & Min, K. S. ( 2013 ). Glycol chitin- based thermoresponsive hydrogel scaffold supplemented with enamel matrixderivative promotes odontogenic differentiation of human dental pulp cells. Journal of Endodontics, 39 ( 8 ), 1001 - 1007.
dc.identifier.citedreferencePestov, A., & Bratskaya, S. ( 2016 ). Chitosan and its derivatives as highly efficient polymer ligands. Molecules, 21 ( 3 ), 330.
dc.identifier.citedreferencePlavsic, B., Kobe, S., & Orel, B. ( 1999 ). Identification of crystallization forms of CaCO 3 with FTIR spectroscopy. KZLTET, 33 ( 6 ), 517.
dc.identifier.citedreferenceRuixin, L., Cheng, X., Yingjie, L., Hao, L., Caihong, S., Weihua, S., - ¦ Hui, L. ( 2017 ). Degradation behavior and compatibility of micro, nanoHA/chitosan scaffolds with interconnectedspherical macropores. International Journal of Biological Macromolecules, 103, 385 - 394.
dc.identifier.citedreferenceRuixin, L., Dong, L., Bin, Z., Hao, L., Xue, L., Caihong, S., - ¦ Xizheng, Z. ( 2016 ). A mechanical evaluation of micro- HA/CS composite scaffolds with interconnected spherical macropores. Biomedical Engineering Online, 15, 12.
dc.identifier.citedreferenceSangwan, P., Sangwan, A., Duhan, J., & Rohilla, A. ( 2013 ). Tertiary dentinogenesis with calcium hydroxide: A review of proposed mechanisms. International Endodontic Journal, 46 ( 1 ), 3 - 19.
dc.identifier.citedreferenceSaveleva, M. S., Ivanov, A. N., Kurtukova, M. O., Atkin, V. S., Ivanova, A. G., Lyubun, G. P., - ¦ Parakhonskiy, B. V. ( 2018 ). Hybrid PCL/CaCO 3 scaffolds with capabilities of carrying biologically active molecules: Synthesis, loading and in vivo applications. Materials Science and Engineering C: Materials for Biological Applications, 85, 57 - 67.
dc.identifier.citedreferenceÅ avija, B., LukoviÄ , M. ( 2016 ). Carbonation of cement paste: Understanding, challenges, and opportunities. Construction and Building Materials, 117, 285 - 301.
dc.identifier.citedreferenceSergeeva, A. S., Gorin, D. A., & Volodkin, D. V. ( 2015 ). In- situ assembly of Ca- alginate gels with controlled pore loading/release capability. Langmuir, 31 ( 39 ), 10813 - 10821.
dc.identifier.citedreferenceShahbazarab, Z., Teimouri, A., Chermahini, A. N., & Azadi, M. ( 2018 ). Fabrication and characterization of nanobiocomposite scaffold of zein/chitosan/nanohydroxyapatite prepared by freeze- drying method for bone tissue engineering. International Journal of Biological Macromolecules, 108, 1017 - 1027.
dc.identifier.citedreferenceSoares, D. G., Anovazzi, G., Bordini, E. A. F., Zuta, U. O., Silva Leite, M. L. A., Basso, F. G., - ¦ de Souza Costa, C. A. ( 2018 ). Biological analysis of simvastatin- releasing chitosan scaffold as a cell- free system for pulp- dentin regeneration. Journal of Endodontics, 44 ( 6 ), 971 - 976.e1.
dc.identifier.citedreferenceSoares, D. G., Rosseto, H. L., Scheffel, D. S., Basso, F. G., Huck, C., Hebling, J., & de Souza Costa, C. A. ( 2017 ). Odontogenic differentiation potential of human dental pulp cells cultured on a calcium- aluminate enriched chitosan- collagen scaffold. Clinical Oral Investigation, 21 ( 9 ), 2827 - 2839.
dc.identifier.citedreferenceThein- Han, W., & Xu, H. H. ( 2013 ). Prevascularization of a gas- foaming macroporous calcium phosphate cement scaffold viacoculture of human umbilical vein endothelial cells and osteoblasts. Tissue Engineering Part A, 19 ( 15- 16 ), 1675 - 1685.
dc.identifier.citedreferenceVinoba, M., Bhagiyalakshmi, M., Grace, A. N., Chu, D. H., Nam, S. C., Yoon, Y., - ¦ Jeong, S. K. ( 2013 ). CO 2 absorption and sequestration as various polymorphs of CaCO 3 using sterically hinderedamine. Langmuir, 29 ( 50 ), 15655 - 15663.
dc.identifier.citedreferenceVolda, I. M. N., Varuma, K. M., Guibalb, E., & Smidsrøda, O. ( 2003 ). Binding of ions to chitosan- Selectivity studies. Carbohydrate Polymers, 54, 471 - 477.
dc.identifier.citedreferenceWang, D., Liu, W., Feng, Q., Dong, C., Liu, Q., Duan, L., - ¦ Wang, D. ( 2017 ). Effect of inorganic/organic ratio and chemical coupling on the performance of poroussilica/chitosan hybrid scaffolds. Materials Science and Engineering C: Materials for Biological Applications, 70 ( Pt 2 ), 969 - 975.
