Show simple item record

Advancing ecohydrology in the 21st century: A convergence of opportunities

dc.contributor.authorGuswa, Andrew J.
dc.contributor.authorTetzlaff, Doerthe
dc.contributor.authorSelker, John S.
dc.contributor.authorCarlyle‐moses, Darryl E.
dc.contributor.authorBoyer, Elizabeth W.
dc.contributor.authorBruen, Michael
dc.contributor.authorCayuela, Carles
dc.contributor.authorCreed, Irena F.
dc.contributor.authorGiesen, Nick
dc.contributor.authorGrasso, Domenico
dc.contributor.authorHannah, David M.
dc.contributor.authorHudson, Janice E.
dc.contributor.authorHudson, Sean A.
dc.contributor.authorIida, Shin’ichi
dc.contributor.authorJackson, Robert B.
dc.contributor.authorKatul, Gabriel G.
dc.contributor.authorKumagai, Tomo’omi
dc.contributor.authorLlorens, Pilar
dc.contributor.authorLopes Ribeiro, Flavio
dc.contributor.authorMichalzik, Beate
dc.contributor.authorNanko, Kazuki
dc.contributor.authorOster, Christopher
dc.contributor.authorPataki, Diane E.
dc.contributor.authorPeters, Catherine A.
dc.contributor.authorRinaldo, Andrea
dc.contributor.authorSanchez Carretero, Daniel
dc.contributor.authorTrifunovic, Branimir
dc.contributor.authorZalewski, Maciej
dc.contributor.authorHaagsma, Marja
dc.contributor.authorLevia, Delphis F.
dc.date.accessioned2020-07-02T20:33:01Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-07-02T20:33:01Z
dc.date.issued2020-06
dc.identifier.citationGuswa, Andrew J.; Tetzlaff, Doerthe; Selker, John S.; Carlyle‐moses, Darryl E. ; Boyer, Elizabeth W.; Bruen, Michael; Cayuela, Carles; Creed, Irena F.; Giesen, Nick; Grasso, Domenico; Hannah, David M.; Hudson, Janice E.; Hudson, Sean A.; Iida, Shin’ichi; Jackson, Robert B.; Katul, Gabriel G.; Kumagai, Tomo’omi; Llorens, Pilar; Lopes Ribeiro, Flavio; Michalzik, Beate; Nanko, Kazuki; Oster, Christopher; Pataki, Diane E.; Peters, Catherine A.; Rinaldo, Andrea; Sanchez Carretero, Daniel; Trifunovic, Branimir; Zalewski, Maciej; Haagsma, Marja; Levia, Delphis F. (2020). "Advancing ecohydrology in the 21st century: A convergence of opportunities." Ecohydrology 13(4): n/a-n/a.
dc.identifier.issn1936-0584
dc.identifier.issn1936-0592
dc.identifier.urihttps://hdl.handle.net/2027.42/155913
dc.description.abstractNature- based solutions for water- resource challenges require advances in the science of ecohydrology. Current understanding is limited by a shortage of observations and theories that can further our capability to synthesize complex processes across scales ranging from submillimetres to tens of kilometres. Recent developments in environmental sensing, data, and modelling have the potential to drive rapid improvements in ecohydrological understanding. After briefly reviewing advances in sensor technologies, this paper highlights how improved measurements and modelling can be applied to enhance understanding of the following ecohydrological examples: interception and canopy processes, root uptake and critical zone processes, and up- scaled effects of land use on streamflow. Novel and improved sensors will enable new questions and experiments, while machine learning and empirical methods provide additional opportunities to advance science. The synergy resulting from the convergence of these parallel developments will provide new insight into ecohydrological processes and thereby help identify nature- based solutions to address water- resource challenges in the 21st century.
dc.publisherGermany, Springer- Verlag
dc.publisherWiley Periodicals, Inc.
dc.subject.othercritical zone processes
dc.subject.otherland use
dc.subject.otherstreamflow
dc.subject.otherenvironmental sensing
dc.subject.othermeasurement
dc.subject.othermachine learning
dc.subject.othermodelling
dc.subject.otherinterception
dc.titleAdvancing ecohydrology in the 21st century: A convergence of opportunities
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155913/1/eco2208.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155913/2/eco2208_am.pdf
dc.identifier.doi10.1002/eco.2208
dc.identifier.sourceEcohydrology
dc.identifier.citedreferenceRamamurthy, P., & Bou- Zeid, E. ( 2014 ). Contribution of impervious surfaces to urban evaporation. Water Resources Research, 50 ( 4 ), 2889 - 2902. https://doi.org/10.1002/2013WR013909
dc.identifier.citedreferenceNobre, A. D. ( 2014 ). The future climate of Amazonia, scientific assessment report (Sponsored by CCST- INPE, INPA and ARA, São José dos Campos, Brazil). https://www.ccst.inpe.br/wp-content/.../11/The_Future_Climate_of_Amazonia_Report.pdf
dc.identifier.citedreferenceOlden, J. D., Kennard, M. J., & Pusey, B. J. ( 2012 ). A framework for hydrologic classification with a review of methodologies and applications in ecohydrology. Ecohydrology, 5 ( 4 ), 503 - 518. https://doi.org/10.1002/eco.251
dc.identifier.citedreferenceOpperman, J. J. ( 2014 ). A flood of benefits: Using green infrastructure to reduce flood risks. Arlington, VA: The Nature Conservancy.
