Show simple item record

Impact of maternal overweight and obesity on milk composition and infant growth

dc.contributor.authorEllsworth, Lindsay
dc.contributor.authorPerng, Wei
dc.contributor.authorHarman, Emma
dc.contributor.authorDas, Arun
dc.contributor.authorPennathur, Subramaniam
dc.contributor.authorGregg, Brigid
dc.date.accessioned2020-07-02T20:32:58Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-07-02T20:32:58Z
dc.date.issued2020-07
dc.identifier.citationEllsworth, Lindsay; Perng, Wei; Harman, Emma; Das, Arun; Pennathur, Subramaniam; Gregg, Brigid (2020). "Impact of maternal overweight and obesity on milk composition and infant growth." Maternal & Child Nutrition 16(3): n/a-n/a.
dc.identifier.issn1740-8695
dc.identifier.issn1740-8709
dc.identifier.urihttps://hdl.handle.net/2027.42/155909
dc.description.abstractOverweight and obesity (OW/OB) impact half of the pregnancies in the United States and can have negative consequences for offspring health. Studies are limited on human milk alterations in the context of maternal obesity. Alterations in milk are hypothesized to impact offspring development during the critical period of lactation. We aimed to evaluate the relationships between mothers with OW/OB (body mass index [BMI] ≥25 kg/m2), infant growth, and selected milk nutrients. We recruited mother–infant dyads with pre‐pregnancy OW/OB and normal weight status. The primary study included 52 dyads with infant growth measures through 6 months. Thirty‐two dyads provided milk at 2 weeks, which was analysed for macronutrients, long‐chain fatty acids, and insulin. We used multivariable linear regression to examine the association of maternal weight status with infant growth, maternal weight status with milk components, and milk components with infant growth. Mothers with OW/OB had infants with higher weight‐for‐length (WFL) and BMI Z‐scores at birth. Mothers with OW/OB had higher milk insulin and dihomo‐gamma‐linolenic, adrenic, and palmitic acids and reduced conjugated linoleic and oleic acids. N6 long‐chain polyunsaturated fatty acid (LC‐PUFA)‐driven factor 1 was associated with higher WFL, lower length‐for‐age (LFA), and lower head circumference‐for‐age Z‐scores change from 2 weeks to 2 months in human milk‐fed infants, whereas N6 LC‐PUFA‐driven factor 5 was associated with lower LFA Z‐score change. Human milk composition is associated with maternal pre‐pregnancy weight status and composition may be a contributing factor to early infant growth trajectory.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpolyunsaturated fatty acids
dc.subject.otherbreastfeeding
dc.subject.otherhuman milk
dc.subject.otherinfant growth
dc.subject.othermacronutrients
dc.subject.otherobesity
dc.titleImpact of maternal overweight and obesity on milk composition and infant growth
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPediatrics
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155909/1/mcn12979.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155909/2/mcn12979-sup-0003-Figure_S2.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155909/3/mcn12979_am.pdf
dc.identifier.doi10.1111/mcn.12979
dc.identifier.sourceMaternal & Child Nutrition
dc.identifier.citedreferenceRogero, M. M., & Calder, P. C. ( 2018 ). Obesity, inflammation, toll‐like receptor 4 and fatty acids. Nutrients, 10. https://doi.org/10.3390/nu10040432
