Show simple item record

Evolution of l- DOPA 4,5- dioxygenase activity allows for recurrent specialisation to betalain pigmentation in Caryophyllales

dc.contributor.authorSheehan, Hester
dc.contributor.authorFeng, Tao
dc.contributor.authorWalker‐hale, Nathanael
dc.contributor.authorLopez‐nieves, Samuel
dc.contributor.authorPucker, Boas
dc.contributor.authorGuo, Rui
dc.contributor.authorYim, Won C.
dc.contributor.authorBadgami, Roshani
dc.contributor.authorTimoneda, Alfonso
dc.contributor.authorZhao, Lijun
dc.contributor.authorTiley, Helene
dc.contributor.authorCopetti, Dario
dc.contributor.authorSanderson, Michael J.
dc.contributor.authorCushman, John C.
dc.contributor.authorMoore, Michael J.
dc.contributor.authorSmith, Stephen A.
dc.contributor.authorBrockington, Samuel F.
dc.date.accessioned2020-07-02T20:32:54Z
dc.date.availableWITHHELD_14_MONTHS
dc.date.available2020-07-02T20:32:54Z
dc.date.issued2020-08
dc.identifier.citationSheehan, Hester; Feng, Tao; Walker‐hale, Nathanael ; Lopez‐nieves, Samuel ; Pucker, Boas; Guo, Rui; Yim, Won C.; Badgami, Roshani; Timoneda, Alfonso; Zhao, Lijun; Tiley, Helene; Copetti, Dario; Sanderson, Michael J.; Cushman, John C.; Moore, Michael J.; Smith, Stephen A.; Brockington, Samuel F. (2020). "Evolution of l- DOPA 4,5- dioxygenase activity allows for recurrent specialisation to betalain pigmentation in Caryophyllales." New Phytologist 227(3): 914-929.
dc.identifier.issn0028-646X
dc.identifier.issn1469-8137
dc.identifier.urihttps://hdl.handle.net/2027.42/155907
dc.publisherWiley Periodicals, Inc.
dc.publisherUniversity of Tubingen
dc.subject.othermetabolic operon
dc.subject.otherplant pigments
dc.subject.otherspecialised metabolism
dc.subject.othergene duplication
dc.subject.otherconvergent evolution
dc.subject.otherl- DOPA 4, 5- dioxygenase (DODA)
dc.subject.otherCaryophyllales
dc.subject.otherbetalains
dc.subject.otheranthocyanins
dc.titleEvolution of l- DOPA 4,5- dioxygenase activity allows for recurrent specialisation to betalain pigmentation in Caryophyllales
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155907/1/nph16089.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155907/2/nph16089-sup-0001-SupInfo.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155907/3/nph16089_am.pdf
dc.identifier.doi10.1111/nph.16089
dc.identifier.sourceNew Phytologist
dc.identifier.citedreferenceRevell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3: 217 - 223.
dc.identifier.citedreferenceKalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587 - 589.
dc.identifier.citedreferenceKeller W. 1936. Inheritance of some major color types in beets. Journal of Agricultural Research 52: 27 - 38.
dc.identifier.citedreferenceKieÅ basa SM, Wan R, Sato K, Horton P, Frith MC. 2011. Adaptive seeds tame genomic sequence comparison. Genome Research 21: 487 - 493.
dc.identifier.citedreferenceLeong BJ, Last RL. 2017. Promiscuity, impersonation and accommodation: evolution of plant specialized metabolism. Current Opinion in Structural Biology 47: 105 - 112.
dc.identifier.citedreferenceLightfoot DJ, Jarvis DE, Ramaraj T, Lee R, Jellen EN, Maughan PJ. 2017. Single- molecule sequencing and Hi- C- based proximity- guided assembly of amaranth ( Amaranthus hypochondriacus ) chromosomes provide insights into genome evolution. BMC Biology 15: 74.
dc.identifier.citedreferenceLopez- Nieves S, Yang Y, Timoneda A, Wang M, Feng T, Smith SA, Brockington SF, Maeda HA. 2018. Relaxation of tyrosine pathway regulation underlies the evolution of betalain pigmentation in Caryophyllales. New Phytologist 217: 896 - 908.
dc.identifier.citedreferenceMarazzi B, Ane C, Simon MF, Delgado- Salinas A, Luckow M, Sanderson MJ. 2012. Locating evolutionary precursors on a phylogenetic tree. Evolution 66: 3918 - 3930.