dc.identifier.citedreferenceOuyang, Z., Zheng, H., Xiao, Y., Polasky, S., Liu, J., Xu, W., - ¦ Daily, G. C. ( 2016 ). Improvements in ecosystem services from investments in natural capital. Science, 352 ( 6292 ), 1455 - 1459. https://doi.org/10.1126/science.aaf2295
dc.identifier.citedreferencePaschalis, A., Fatichi, S., Katul, G. G., & Ivanov, V. Y. ( 2015 ). Cross- scale impact of climate temporal variability on ecosystem water and carbon fluxes. Journal of Geophysical Research: Biogeosciences, 120 ( 9 ), 1716 - 1740. https://doi.org/10.1002/2015JG003002
dc.identifier.citedreferencePascual, U., Balvanera, P., Diaz, S., Pataki, G., Roth, E., Stenseke, M., - ¦ Yagi, N. ( 2017 ). Valuing nature’s contributions to people: the IPBES approach. Current Opinion in Environmental Sustainability, 26- 27, 7 - 16. https://doi.org/10.1016/j.cosust.2016.12.006
dc.identifier.citedreferencePenna, D., Hopp, L., Scandellari, F., Allen, S. T., Benettin, P., Beyer, M., - ¦ Kirchner, J. W. ( 2018 ). Ideas and perspectives: Tracing terrestrial ecosystem water fluxes using hydrogen and oxygen stable isotopes- challenges and opportunities from an interdisciplinary perspective. Biogeosciences, 15, 6399 - 6415. https://doi.org/10.5194/bg-15-6399-2018
dc.identifier.citedreferencePiayda, A., Dubbert, M., Siegwolf, R., Cuntz, M., & Werner, C. ( 2017 ). Quantification of dynamic soil- vegetation feedbacks following an isotopically labelled precipitation pulse. Biogeosciences, 14, 2293 - 2306. https://doi.org/10.5194/bg-14-2293-2017
dc.identifier.citedreferencePringle, C. ( 2003 ). What is hydrologic connectivity and why is it ecologically important? Hydrological Processes, 17, 2685 - 2689. https://doi.org/10.1002/hyp.5145
dc.identifier.citedreferenceRamamurthy, P., & Bou- Zeid, E. ( 2017 ). Heatwaves and urban heat islands: A comparative analysis of multiple cities using a high- resolution numerical model. Journal of Geophysical Research: Atmospheres, 122 ( 1 ), 168 - 178. https://doi.org/10.1002/2016JD025357
dc.identifier.citedreferenceRichter, D. D., Billings, S. A., Groffman, P. M., Kelly, E. F., Lohse, K. A., McDowell, W. H., - ¦ Zhang, G. ( 2018 ). Ideas and perspectives: strengthening the biogeosciences in environmental research networks. Biogeosciences, 15, 4815 - 4832. https://doi.org/10.5194/bg-15-4815-2018
dc.identifier.citedreferenceRinaldo, A., Gatto, M., & Rodriguez- Iturbe, I. ( 2018 ). River networks as ecological corridors: A coherent ecohydrological perspective. Advances in Water Resources, 112, 27 - 58. https://doi.org/10.1016/j.advwatres.2017.10.005
dc.identifier.citedreferenceRugel, E. L., Carpiano, R. M., Henderson, S. B., & Brauer, M. ( 2019 ). Exposure to natural space, sense of community belonging, and adverse mental health outcomes across an urban region. Environmental Research, 171, 365 - 377. https://doi.org/10.1016/j.envres.2019.01.034
dc.identifier.citedreferenceRutter, A. J. ( 1967 ). An analysis of evaporation from a stand of Scots pine. In W. E. Sopper, & H. W. Hull (Eds.), International symposium on forest hydrology (813 pp.). Oxford: Pergamon Press.