dc.identifier.citedreferenceNessel, I., Khashu, M., & Dyall, S. C. ( 2019 ). The effects of storage conditions on long‐chain polyunsaturated fatty acids, lipid mediators, and antioxidants in donor human milk—A review. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 149, 8 – 17. https://doi.org/10.1016/j.plefa.2019.07.009
dc.identifier.citedreferenceWhitmore, T. J., Trengove, N. J., Graham, D. F., & Hartmann, P. E. ( 2012 ). Analysis of insulin in human breast milk in mothers with type 1 and type 2 diabetes mellitus. International Journal of Endocrinology, 2012, 296368. https://doi.org/10.1155/2012/296368
dc.identifier.citedreferencePanagos, P. G., Vishwanathan, R., Penfield‐Cyr, A., Matthan, N. R., Shivappa, N., Wirth, M. D., & Sen, S. ( 2016 ). Breastmilk from obese mothers has pro‐inflammatory properties and decreased neuroprotective factors. Journal of Perinatology, 36 ( 4 ), 284 – 290. https://doi.org/10.1038/jp.2015.199
dc.identifier.citedreferencePerng, W., Gillman, M. W., Fleisch, A. F., Michalek, R. D., Watkins, S. M., Isganaitis, E., & Oken, E. ( 2014 ). Metabolomic profiles and childhood obesity. Obesity (Silver Spring), 22 ( 12 ), 2570 – 2578. https://doi.org/10.1002/oby.20901
dc.identifier.citedreferencePerng, W., Gillman, M. W., Mantzoros, C. S., & Oken, E. ( 2014 ). A prospective study of maternal prenatal weight and offspring cardiometabolic health in midchildhood. Annals of Epidemiology, 24 ( 11 ), 793 – 800.e791. https://doi.org/10.1016/j.annepidem.2014.08.002
dc.identifier.citedreferencePerng, W., Rifas‐Shiman, S. L., McCulloch, S., Chatzi, L., Mantzoros, C., Hivert, M. F., & Oken, E. ( 2017 ). Associations of cord blood metabolites with perinatal characteristics, newborn anthropometry, and cord blood hormones in project viva. Metabolism, 76, 11 – 22. https://doi.org/10.1016/j.metabol.2017.07.001
dc.identifier.citedreferencePetersen, K., Sullivan, V., Fulgoni, V., Eren, F., Cassens, M., Bunczek, M., & Kris‐Etherton, P. ( 2019 ). Plasma linoleic acid is associated with less adiposity and lower risk of metabolic syndrome: An NHANES analysis (P08‐121‐19). Curr Dev Nutr, 3. https://doi.org/10.1093/cdn/nzz044.P08-121-19
dc.identifier.citedreferencePfeuffer, M., & Jaudszus, A. ( 2016 ). Pentadecanoic and heptadecanoic acids: Multifaceted odd‐chain fatty acids12. Advances in Nutrition, 7, 730 – 734.
dc.identifier.citedreferencePoston, L., Harthoorn, L. F., & Van Der Beek, E. M. ( 2011 ). Obesity in pregnancy: Implications for the mother and lifelong health of the child. A consensus statement. Pediatric Research, 69 ( 2 ), 175 – 180. https://doi.org/10.1203/PDR.0b013e3182055ede
dc.identifier.citedreferencePrentice, P., Ong, K. K., Schoemaker, M. H., van Tol, E. A., Vervoort, J., Hughes, I. A., & Dunger, D. B. ( 2016 ). Breast milk nutrient content and infancy growth. Acta Paediatrica, 105 ( 6 ), 641 – 647. https://doi.org/10.1111/apa.13362
dc.identifier.citedreferenceSaben, J. L., Bales, E. S., Jackman, M. R., Orlicky, D., MacLean, P. S., & McManaman, J. L. ( 2014 ). Maternal obesity reduces milk lipid production in lactating mice by inhibiting acetyl‐CoA carboxylase and impairing fatty acid synthesis. PLoS ONE, 9 ( 5 ), e98066. https://doi.org/10.1371/journal.pone.0098066
dc.identifier.citedreferenceSchriger, D. L. ( 2008 ). Annals of emergency medicine. Annals of Emergency Medicine, 52 ( 4 ), 480. https://doi.org/10.1016/j.annemergmed.2008.06.461