dc.identifier.citedreferenceMusso H. 1979. The pigments of fly agaric, Amanita muscaria. Tetrahedron 35: 2843 - 2853.
dc.identifier.citedreferenceNguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ- TREE: a fast and effective stochastic algorithm for estimating maximum- likelihood phylogenies. Molecular Biology and Evolution 32: 268 - 274.
dc.identifier.citedreferenceOsbourn A. 2010. Gene clusters for secondary metabolic pathways: an emerging theme in plant biology. Plant Physiology 154: 531 - 535.
dc.identifier.citedreferencePagel M. 1994. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proceedings of the Royal Society B 255: 37 - 45.
dc.identifier.citedreferencePagel M. 1999. The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Systematic Biology 48: 612 - 622.
dc.identifier.citedreferenceParadis E, Schliep K. 2019. Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35: 526 - 528.
dc.identifier.citedreferencePichersky E, Lewinsohn E. 2011. Convergent evolution in plant specialized metabolism. Annual Review of Plant Biology 62: 549 - 566.
dc.identifier.citedreferencePolturak G, Breitel D, Grossman N, Sarrion- Perdigones A, Weithorn E, Pliner M, Orzaez D, Granell A, Rogachev I, Aharoni A. 2016. Elucidation of the first committed step in betalain biosynthesis enables the heterologous engineering of betalain pigments in plants. New Phytologist 210: 269 - 283.
dc.identifier.citedreferencePolturak G, Heinig U, Grossman N, Battat M, Leshkowitz D, Malitsky S, Rogachev I, Aharoni A. 2018. Transcriptome and metabolic profiling provides insights into betalain biosynthesis and evolution in Mirabilis jalapa. Molecular Plant 11: 189 - 204.
dc.identifier.citedreferencePucker B, Feng T, Brockington SF. 2019. Next generation sequencing to investigate genomic diversity in Caryophyllales. bioRxiv. doi: 10.1101/646133.
dc.identifier.citedreferenceR Core Team. 2019. R: a language and environment for statistical computing, v.3.6.1. Vienna, Austria: R Foundation for Statistical Computing. [WWW document] URL http://www.R-project.org/
dc.identifier.citedreferenceReimann A, Nurhayati N, Backenköhler A, Ober D. 2004. Repeated evolution of the pyrrolizidine alkaloid- mediated defense system in separate angiosperm lineages. Plant Cell 16: 2772 - 2784.
dc.identifier.citedreferenceRen M, Chen Q, Li L, Zhang R, Guo S. 2005. Successive chromosome walking by compatible ends ligation inverse PCR. Molecular Biotechnology 30: 95 - 101.
dc.identifier.citedreferenceSanderson MJ. 2002. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution 19: 101 - 109.
dc.identifier.citedreferenceSasaki N, Abe Y, Goda Y, Adachi T, Kasahara K, Ozeki Y. 2009. Detection of DOPA 4,5- dioxygenase (DOD) activity using recombinant protein prepared from Escherichia coli cells harboring cDNA encoding DOD from Mirabilis jalapa. Plant Cell Physiology 50: 1012 - 1016.
dc.identifier.citedreferenceShimada S, Inoue YT, Sakuta M. 2005. Anthocyanidin synthase in non- anthocyanin- producing Caryophyllales species. The Plant Journal 44: 950 - 959.
dc.identifier.citedreferenceShimada S, Takahashi K, Sato Y, Sakuta M. 2004. Dihydroflavonol 4- reductase cDNA from non- anthocyanin- producing species in the Caryophyllales. Plant & Cell Physiology 45: 1290 - 1298.
dc.identifier.citedreferenceSmith SA, O’Meara BC. 2012. TreePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28: 2689 - 2690.
dc.identifier.citedreferenceSmith SA, Walker JF. 2019. PyPHLAWD: a python tool for phylogenetic dataset construction. Methods in Ecology and Evolution 10: 104 - 108.
dc.identifier.citedreferenceStafford HA. 1994. Anthocyanins and betalains: evolution of the mutually exclusive pathways. Plant Science 101: 91 - 98.
dc.identifier.citedreferenceStevens P. 2017. Angiosperm phylogeny website. [WWW document] URL http://www.mobot.org/MOBOT/research/APweb/ [accessed 20 May 2019].