dc.identifier.citedreferenceSalzman, J., Bennett, G., Carroll, N., Goldstein, A., & Jenkins, M. ( 2018 ). The global status and trends of Payments for Ecosystem Services. Nature Sustainability, 1, 136 - 144. https://doi.org/10.1038/s41893-018-0033-0
dc.identifier.citedreferenceSavenije, H. H. ( 2004 ). The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrological Processes, 18, 1507 - 1511. https://doi.org/10.1002/hyp.5563
dc.identifier.citedreferenceSchumacher, J., & Christiansen, J. R. ( 2020 ). LiDAR applications to forest- water interactions. In D. F. Levia, D. E. Carlyle- Moses, S. Iida, B. Michalzik, K. Nanko, & A. Tischer (Eds.), Forest- water interactions. Ecological Studies, 240. (pp. 87 - 112 ). Cham, Switzerland: Springer Nature. https://doi.org/10.1007/978-3-030-26086-6_4
dc.identifier.citedreferenceSelker, J. S., Selker, F., Llamas, R., Kruger, A., Niemeier, J., Abou Najm, M. R., - ¦ McCulloh, K. ( 2020 ). Lessons in new measurement technologies: From instrumenting trees to the Trans- African Hydrometeorological Observatory. In D. F. Levia, D. E. Carlyle- Moses, S. Iida, B. Michalzik, K. Nanko, & A. Tischer (Eds.), Forest- water interactions. Ecological Studies, 240. (pp. 131 - 144 ). Cham, Switzerland: Springer Nature. https://doi.org/10.1007/978-3-030-26086-6_6
dc.identifier.citedreferenceSelker, J. S., Thévenaz, L., Huwald, H., Mallet, A., Luxemburg, W., van de Giesen, N., - ¦ Parlange, M. B. ( 2006 ). Distributed fiber optic temperature sensing for hydrologic systems. Water Resources Research, 42 ( 12 ), W12202. https://doi.org/10.1029/2006WR005326
dc.identifier.citedreferenceSelker, J. S., Tyler, S. W., Higgins, C., & Wing, M. ( 2015 ). Drone squadron to take earth monitoring to new heights. Eos, 96 ( 19 ), 8 - 11. https://doi.org/10.1029/2015EO035405
dc.identifier.citedreferenceShortridge, J. E., Guikema, S. D., & Zaitchik, B. F. ( 2016 ). Machine learning methods for empirical streamflow simulation: A comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds. Hydrology and Earth System Sciences, 20, 2611 - 2628. https://doi.org/10.5194/hess-20-2611-2016
dc.identifier.citedreferenceShuttleworth, W. J., & Calder, I. R. ( 1979 ). Has the Priestly- Taylor equation any relevance to forest evaporation? Journal of Applied Meteorology, 18, 639 - 646. https://doi.org/10.1175/1520-0450(1979)018<0639:HTPTEA>2.0.CO;2
dc.identifier.citedreferenceSimeone, C., Maneta, M. P., Holden, Z. A., Sapes, G., Sala, A., & Dobrowski, S. Z. ( 2019 ). Coupled ecohydrology and plant hydraulics modeling predicts ponderosa pine seedling mortality and lower treeline in the US Northern Rocky Mountains. New Phytologist, 221, 1814 - 1830. https://doi.org/10.1111/nph.15499
dc.identifier.citedreferenceSmakhtin, V. U. ( 2001 ). Estimating continuous monthly baseflow time series and their possible applications in the context of the ecological reserve. Water SA, 27, 213 - 217. https://doi.org/10.4314/wsa.v27i2.4995
dc.identifier.citedreferenceSmettem, K. R. J. ( 2008 ). Welcome address for the new - Ecohydrology’ journal. Ecohydrology, 1, 1 - 2. https://doi.org/10.1002/eco.2
dc.identifier.citedreferenceSmith, A., Tetzlaff, D., Gelbrecht, J., Kleine, L., & Soulsby, C. ( 2020 ). Riparian wetland rehabilitation and beaver re- colonisation impacts on discharge and water quality in a lowland agricultural catchment. Science of the Total Environment, 699, 134302. https://doi.org/10.1016/j.scitotenv.2019.134302
dc.identifier.citedreferenceSmith, A., Tetzlaff, D., Laudon, H., Maneta, M., & Soulsby, C. ( 2019 ). Assessing the influence of soil free- thaw cycles on catchment water storage- flux- age interactions using a tracer- aided ecohydrological model. Hydrology and Earth System Sciences (HESS), 23, 3319 - 3334. https://doi.org/10.5194/hess-2019-84
dc.identifier.citedreferenceSommer, T., Harrell, B., Nobriga, M., Brown, R., Moyle, P., Kimmerer, W., & Schemel, L. ( 2001 ). California’s Yolo Bypass: Evidence that flood control can be compatible with fisheries, wetlands, wildlife, and agriculture. Fisheries Magazine, 26 ( 8 ), 6 - 16. https://doi.org/10.1577/1548-8446(2001)026<0006:CYB>2.0.CO;2
dc.identifier.citedreferenceSprenger, M., Tetzlaff, D., Buttle, J., Laudon, H., Leistert, H., Mitchell, C., - ¦ Soulsby, C. ( 2018 ). Measuring and modelling stable isotopes of mobile and bulk soil water. Vadose Zone Journal, 17 ( 1 ), 170149. https://doi.org/10.2136/vzj2017.08.0149