dc.identifier.citedreferenceWang, L., Zhang, C., Li, C., Weir, M. D., Wang, P., Reynolds, M. A., - ¦ Xu, H. H. ( 2016 ). Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair. Materials Science and Engineering C: Materials for Biological Applications, 69, 1125 - 1136.
dc.identifier.citedreferenceWang, Y., Qian, J., Zhao, N., Liu, T., Xu, W., & Suo, A. ( 2017 ). Novel hydroxyethyl chitosan/cellulose scaffolds with bubble- like porous structure for bone tissue engineering. Carbohydrate Polymers, 167, 44 - 51.
dc.identifier.citedreferenceWoo, S. M., Hwang, Y. C., Lim, H. S., Choi, N. K., Kim, S. H., Kim, W. J., - ¦ Jung, J. Y. ( 2013 ). Effect of nifedipine on the differentiation of human dental pulp cells cultured with mineral trioxide aggregate. Journal of Endodontics, 39 ( 6 ), 801 - 805.
dc.identifier.citedreferenceYang, X., Han, G., Pang, X., & Fan, M. ( 2012 ). Chitosan/collagen scaffold containing bone morphogenetic protein- 7 DNA supports dental pulp stem cell differentiation in vitro and in vivo. Journal of Biomedical Materials Research Part A. https://doi.org/10.1002/jbm.a.34064
dc.identifier.citedreferenceZhu, B., Li, W., Chi, N., Lewis, R. V., Osamor, J., & Wang, R. ( 2017 ). Optimization of glutaraldehyde vapor treatment for electrospun collagen/silk tissue engineering scaffolds. ACS Omega, 2 ( 6 ), 2439 - 2450.
dc.identifier.citedreferenceZhu, Y., Wan, Y., Zhang, J., Yin, D., & Cheng, W. ( 2014 ). Manufacture of layered collagen/chitosan- polycaprolactone scaffolds with biomimeticmicroarchitecture. Colloids Surface B Biointerfaces, 113, 352 - 360.
dc.identifier.citedreferenceAn, S., Gao, Y., Ling, J., Wei, X., & Xiao, Y. ( 2012 ). Calcium ions promote osteogenic differentiation and mineralization of human dental pulp cells: Implications for pulp capping materials. Journal of Materials Science: Materials in Medicine, 23 ( 3 ), 789 - 795.
dc.identifier.citedreferenceAranaz, I., Martínez- Campos, E., Moreno- Vicente, C., Civantos, A., García- Arguelles, S., & Del Monte, F. ( 2017 ). Macroporous calcium phosphate/chitosan composites prepared via unidirectional ice segregation and subsequent freeze- drying. Materials, 10 ( 5 ), 516. https://doi.org/10.3390/ma10050516
dc.identifier.citedreferenceBarradas, A. M., Fernandes, H. A., Groen, N., Chai, Y. C., Schrooten, J., van de Peppel, J., - ¦ de Boer, J. ( 2012 ). A calcium- induced signaling cascade leading to osteogenic differentiation of human bone marrow- derived mesenchymal stromal cells. Biomaterials, 33 ( 11 ), 3205 - 3215.
dc.identifier.citedreferenceBottino, M. C., Pankajakshan, D., & Nör, J. E. ( 2017 ). Advanced scaffolds for dental pulp and periodontal regeneration. Dental Clinics of North America, 61 ( 4 ), 689 - 711.
dc.identifier.citedreferenceChen, W., Thein- Han, W., Weir, M. D., Chen, Q., & Xu, H. H. ( 2014 ). Prevascularization of biofunctional calcium phosphate cement for dental and craniofacial repairs. Dental Materials, 30 ( 5 ), 535 - 544.
dc.identifier.citedreferenceChen, W., Zhou, H., Tang, M., Weir, M. D., Bao, C., & Xu, H. H. ( 2012 ). Gas- foaming calcium phosphate cement scaffold encapsulating human umbilical cord stem cells. Tissue Engineering Part A, 18 ( 7- 8 ), 816 - 827.
dc.identifier.citedreferenceChen, Z. G., Wang, P. W., Wei, B., Mo, X. M., & Cui, F. Z. ( 2010 ). Electrospun collagen- chitosan nanofiber: A biomimetic extracellular matrix for endothelial cell and smooth muscle cell. Acta Biomaterialia, 6 ( 2 ), 372 - 382.
dc.identifier.citedreferenceda Rosa, W. L. O., Cocco, A. R., Silva, T. M. D., Mesquita, L. C., Galarça, A. D., Silva, A. F. D., & Piva, E. ( 2018 ). Current trends and future perspectives of dental pulp capping materials: A systematic review. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106 ( 3 ), 1358 - 1368.
dc.identifier.citedreferencede Souza Costa, C. A., Hebling, J., Scheffel, D. L., Soares, D. G., Basso, F. G., & Ribeiro, A. P. ( 2014 ). Methods to evaluate and strategies to improve the biocompatibility of dental materials and operative techniques. Dental Materials, 30 ( 7 ), 769 - 784.