dc.identifier.citedreferenceSunnadeniya R, Bean A, Brown M, Akhavan N, Hatlestad G, Gonzalez A, Symonds VV, Lloyd A. 2016. Tyrosine hydroxylation in betalain pigment biosynthesis is performed by cytochrome P450 enzymes in beets ( Beta vulgaris ). PLoS ONE 11: e0149417.
dc.identifier.citedreferenceThulin M, Larsson A, Edwards EJ, Moore AJ. 2018. Phylogeny and systematics of Kewa (Kewaceae). Systematic Botany 43: 689 - 700.
dc.identifier.citedreferenceThulin M, Moore AJ, El- Seedi H, Larsson A, Christin P, Edwards EJ. 2016. Phylogeny and generic delimitation in Molluginaceae, new pigment data in Caryophyllales, and the new family Corbichoniaceae. Taxon 65: 775 - 793.
dc.identifier.citedreferenceTimoneda A, Feng T, Sheehan H, Walker- Hale N, Pucker B, Lopez- Nieves S, Guo R, Brockington SF. 2019. The evolution of betalain biosynthesis in Caryophyllales. New Phytologist 224: 71 - 85.
dc.identifier.citedreferenceTimoneda A, Sheehan H, Feng T, Lopez- Nieves S, Maeda HA, Brockington SF. 2018. Redirecting primary metabolism to boost production of tyrosine- derived specialised metabolites in planta. Scientific Reports 8: 17256.
dc.identifier.citedreferenceWalker JF, Yang Y, Feng T, Timoneda A, Mikenas J, Hutchinson V, Edwards C, Wang N, Ahluwalia S, Olivieri J et al. 2018. From cacti to carnivores: improved phylotranscriptomic sampling and hierarchical homology inference provides further insight to the evolution of Caryophyllales. American Journal of Botany 105: 446 - 462.
dc.identifier.citedreferenceWang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, Lee T, Jin H, Marler B, Guo H et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40: e49.
dc.identifier.citedreferenceWeng J- K. 2014. The evolutionary paths towards complexity: a metabolic perspective. New Phytologist 201: 1141 - 1149.
dc.identifier.citedreferenceWeng J- K, Noel JP. 2012. The remarkable pliability and promiscuity of specialized metabolism. Cold Spring Harbour Symposia on Quantitative Biology 77: 309 - 320.
dc.identifier.citedreferenceYasui Y, Hirakawa H, Oikawa T, Toyoshima M, Matsuzaki C, Ueno M, Mizuno N, Nagatoshi Y, Imamura T, Miyago M et al. 2016. Draft genome sequence of an inbred line of Chenopodium quinoa, an allotetraploid crop with great environmental adaptability and outstanding nutritional properties. DNA Research 23: 535 - 546.
dc.identifier.citedreferenceYoneyama N, Morimoto H, Ye CX, Ashihara H, Mizuno K, Kato M. 2006. Substrate specificity of N - methyltransferase involved in purine alkaloids synthesis is dependent upon one amino acid residue of the enzyme. Molecular Genetics and Genomics 275: 125 - 135.
dc.identifier.citedreferenceBate- Smith EC. 1962. The phenolic constituents of plants and their taxonomic significance. Botanical Journal of the Linnaean Society 60: 325 - 356.
dc.identifier.citedreferenceBean A, Sunnadeniya R, Akhavan N, Campbell A, Brown M, Lloyd A, Lloyd A. 2018. Gain- of- function mutations in beet DODA2 identify key residues for betalain pigment evolution. New Phytologist 219: 287 - 296.
dc.identifier.citedreferenceBischoff H. 1876. Das Caryophyllinenroth. Inaugural dissertation, University of Tubingen, Tubingen, Germany.
dc.identifier.citedreferenceBollback JP. 2006. SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinformatics 7: 88.
dc.identifier.citedreferenceBrockington SF, Walker RH, Glover BJ, Soltis PS, Soltis DE. 2011. Complex pigment evolution in the Caryophyllales. New Phytologist 190: 854 - 864.
dc.identifier.citedreferenceBrockington SF, Yang Y, Gandia- Herrero F, Covshoff S, Hibberd JM, Sage RF, Wong GKS, Moore MJ, Smith SA. 2015. Lineage- specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales. New Phytologist 207: 1170 - 1180.