dc.identifier.citedreferenceStewart, J. B. ( 1977 ). Evaporation from the wet canopy of a pine forest. Water Resources Research, 13, 915 - 921. https://doi.org/10.1029/WR013i006p00915
dc.identifier.citedreferenceStewart, R., Abou- Najm, M. R., Rupp, D. E., & Selker, J. S. ( 2012 ). Measurement tool for dynamics of soil cracks. Vadose Zone Journal, 11, vzj2011.0048. https://doi.org/10.2136/vzj2011.0048
dc.identifier.citedreferenceSu, L., Zhao, C., Xu, W., & Xie, Z. ( 2016 ). Modelling interception loss using the revised gash model: A case study in a mixed evergreen and deciduous broadleaved forest in China. Ecohydrology, 9, 1580 - 1589. https://doi.org/10.1002/eco.1749
dc.identifier.citedreferenceTague, C. L., & Band, L. E. ( 2004 ). RHESSys: Regional Hydro- Ecologic Simulation System- An object- oriented approach to spatially distributed modeling of carbon, water, and nutrient cycling. Earth Interactions, 8 ( 9 ), 1 - 42. https://doi.org/10.1175/1087-3562(2004)8<1:RRHSSO>2.0.CO;2
dc.identifier.citedreferenceTanaka, N., Levia, D., Igarashi, Y., Yoshifuji, N., Tanaka, K., Tantasirin, C., - ¦ Kumagai, T. ( 2017 ). What factors are most influential in governing stemflow production from plantation- grown teak trees? Journal of Hydrology, 544, 10 - 20. https://doi.org/10.1016/j.jhydrol.2016.11.010
dc.identifier.citedreferenceTanaka, N., Levia, D. F., Igarashi, Y., Nanko, K., Yoshifuji, N., Tanaka, K., - ¦ Kumagai, T. ( 2015 ). Throughfall under a teak plantation in Thailand: A multifactorial analysis on the effects of canopy phenology and meteorological conditions. International Journal of Biometeorology, 59 ( 9 ), 1145 - 1156. http://doi.org/10.1007/s00484-014-0926-1
dc.identifier.citedreferenceTauro, F., Selker, J. S., van de Giesen, N., Abrate, T., Uijlenhoet, R., Porfiri, M., - ¦ Grimaldi, S. ( 2018 ). Measurements and Observations in the XXI century (MOXXI): innovation and multi- disciplinarity to sense the hydrological cycle. Hydrological Sciences Journal, 63 ( 2 ), 169 - 196. https://doi.org/10.1080/02626667.2017.1420191
dc.identifier.citedreferenceTetzlaff, D., Buttle, J., Carey, S. K., McGuire, K., Laudon, H., & Soulsby, C. ( 2015 ). Tracer- based assessment of flow paths, storage and runoff generation in northern catchments: a review. Hydrological Processes, 29 ( 16 ), 3475 - 3490. https://doi.org/10.1002/hyp.10412
dc.identifier.citedreferenceToth, C., & Jóźków, G. ( 2016 ). Remote sensing platforms and sensors: A survey. Journal of Photogrammetry and Remote Sensing, 115, 22 - 36. https://doi.org/10.1016/j.isprsjprs.2015.10.004
dc.identifier.citedreferenceTurner, B., Hill, D. J., Carlyle- Moses, D. E., & Rahman, M. ( 2019 ). Low- cost, high- resolution stemflow sensing. Journal of Hydrology, 570, 62 - 68. https://doi.org/10.1016/j.jhydrol.2018.12.072
dc.identifier.citedreferenceTurner, B., Hill, D. J., & Caton, K. ( 2020 ). Cracking - open- technology in ecohydrology. In D. F. Levia, D. E. Carlyle- Moses, S. Iida, B. Michalzik, K. Nanko, & A. Tischer (Eds.), Forest- water interactions. Ecological Studies, 240. (pp. 3 - 28 ). Cham, Switzerland: Springer Nature. https://doi.org/10.1007/978-3-030-26086-6_1
dc.identifier.citedreferenceUnited States Environmental Protection Agency, 2009. Valuing the protection of ecological systems and services, EPA- SAB- 09- 012, 121 pages.
dc.identifier.citedreferenceValente, F., Gash, J. H., Nóbrega, C., David, J. S., & Pereira, F. L. ( 2020 ). Modelling rainfall interception by an olive- grove/pasture system with a sparse tree canopy. Journal of Hydrology, 581, 124417. https://doi.org/10.1016/j.hydrol.2019.124417
dc.identifier.citedreferencevan der Ent, R. J., Savenije, H. H. G., Schaefli, B., & Steele- Dunne, S. C. ( 2010 ). Origin and fate of atmospheric moisture over continents. Water Resources Research, 46 ( 9 ), W09525. https://doi.org/10.1029/2010WR009127
dc.identifier.citedreferencevan Dijk, A. I. J. M., Gash, J. H., van Gorsel, E., Blanken, P. D., Cescatti, A., Emmel, C., - ¦ Wohlfahrt, G. ( 2015 ). Rainfall interception and the coupled surface water and energy balance. Agricultural and Forest Meteorology, 214- 215, 402 - 415. https://doi.org/10.1016/j.agrformet.2015.09.006
dc.identifier.citedreferencevan Emmerik, T., Steele- Dunne, S., Hut, R., Gentine, P., Guerin, M., Oliveira, R. S., - ¦ van de Giesen, N. ( 2017 ). Measuring tree properties and responses using low- cost accelerometers. Sensors, 17 ( 5 ), 1098. https://doi.org/10.3390/s17051098