dc.identifier.citedreferenceSewell, M. F., Huston‐Presley, L., Super, D. M., & Catalano, P. ( 2006 ). Increased neonatal fat mass, not lean body mass, is associated with maternal obesity. American Journal of Obstetrics and Gynecology, 195 ( 4 ), 1100 – 1103. https://doi.org/10.1016/j.ajog.2006.06.014
dc.identifier.citedreferenceShehadeh, N., Sukhotnik, I., & Shamir, R. ( 2006 ). Gastrointestinal tract as a target organ for orally administered insulin. Journal of Pediatric Gastroenterology and Nutrition, 43 ( 3 ), 276 – 281. https://doi.org/10.1097/01.mpg.0000226377.03247.fb
dc.identifier.citedreferenceSinanoglou, V. J., Cavouras, D., Boutsikou, T., Briana, D. D., Lantzouraki, D. Z., Paliatsiou, S., & Zoumpoulakis, P. ( 2017 ). Factors affecting human colostrum fatty acid profile: A case study. PLoS ONE, 12 ( 4 ), e0175817. https://doi.org/10.1371/journal.pone.0175817
dc.identifier.citedreferenceStarling, A. P., Brinton, J. T., Glueck, D. H., Shapiro, A. L., Harrod, C. S., Lynch, A. M., & Dabelea, D. ( 2015 ). Associations of maternal BMI and gestational weight gain with neonatal adiposity in the Healthy Start study. The American Journal of Clinical Nutrition, 101 ( 2 ), 302 – 309. https://doi.org/10.3945/ajcn.114.094946
dc.identifier.citedreferenceTaveras, E. M., Rifas‐Shiman, S. L., Belfort, M. B., Kleinman, K. P., Oken, E., & Gillman, M. W. ( 2009 ). Weight status in the first 6 months of life and obesity at 3 years of age. Pediatrics, 123 ( 4 ), 1177 – 1183. https://doi.org/10.1542/peds.2008-1149
dc.identifier.citedreferenceVessby, B., Gustafsson, I. B., Tengblad, S., Boberg, M., & Andersson, A. ( 2002 ). Desaturation and elongation of fatty acids and insulin action. Annals of the New York Academy of Sciences, 967, 183 – 195.
dc.identifier.citedreferenceVidakovic, A. J., Gishti, O., Voortman, T., Felix, J. F., Williams, M. A., Hofman, A.,. Gaillard, R. ( 2016 ). Maternal plasma PUFA concentrations during pregnancy and childhood adiposity: The Generation R Study. The American Journal of Clinical Nutrition, 103 ( 4 ), 1017 ‐ 1025. https://doi.org/10.3945/ajcn.115.112847
dc.identifier.citedreferenceVidakovic, A. J., Jaddoe, V. W. V., Gishti, O., Felix, J. F., Williams, M. A., Hofman, A., & Gaillard, R. ( 2015 ). Body mass index, gestational weight gain and fatty acid concentrations during pregnancy: The Generation R Study. European Journal of Epidemiology, 30 ( 11 ), 1175 – 1185. https://doi.org/10.1007/s10654-015-0106-6
dc.identifier.citedreferenceWahlig, J. L., Bales, E. S., Jackman, M. R., Johnson, G. C., McManaman, J. L., & Maclean, P. S. ( 2012 ). Impact of high‐fat diet and obesity on energy balance and fuel utilization during the metabolic challenge of lactation. Obesity (Silver Spring), 20 ( 1 ), 65 – 75. https://doi.org/10.1038/oby.2011.196
dc.identifier.citedreferenceWeng, S. F., Redsell, S. A., Swift, J. A., Yang, M., & Glazebrook, C. P. ( 2012 ). Systematic review and meta‐analyses of risk factors for childhood overweight identifiable during infancy. Archives of Disease in Childhood, 97 ( 12 ), 1019 – 1026. https://doi.org/10.1136/archdischild-2012-302263
dc.identifier.citedreferenceWHO Multicentre Growth Reference Study Group ( 2006 ). WHO Child Growth Standards based on length/height, weight and age. Acta Paediatrica. Supplement, 450, 76 – 85.