dc.identifier.citedreferenceBurroughs AM, Glasner ME, Barry KP, Taylor EA, Aravind L. 2019. Oxidative opening of the aromatic ring: tracing the natural history of a large superfamily of dioxygenase domains and their relatives. Journal of Biological Chemistry 294: 10211 - 10235.
dc.identifier.citedreferenceChristinet L, Burdet FX, Zaiko M, Hinz U, Zrÿd J- P. 2004. Characterization and functional identification of a novel plant 4,5- extradiol dioxygenase involved in betalain pigment biosynthesis in Portulaca grandiflora. Plant Physiology 134: 265 - 274.
dc.identifier.citedreferenceChung H- H, Schwinn KE, Ngo HM, Lewis DH, Massey B, Calcott KE, Crowhurst R, Joyce DC, Gould KS, Davies KM et al. 2015. Characterisation of betalain biosynthesis in Parakeelya flowers identifies the key biosynthetic gene DOD as belonging to an expanded LigB gene family that is conserved in betalain- producing species. Frontiers in Plant Science 6: 1 - 16.
dc.identifier.citedreferenceClement JS, Mabry TJ. 1996. Pigment evolution in the Caryophyllales: a systematic overview. Botanica Acta 109: 360 - 367.
dc.identifier.citedreferenceContreras-Llano LE, Guerrero-Rubio, MA, Lozada-Ramírez JD, García-Carmona F, & Gandía-Herrero F. ( 2019 ). First betalain-producing bacteria break the exclusive presence of the pigments in the plant kingdom. American Society for Microbiology 10: e00345 - 19.
dc.identifier.citedreferenceCopetti D, Búrquez A, Bustamante E, Charboneau JLM, Childs KL, Eguiarte LE, Lee S, Liu TL, McMahon MM, Whiteman NK et al. 2017. Extensive gene tree discordance and hemiplasy shaped the genomes of North American columnar cacti. Proceedings of the National Academy of Sciences, USA 114: 12003 - 12008.
dc.identifier.citedreferenceDeLoache WC, Russ ZN, Narcross L, Gonzales AM, Martin VJJ, Dueber JE. 2015. An enzyme- coupled biosensor enables (S)- reticuline production in yeast from glucose. Nature Chemical Biology 11: 465 - 471.
dc.identifier.citedreferenceDohm JC, Minoche AE, Holtgräwe D, Capella- Gutiérrez S, Zakrzewski F, Tafer H, Rupp O, Sörensen TR, Stracke R, Reinhardt R et al. 2014. The genome of the recently domesticated crop plant sugar beet ( Beta vulgaris ). Nature 505: 546 - 549.
dc.identifier.citedreferenceEngler C, Youles M, Gruetzner R, Ehnert TM, Werner S, Jones JDG, Patron NJ, Marillonnet S. 2014. A Golden Gate modular cloning toolbox for plants. ACS Synthetic Biology 3: 839 - 843.
dc.identifier.citedreferenceGandía- Herrero F, García- Carmona F. 2012. Characterization of recombinant Beta vulgaris 4,5- DOPA- extradiol- dioxygenase active in the biosynthesis of betalains. Planta 236: 91 - 100.
dc.identifier.citedreferenceGoldman IL, Austin D. 2000. Linkage among the R, Y and Bl loci in table beet. Theoretical and Applied Genetics 100: 337 - 343.
dc.identifier.citedreferenceHaak M, Vinke S, Keller W, Droste J, Rückert C, Kalinowski J, Pucker B. 2018. High quality de novo transcriptome assembly of Croton tiglium. Frontiers in Molecular Bioscience 5: 62.
dc.identifier.citedreferenceHatlestad GJ, Akhavan NA, Sunnadeniya RM, Elam L, Cargile S, Hembd A, Gonzalez A, McGrath JM, Lloyd AM. 2014. The beet Y locus encodes an anthocyanin MYB- like protein that activates the betalain red pigment pathway. Nature Genetics 47: 92 - 96.
dc.identifier.citedreferenceHatlestad GJ, Sunnadeniya RM, Akhavan NA, Gonzalez A, Goldman IL, McGrath JM, Lloyd AM. 2012. The beet R locus encodes a new cytochrome P450 required for red betalain production. Nature Genetics 44: 816 - 820.
dc.identifier.citedreferenceHuelsenbeck JP, Nielsen R, Bollback JP. 2003. Stochastic mapping of morphological characters. Systematic Biology 52: 131 - 158.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.