dc.identifier.citedreferenceVaughan, M. C. H., Bowden, W. B., Shanley, J. B., Vermilyea, A., Sleeper, R., Gold, A. J., - ¦ Schroth, A. W. ( 2017 ). High- frequency dissolved organic carbon and nitrate measurements reveal differences in storm hysteresis and loading in relation to land cover and seasonality. Water Resources Research, 53 ( 7 ), 5345 - 5363. https://doi.org/10.1002/2017WR020491
dc.identifier.citedreferenceVolkmann, T. H., Kühnhammer, K., Herbstritt, B., Gessler, A., & Weiler, M. ( 2016 ). A method for in situ monitoring of the isotope composition of tree xylem water using laser spectroscopy. Plant, Cell & Environment, 39 ( 9 ), 2055 - 2063. https://doi.org/10.1111/pce.12725
dc.identifier.citedreferenceVymazal, J. ( 2010 ). Constructed wetlands for wastewater treatment: Five decades of experience. Environmental Science and Technology, 45, 61 - 69. https://doi.org/10.1021/es101403q
dc.identifier.citedreferenceWang, X., & Wolfbeis, O. S. ( 2014 ). Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chemical Society Reviews, 43, 3666 - 3761. https://doi.org/10.1039/C4CS00039K
dc.identifier.citedreferenceZalewski, M. ( 2000 ). Ecohydrology- the scientific background to use ecosystem properties as management tools toward sustainability of water resources. Ecological Engineering, 16, 1 - 8. https://doi.org/10.1016/S0925-8574(00)00071-9
dc.identifier.citedreferenceZalewski, M. ( 2014 ). Ecohydrology and hydrologic engineering: Regulation of hydrology- biota interactions for sustainability. Journal of Hydrologic Engineering, 20 ( 1 ), A4014012. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000999
dc.identifier.citedreferenceZölch, T., Maderspacher, J., Wamsler, C., & Pauleit, S. ( 2016 ). Using green infrastructure for urban climate- proofing: An evaluation of heat mitigation measures at the micro- scale. Urban Forestry & Urban Greening, 20, 305 - 316. https://doi.org/10.1016/j.ufug.2016.09.011
dc.identifier.citedreferenceAndréassian, V. ( 2004 ). Waters and forests: From historical controversy to scientific debate. Journal of Hydrology, 291 ( 1- 2 ), 1 - 27. https://doi.org/10.1016/j.jhydrol.2003.12.015
dc.identifier.citedreferenceBand, L. E., Tague, C. L., Groffman, P., & Belt, K. ( 2001 ). Forest ecosystem processes at the watershed scale: Hydrological and ecological controls of nitrogen export. Hydrological Processes, 15 ( 10 ), 2013 - 2028. https://doi.org/10.1002/hyp.253
dc.identifier.citedreferenceBenettin, P., Kirchner, J. W., Rinaldo, A., & Botter, G. ( 2015 ). Modeling chloride transport using travel time distributions at Plynlimon, Wales. Water Resources Research, 51 ( 5 ), 3259 - 3276. https://doi.org/10.1002/2014WR016600
dc.identifier.citedreferenceBen- Hamadou, R., & Wolanski, E. ( 2011 ). Ecohydrology modeling: Tools for management. Treatise on Estuarine and Coastal Science, 10, 301 - 328. https://doi.org/10.1016/B978-0-12-374711-2.01016-0
dc.identifier.citedreferenceBerland, A., Shiflett, S. A., Shuster, W. D., Garmestani, A. S., Goddard, H. C., Herrmann, D. L., & Hopton, M. E. ( 2017 ). The role of trees in urban stormwater management. Landscape and Urban Planning, 162, 167 - 177. https://doi.org/10.1016/j.landurbplan.2017.02.017
dc.identifier.citedreferenceBirkel, C., Soulsby, C., & Tetzlaff, D. ( 2014 ). Developing a consistent process- based conceptualization of catchment functioning using measurements of internal state variables. Water Resources Research, 50, 3481 - 3501. https://doi.org/10.1002/2013WR014925
dc.identifier.citedreferenceBirkel, C., Tetzlaff, D., Dunn, S. M., & Soulsby, C. ( 2011 ). Using time domain and geographic source tracers to conceptualize streamflow generation processes in lumped rainfall- runoff models. Water Resources Research, 47, W02515. https://doi.org/10.1029/2010WR009547
dc.identifier.citedreferenceBlair, G. S., Henrys, P., Leeson, A., Watkins, J., Eastoe, E., Jarvis, S., & Young, P. J. ( 2019 ). Data science of the natural environment: A research roadmap. Frontiers in Environmental Science, 7 ( August ), 1 - 14. https://doi.org/10.3389/fenvs.2019.00121
dc.identifier.citedreferenceBong- Joo, J., Donggu, K., Chanjoo, L., Hyunjung, K., Sanghun, K., & Won, K. ( 2019 ). Preliminary of electromagnetic wave rain gauge for small areal precipitation measurement. Geophysical Research Abstracts, 21, 1 - 1.