dc.identifier.citedreferenceYoung, B. E., Johnson, S. L., & Krebs, N. F. ( 2012 ). Biological determinants linking infant weight gain and child obesity: Current knowledge and future directions. Advances in Nutrition, 3 ( 5 ), 675 – 686. https://doi.org/10.3945/an.112.002238
dc.identifier.citedreferenceYoung, B. E., Patinkin, Z., Palmer, C., de la Houssaye, B., Barbour, L. A., Hernandez, T., & Krebs, N. F. ( 2017 ). Human milk insulin is related to maternal plasma insulin and BMI: But other components of human milk do not differ by BMI. European Journal of Clinical Nutrition, 71 ( 9 ), 1094 – 1100. https://doi.org/10.1038/ejcn.2017.75
dc.identifier.citedreferenceAhuja, S., Boylan, M., Hart, S. L., Román‐Shriver, C., Spallholz, J. E., & Sawyer, B. G. ( 2011 ). Glucose and insulin levels are increased in obese and overweight mothers’ breast‐milk. Food and Nutrition Sciences, 2 ( 3 ), 201 – 206. https://doi.org/10.4236/fns.2011.23027
dc.identifier.citedreferenceAilhaud, G., & Guesnet, P. ( 2004 ). Fatty acid composition of fats is an early determinant of childhood obesity: A short review and an opinion. Obesity Reviews, 5 ( 1 ), 21 – 26. https://doi.org/10.1111/j.1467-789x.2004.00121.x
dc.identifier.citedreferenceAmaral, Y., Marano, D., Oliveira, E., & Moreira, M. E. ( 2019 ). Impact of pre‐pregnancy excessive body weight on the composition of polyunsaturated fatty acids in breast milk: A systematic review. International Journal of Food Sciences and Nutrition, 71, 1 – 7. https://doi.org/10.1080/09637486.2019.1646713
dc.identifier.citedreferenceAmerican College of Obstetricians and Gynecologists ( 2013 ). ACOG committee opinion no. 549: Obesity in pregnancy. Obstetrics and Gynecology, 121 ( 1 ), 213 – 217. https://doi.org/10.1097/01.AOG.0000425667.10377.60
dc.identifier.citedreferenceBadillo‐Suarez, P. A., Rodriguez‐Cruz, M., & Nieves‐Morales, X. ( 2017 ). Impact of metabolic hormones secreted in human breast milk on nutritional programming in childhood obesity. Journal of Mammary Gland Biology and Neoplasia, 22 ( 3 ), 171 – 191. https://doi.org/10.1007/s10911-017-9382-y
dc.identifier.citedreferenceBallard, O., & Morrow, A. L. ( 2013 ). Human milk composition: Nutrients and bioactive factors. Pediatric Clinics of North America, 60 ( 1 ), 49 – 74. https://doi.org/10.1016/j.pcl.2012.10.002
dc.identifier.citedreferenceBligh, E. G., & Dyer, W. J. ( 1959 ). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37 ( 8 ), 911 – 917. https://doi.org/10.1139/o59-099
dc.identifier.citedreferenceCenters for Disease Control and Prevention. About adult BMI|Healthy Weight |. ( 2019, 2019‐03‐01 T04:12:29Z/). Retrieved from https://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html
dc.identifier.citedreferenceChan, D., Goruk, S., Becker, A. B., Subbarao, P., Mandhane, P. J., Turvey, S. E., & Azad, M. B. ( 2018 ). Adiponectin, leptin and insulin in breast milk: Associations with maternal characteristics and infant body composition in the first year of life. International Journal of Obesity, 42 ( 1 ), 36 – 43. https://doi.org/10.1038/ijo.2017.189