dc.identifier.citedreferenceDiaz- Rodriguez, P., Garcia- Triñanes, P., Echezarreta López, M. M., Santoveña, A., & Landin, M. ( 2018 ). Mineralized alginate hydrogels using marine carbonates for bone tissue engineering applications. Carbohydrate Polymers, 195, 235 - 242.
dc.identifier.citedreferenceFarhadian, N., Godiny, M., Moradi, S., Hemati Azandaryani, A., & Shahlaei, M. ( 2018 ). Chitosan/gelatin as a new nano- carrier system for calcium hydroxide delivery in endodonticapplications: Development, characterization and process optimization. Materials Science and Engineering C: Materials for Biological Applications, 92, 540 - 546.
dc.identifier.citedreferenceFlores- Arriaga, J. C., Pozos- Guillén, A. J., González- Ortega, O., Escobar- García, D. M., Masuoka- Ito, D., Del Campo- Téllez, B. I. M., & Cerda- Cristerna, B. I. ( 2018 ). Calcium sustained release, pH changes and cell viability induced by chitosan- based pastes for apexification. Odontology, 107, 223 - 230. https://doi.org/10.1007/s10266-018-0389-7
dc.identifier.citedreferenceGupte, M. J., Swanson, W. B., Hu, J., Jin, X., Ma, H., Zhang, Z., - ¦ Ma, P. X. ( 2018 ). Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization. Acta Biomaterialia, 82, 1 - 11.
dc.identifier.citedreferenceHarris, L. D., Kim, B. S., & Mooney, D. J. ( 1998 ). Open pore biodegradable matrices formed with gas foaming. Journal of Biomedical Materials Research, 42 ( 3 ), 396 - 402.
dc.identifier.citedreferenceHe, Q., Ao, Q., Gong, Y., & Zhang, X. ( 2011 ). Preparation of chitosan films using different neutralizing solutions to improve endothelial cellcompatibility. Journal of Materials Science: Materials in Medicine, 22 ( 12 ), 2791 - 2802.
dc.identifier.citedreferenceHolopainen, J., Santala, E., Heikkilä, M., & Ritala, M. ( 2014 ). Electrospinning of calcium carbonate fibers and their conversion to nanocrystallinehydroxyapatite. Materials Science and Engineering C: Materials for Biological Applications, 45, 469 - 476.
dc.identifier.citedreferenceKanaya, S., Xiao, B., Sakisaka, Y., Suto, M., Maruyama, K., Saito, M., & Nemoto, E. ( 2018 ). Extracellular calcium increases fibroblast growth factor 2 gene expression via extracellular signal- regulated kinase 1/2 and protein kinase A signaling in mouse dental papilla cells. Journal of Applied Oral Science, 26, e20170231.
dc.identifier.citedreferenceKim, C. W., Talac, R., Lu, L., Moore, M. J., Currier, B. L., & Yaszemski, M. J. ( 2008 ). Characterization of porous injectable poly- (propylene fumarate)- based bone graft substitute. Journal of Biomedical Materials Research A, 85 ( 4 ), 1114 - 1119.
dc.identifier.citedreferenceKim, H. L., Jung, G. Y., Yoon, J. H., Han, J. S., Park, Y. J., Kim, D. G., - ¦ Kim, D. J. ( 2015 ). Preparation and characterization of nano- sized hydroxyapatite/alginate/chitosan compositescaffolds for bone tissue engineering. Materials Science and Engineering C: Materials for Biological Applications, 54, 20 - 25.
dc.identifier.citedreferenceKim, M. J., & Kim, D. ( 2018 ). Maximization of CO 2 storage for various solvent types in indirect carbonation using paper sludge ash. Environmental Science and Pollution Research, 25 ( 30 ), 30101 - 30109.
dc.identifier.citedreferenceKlein- Júnior, C. A., Reston, E., Plepis, A. M., Martins, V. C., Pötter, I. C., Lundy, F., - ¦ Karim, I. E. ( 2018 ). Development and evaluation of calcium hydroxide- coated, pericardium- based biomembranes for direct pulp capping. Journal of Investigative and Clinical Dentistry, 10, e12380. https://doi.org/10.1111/jicd.12380
dc.identifier.citedreferenceKulan, P., Karabiyik, O., Kose, G. T., & Kargul, B. ( 2018 ). The effect of accelerated mineral trioxide aggregate on odontoblastic differentiation in dental pulp stem cell niches. International Endodontic Journal, 51 ( 7 ), 758 - 766.
dc.identifier.citedreferenceLei, B., Guo, B., Rambhia, K. J., & Ma, P. X. ( 2018 ). Hybrid polymer biomaterials for bone tissue regeneration. Frontiers in Medicine, 13, 189 - 201. https://doi.org/10.1007/s11684-018-0664-6
dc.identifier.citedreferenceLei, Y., Xu, Z., Ke, Q., Yin, W., Chen, Y., Zhang, C., & Guo, Y. ( 2017 ). Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bonetissue engineering. Materials Science and Engineering C: Materials for Biological Applications, 72, 134 - 142.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.