dc.identifier.citedreferenceBosch, J. M., & Hewlett, J. D. ( 1982 ). A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology, 55 ( 1- 4 ), 3 - 23. https://doi.org/10.1016/0022-1694(82)90117-2
dc.identifier.citedreferenceBotter, G., Bertuzzo, E., & Rinaldo, A. ( 2011 ). Catchment residence and travel time distributions: The master equation. Geophysical Research Letters, 38 ( 11 ), L11403. https://doi.org/10.1029/2011GL047666
dc.identifier.citedreferenceBrauman, K., Daily, G. C., Duarte, T. K., & Mooney, H. A. ( 2007 ). The nature and value of ecosystem services: An overview highlighting hydrologic services. Annual Review of Environment and Resources, 32, 67 - 98. https://doi.org/10.1146/annurev.energy.32.031306.102758
dc.identifier.citedreferenceBremer, L. L., Auerbach, D. A., Goldstein, J. H., Vogl, A. L., Shemie, D., Kroeger, T., - ¦ Tiepolo, G. ( 2016 ). One size does not fit all: Natural infrastructure investments within the Latin American Water Funds Partnership. Ecosystem Services, 17, 217 - 236. https://doi.org/10.1016/j.ecoser.2015.12.006
dc.identifier.citedreferenceBrinkmann, N., Seeger, S., Weiler, M., Buchmann, N., Eugster, W., & Kahmen, A. ( 2018 ). Employing stable isotopes to determine the residence times of soil water and the temporal origin of water taken up by Fagus sylvatica and Picea abies in a temperate forest. New Phytologist, 219 ( 4 ), 1300 - 1313. https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15255
dc.identifier.citedreferenceBrown, A. E., Western, A. W., McMahon, T. A., & Zhang, L. ( 2013 ). Impact of forest cover changes on annual streamflow and flow duration curves. Journal of Hydrology, 483, 39 - 50. https://doi.org/10.1016/j.jhydrol.2012.12.031
dc.identifier.citedreferenceBrown, A. E., Zhang, L., McMahon, T. A., Western, A. W., & Vertessy, R. A. ( 2005 ). A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology, 310, 28 - 61. https://doi.org/10.1016/j.jhydrol.2004.12.010
dc.identifier.citedreferenceBrubaker, K. L., Entekhabi, D., & Eagleson, P. S. ( 1993 ). Estimation of continental precipitation recycling. Journal of Climate, 6 ( 6 ), 1077 - 1089. https://doi.org/10.1175/1520-0442(1993)006<1077:EOCPR>2.0.CO;2
dc.identifier.citedreferenceBruijnzeel, L. A. ( 2004 ). Hydrological functions of tropical forests: Not seeing the soil for the trees? Agriculture, Ecosystems and Environment, 104, 185 - 228. https://doi.org/10.1016/j.agee.2004.01.015
dc.identifier.citedreferenceCalabrese, S., & Porporato, A. ( 2015 ). Linking age, survival, and transit time distributions. Water Resources Research, 51 ( 10 ), 8316 - 8330. https://doi.org/10.1002/2015WR017785
dc.identifier.citedreferenceCalder, I. R. ( 1996 ). Dependence of rainfall interception on drop size. 1. Development of the two- layer stochastic model. Journal of Hydrology, 185 ( 1- 4 ), 363 - 378. https://doi.org/10.1016/0022-1694(95)02998-2
dc.identifier.citedreferenceCalder, I. R., & Aylward, B. ( 2006 ). Forest and floods: Moving to an evidence- based approach to watershed and integrated flood management. Water International, 31 ( 1 ), 87 - 99. https://doi.org/10.1080/02508060608691918
dc.identifier.citedreferenceCarlyle- Moses, D. E., & Gash, J. H. C. ( 2011 ). Rainfall interception loss by forest canopies. In D. F. Levia, D. E. Carlyle- Moses, & T. Tanaka (Eds.), Forest hydrology and biogeochemistry: Synthesis of past research and future directions. Ecological Studies, 216. (pp. 407 - 424 ). Heidelberg: Germany, Springer- Verlag. https://doi.org/10.1007/978-94-007-1363-5_20
dc.identifier.citedreferenceCarlyle- Moses, D. E., Iida, S., Germer, S., Llorens, P., Michalzik, B., Nanko, K., - ¦ Levia, D. F. ( 2018 ). Expressing stemflow commensurate with its ecohydrological importance. Advances in Water Resources, 121, 472 - 479. https://doi.org/10.1016/j.advwatres.2018.08.015
dc.identifier.citedreferenceCarrivick, J. L., Smith, M. W., & Quincey, D. J. ( 2016 ). Introduction to structure from motion in the geosciences. In J. L. Carrivick, M. W. Smith, & D. J. Quincey (Eds.), Structure from Motion in the Geosciences. Chichester: Wiley- Blackwell. https://doi.org/10.1002/9781118895818.ch1
dc.identifier.citedreferenceChaplin- Kramer, R., Sharp, R. P., Mandle, L., Sim, S., Johnson, J., Butnar, I., - ¦ Kareiva, P. M. ( 2015 ). Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage. PNAS, 112 ( 24 ), 7402 - 7407. https://doi.org/10.1073/pnas.1406485112
dc.identifier.citedreferenceCisneros Vaca, C., van der Tol, C., & Ghimire, C. P. ( 2018 ). The influence of long- term changes in canopy structure on rainfall interception loss: A case study in Speulderbos, the Netherlands. Hydrology and Earth System Sciences, 22, 3701 - 3719. https://doi.org/10.5194/hess-22-3701-2018