dc.identifier.citedreferencede Vries, P. S., Gielen, M., Rizopoulos, D., Rump, P., Godschalk, R., Hornstra, G., & Zeegers, M. P. ( 2014 ). Association between polyunsaturated fatty acid concentrations in maternal plasma phospholipids during pregnancy and offspring adiposity at age 7: The MEFAB cohort. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 91 ( 3 ), 81 – 85. https://doi.org/10.1016/j.plefa.2014.04.002
dc.identifier.citedreferenceEllsworth, L., Harman, E., Padmanabhan, V., & Gregg, B. ( 2018 ). Lactational programming of glucose homeostasis: A window of opportunity. Reproduction, 156 ( 2 ), R23 – r42. https://doi.org/10.1530/rep-17-0780
dc.identifier.citedreferenceEriksen, K. G., Christensen, S. H., Lind, M. V., & Michaelsen, K. F. ( 2018 ). Human milk composition and infant growth. Current Opinion in Clinical Nutrition and Metabolic Care, 21 ( 3 ), 200 – 206. https://doi.org/10.1097/mco.0000000000000466
dc.identifier.citedreferenceFields, D. A., & Demerath, E. W. ( 2012 ). Relationship of insulin, glucose, leptin, IL‐6 and TNF‐alpha in human breast milk with infant growth and body composition. Pediatric Obesity, 7 ( 4 ), 304 – 312. https://doi.org/10.1111/j.2047-6310.2012.00059.x
dc.identifier.citedreferenceFields, D. A., George, B., Williams, M., Whitaker, K., Allison, D. B., Teague, A., & Demerath, E. W. ( 2017 ). Associations between human breast milk hormones and adipocytokines and infant growth and body composition in the first 6 months of life. Pediatric Obesity, 12 ( Suppl 1 ), 78 – 85. https://doi.org/10.1111/ijpo.12182
dc.identifier.citedreferenceFuke, G., & Nornberg, J. L. ( 2017 ). Systematic evaluation on the effectiveness of conjugated linoleic acid in human health. Critical Reviews in Food Science and Nutrition, 57 ( 1 ), 1 – 7. https://doi.org/10.1080/10408398.2012.716800
dc.identifier.citedreferenceGeorge, A. D., Gay, M. C. L., Trengove, R. D., & Geddes, D. T. ( 2018 ). Human milk lipidomics: Current techniques and methodologies. Nutrients, 10. https://doi.org/10.3390/nu10091169
dc.identifier.citedreferenceGorski, J. N., Dunn‐Meynell, A. A., Hartman, T. G., & Levin, B. E. ( 2006 ). Postnatal environment overrides genetic and prenatal factors influencing offspring obesity and insulin resistance. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 291 ( 3 ), R768 – R778. https://doi.org/10.1152/ajpregu.00138.2006
dc.identifier.citedreferenceGunes, O., Tascilar, E., Sertoglu, E., Tas, A., Serdar, M. A., Kaya, G., & Ozcan, O. ( 2014 ). Associations between erythrocyte membrane fatty acid compositions and insulin resistance in obese adolescents. Chemistry and Physics of Lipids, 184, 69 – 75. https://doi.org/10.1016/j.chemphyslip.2014.09.006
dc.identifier.citedreferenceHadley, K. B., Ryan, A. S., Forsyth, S., Gautier, S., & Salem, N. ( 2016 ). The essentiality of arachidonic acid in infant development. Nutrients, 8. https://doi.org/10.3390/nu8040216
dc.identifier.citedreferenceHernan, M. A., Hernandez‐Diaz, S., Werler, M. M., & Mitchell, A. A. ( 2002 ). Causal knowledge as a prerequisite for confounding evaluation: An application to birth defects epidemiology. American Journal of Epidemiology, 155 ( 2 ), 176 – 184. https://doi.org/10.1093/aje/155.2.176
dc.identifier.citedreferenceJenkins, B., West, J. A., & Koulman, A. ( 2015 ). A review of odd‐chain fatty acid metabolism and the role of pentadecanoic acid (c15:0) and heptadecanoic acid (c17:0) in health and disease. Molecules, 20 ( 2 ), 2425 – 2444. https://doi.org/10.3390/molecules20022425