dc.identifier.citedreferenceClark, M. P., Kavetski, D., & Fenicia, F. ( 2011 ). Pursuing the method of multiple working hypotheses for hydrological modeling. Water Resources Research, 47, W09301. https://doi.org/10.1029/2010WR009827
dc.identifier.citedreferenceDadson, S. J., Hall, J. W., Murgatroyd, A., Acreman, M., Bates, P., Beven, K., - ¦ Wilby, R. ( 2017 ). A restatement of the natural science evidence concerning catchment- based - natural’ flood management in the UK. Proceedings of the Royal Society A, 473 ( 2199 ), 20160706. https://doi.org/10.1098/rspa.2016.0706
dc.identifier.citedreferenceDadvand, P., & Nieuwenhuijsen, M. ( 2019 ). Green space and health. In M. Nieuwenhuijsen, & H. Khreis (Eds.), Integrating human health into urban and transport planning (pp. 409 - 423 ). Cham: Springer. https://doi.org/10.1007/978-3-319-74983-9_20
dc.identifier.citedreferenceDahlke, H. E., Brown, A. G., Orloff, S., Putnam, D., & O’Geen, T. ( 2018 ). Managed winter flooding of alfalfa recharges groundwater with minimal crop damage. California Agriculture, 72 ( 1 ), 1 - 11. https://doi.org/10.3733/ca.2018a0001
dc.identifier.citedreferenceDennedy- Frank, P. J., & Gorelick, S. M. ( 2019 ). Insights from water simulations around the world: Watershed service- based restoration does not significantly enhance streamflow. Global Environmental Change, 58, 101938. https://doi.org/10.1016/j.gloenvcha.2019.101938
dc.identifier.citedreferenceDevito, K. J., Creed, I. F., & Fraser, C. J. D. ( 2005 ). Controls on runoff from a partially harvested aspen- forested headwater catchment, Boreal Plain, Canada. Hydrological Processes, 19, 3 - 25. https://doi.org/10.1002/hyp.5776
dc.identifier.citedreferenceDotro, G., Langergraber, G., Molle, P., Nivala, J., Puigagut, J., Stein, O., & von Sperling, M. ( 2017 ). Treatment wetlands, Vol. 7. Biological wastewater treatment series. London, UK: IWA Publishing. https://doi.org/10.2166/9781780408774
dc.identifier.citedreferenceDouinot, A., Tetzlaff, D., Maneta, M., Kuppel, S., Schulte- Bisping, H., & Soulsby, C. ( 2019 ). Ecohydrological modelling with EcH2O- iso to quantify forest and grassland effects on water partitioning and flux ages. Hydrological Processes, 33 ( 16 ), 2174 - 2191. https://doi.org/10.1002/hyp.13480
dc.identifier.citedreferenceDubbert, M., & Werner, C. ( 2019 ). Water fluxes mediated by vegetation: Emerging isotopic insights at the soil and atmosphere interfaces. New Phytologist, 221 ( 4 ), 1754 - 1763. https://doi.org/10.1111/nph.15547
dc.identifier.citedreferenceDunkerley, D. L. ( 2009 ). Evaporation of impact water droplets in interception processes: Historical precedence of the hypothesis and a brief literature overview. Journal of Hydrology, 376, 599 - 604. https://doi.org/10.1016/j.jhydrol.2009.08.004
dc.identifier.citedreferenceEllison, D., Morris, C. E., Locatelli, B., Sheil, D., Cohen, J., Murdiyarso, D., - ¦ Sullivan, C. A. ( 2017 ). Trees, forest, and water: Cool new insights for a hot world. Global Environmental Change, 43, 51 - 61. https://doi.org/10.1016/j.gloenvcha.2017.01.002
dc.identifier.citedreferenceEnsign, S., Arscott, D., Hicks, S., Aufdenkampe, A., Muenz, T., Jackson, J., & Bressler, D. ( 2019 ). A digital Mayfly swarm is emerging. Eos, 100. https://doi.org/10.1029/2019EO116611
dc.identifier.citedreferenceEvaristo, J., Jasechko, S., & McDonnell, J. J. ( 2015 ). Global separation of plant transpiration from groundwater and streamflow. Nature, 525 ( 7567 ), 91 - 94. https://doi.org/10.1038/nature14983
dc.identifier.citedreferenceFatichi, S., Ivanov, V. Y., & Caporali, E. ( 2012 ). A mechanistic ecohydrological model to investigate complex interactions in cold and warm water- controlled environments: 1. Theoretical framework and plot- scale analysis. Journal of Advances in Modeling Earth Systems, 4 ( 2 ) Quarter 2, M05002. https://doi.org/10.1029/2011MS000086
dc.identifier.citedreferenceFatichi, S., Vivoni, E. R., Ogden, F. L., Ivanov, V. Y., Mirus, B., Gochis, D., - ¦ Tarboton, D. ( 2016 ). An overview of current applications, challenges, and future trends in distributed process- based models in hydrology. Journal of Hydrology, 537, 45 - 60. https://doi.org/10.1016/j.jhydrol.2016.03.026
dc.identifier.citedreferenceFiloso, S., Bezerra, M. O., Weiss, K. C. B., & Palmer, M. A. ( 2017 ). Impacts of forest restoration on water yield: A systematic review. PLoS ONE, 12 ( 8 ), e0183210. https://doi.org/10.1371/journal.pone.0183210
dc.identifier.citedreferenceGeris, J., Tetzlaff, D., McDonnell, J., & Soulsby, C. ( 2017 ). Spatial and temporal patterns of soil water storage and vegetation water use in humid northern catchments. Science of the Total Environment, 595, 486 - 493. https://doi.org/10.1016/j.scitotenv.2017.03.275
dc.identifier.citedreferenceGoldman, R. L., Benitez, S., Calvache, A., & Ramos, A. ( 2010 ). Water funds: Protecting watersheds for nature and people. Arlington, VA: The Nature Conservancy.