dc.identifier.citedreferenceKarlsson, M., Marild, S., Brandberg, J., Lonn, L., Friberg, P., & Strandvik, B. ( 2006 ). Serum phospholipid fatty acids, adipose tissue, and metabolic markers in obese adolescents. Obesity (Silver Spring), 14 ( 11 ), 1931 – 1939. https://doi.org/10.1038/oby.2006.225
dc.identifier.citedreferenceKaska, L., Mika, A., Stepnowski, P., Proczko, M., Ratnicki‐Sklucki, K., Sledzinski, T., & Swierczynski, J. ( 2020 ). The relationship between specific fatty acids of serum lipids and serum high sensitivity C‐reactive protein levels in morbidly obese women. Cellular Physiology and Biochemistry, 34 ( 4 ), 1101 – 1108. https://doi.org/10.1159/000366324
dc.identifier.citedreferenceKien, C. L., Bunn, J. Y., & Ugrasbul, F. ( 2005 ). Increasing dietary palmitic acid decreases fat oxidation and daily energy expenditure. The American Journal of Clinical Nutrition, 82 ( 2 ), 320 – 326. https://doi.org/10.1093/ajcn.82.2.320
dc.identifier.citedreferenceLeddy, M. A., Power, M. L., & Schulkin, J. ( 2008 ). The impact of maternal obesity on maternal and fetal health. Reviews in Obstetrics and Gynecology, 1 ( 4 ), 170 – 178.
dc.identifier.citedreferenceLey, S. H., Hanley, A. J., Sermer, M., Zinman, B., & O’Connor, D. L. ( 2012 ). Associations of prenatal metabolic abnormalities with insulin and adiponectin concentrations in human milk. The American Journal of Clinical Nutrition, 95 ( 4 ), 867 – 874. https://doi.org/10.3945/ajcn.111.028431
dc.identifier.citedreferenceLiu, X., Kris‐Etherton, P. M., West, S. G., Lamarche, B., Jenkins, D. J., Fleming, J. A., & Jones, P. J. ( 2016 ). Effects of canola and high‐oleic‐acid canola oils on abdominal fat mass in individuals with central obesity. Obesity (Silver Spring), 24 ( 11 ), 2261 – 2268. https://doi.org/10.1002/oby.21584
dc.identifier.citedreferenceMakela, J., Linderborg, K., Niinikoski, H., Yang, B., & Lagstrom, H. ( 2013 ). Breast milk fatty acid composition differs between overweight and normal weight women: The STEPS Study. European Journal of Nutrition, 52 ( 2 ), 727 – 735. https://doi.org/10.1007/s00394-012-0378-5
dc.identifier.citedreferenceMarin, M. C., Sanjurjo, A., Rodrigo, M. A., & de Alaniz, M. J. ( 2005 ). Long‐chain polyunsaturated fatty acids in breast milk in La Plata, Argentina: Relationship with maternal nutritional status. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 73 ( 5 ), 355 – 360. https://doi.org/10.1016/j.plefa.2005.07.005
dc.identifier.citedreferenceMonteiro, P. O., & Victora, C. G. ( 2005 ). Rapid growth in infancy and childhood and obesity in later life—A systematic review. Obesity Reviews, 6 ( 2 ), 143 – 154. https://doi.org/10.1111/j.1467-789X.2005.00183.x
dc.identifier.citedreferenceMorrison, W. R., & Smith, L. M. ( 1964 ). Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride–methanol. Journal of Lipid Research, 5, 600 – 608.
dc.identifier.citedreferenceMuch, D., Brunner, S., Vollhardt, C., Schmid, D., Sedlmeier, E. M., Brüderl, M., & Hauner, H. ( 2013 ). Breast milk fatty acid profile in relation to infant growth and body composition: Results from the INFAT study. Pediatric Research, 74 ( 2 ), 230 – 237. https://doi.org/10.1038/pr.2013.82
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.