dc.identifier.citedreferenceGrant, G. E., & Dietrich, W. E. ( 2017 ). The frontier beneath our feet. Water Resources Research, 53 ( 4 ), 2605 - 2609. https://doi.org/10.1002/2017WR020835
dc.identifier.citedreferenceGuswa, A. J., Brauman, K. A., Brown, C., Hamel, P., Keeler, B. L., & Sayre, S. S. ( 2014 ). Ecosystem services: Challenges and opportunities for hydrologic modeling to support decision making. Water Resources Research, 50 ( 5 ), 4535 - 4544. https://doi.org/10.1002/2014WR015497
dc.identifier.citedreferenceGuswa, A. J., Hamel, P., & Dennedy- Frank, P. J. ( 2017 ). Potential effects of landscape change on water supplies in the presence of reservoir storage. Water Resources Research, 53 ( 4 ), 2679 - 2692. https://doi.org/10.1002/2016WR019691
dc.identifier.citedreferenceGuswa, A. J., Rhodes, A. L., & Newell, S. E. ( 2007 ). Importance of orographic precipitation to the water resources of Monteverde, Costa Rica. Advances in Water Resources, 30, 2098 - 2112. https://doi.org/10.1016/j.advwatres.2006.07.008
dc.identifier.citedreferenceHaselow, L., Meissner, R., Rupp, H., & Miegel, K. ( 2019 ). Evaluation of precipitation measurements methods under field conditions during a summer season: A comparison of the standard rain gauge with a weighable lysimeter and piezoelectric precipitation sensor. Journal of Hydrology, 575, 537 - 543. https://doi.org/10.1016/j.jhydrol.2019.05.065
dc.identifier.citedreferenceHill, D. J., Pypker, T., & Church, J. ( 2020 ). Applications of unpiloted aerial vehicles (UAVs) in forest hydrology. In D. F. Levia, D. E. Carlyle- Moses, S. Iida, B. Michalzik, K. Nanko, & A. Tischer (Eds.), Forest- water interactions. Ecological Studies, 240. (p. 55 ). 85, Cham, Switzerland: Springer Nature. https://doi.org/10.1007/978-3-030-26086-6_3
dc.identifier.citedreferenceHoma, E. S., Brown, C., McFarigal, K., Compton, B. W., & Jackson, S. D. ( 2013 ). Estimating hydrologic alteration from basin characteristics in Massachusetts. Journal of Hydrology, 503, 196 - 208. https://doi.org/10.1016/j.jhydrol.2013.09.008
dc.identifier.citedreferenceHorton, R. E. ( 1919 ). Rainfall interception. Monthly Weather Review, 47, 608 - 623. https://doi.org/10.1175/1520-0493(1919)47<603:RI>2.0.CO;2
dc.identifier.citedreferenceHuwald, H., Selker, J. S., Tyler, S. W., Calaf, M., van de Giesen, N. C., & Parlange, M. B. ( 2012 ). Carbon monoxide as a tracer of gas transport in snow and other natural porous media. Geophysical Research Letters, 39, L02504. https://doi.org/10.1029/2011GL050247
dc.identifier.citedreferenceIida, S., Levia, D. F., Shimizu, T., Tamai, K., Nobuhiro, T., Kabeya, N., - ¦ Araki, M. ( 2017 ). Intrastorm scale rainfall interception dynamics in a mature coniferous forest stand. Journal of Hydrology, 548, 770 - 783. https://doi.org/10.1016/j.jhydrol.2017.03.009
dc.identifier.citedreferenceIida, S., Shimizu, T., Shinohara, Y., Takeuchi, S., & Kumagai, T. ( 2020 ). The necessity of sensor calibration for the precise measurement of water fluxes in forest ecosystems. In D. F. Levia, D. E. Carlyle- Moses, S. Iida, B. Michalzik, K. Nanko, & A. Tischer (Eds.), Forest- water interactions. Ecological Studies, 240. (pp. 29 - 53 ). Cham, Switzerland: Springer Nature. https://doi.org/10.1007/978-3-030-26086-6_2
dc.identifier.citedreferenceIPBES. ( 2019 ). In E. S. Brondizio, J. Settele, S. Diaz, & H. T. Ngo (Eds.), Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science- Policy Platform on Biodiversity and Ecosystem Services. Bonn, Germany: IPBES Secretariat.
dc.identifier.citedreferenceIvanov, V. Y., Bras, R. L., & Vivoni, E. R. ( 2008 ). Vegetation- hydrology dynamics in complex terrain of semiarid areas: 1. A mechanistic approach to modeling dynamic feedbacks. Water Resources Research, 44 ( 3 ), W03429. https://doi.org/10.1029/2006WR005588
dc.identifier.citedreferenceJackson, R. B., Jobbágy, E. G., & Nosetto, M. D. ( 2009 ). Ecohydrology in a human- dominated landscape. Ecohydrology, 2, 383 - 389. https://onlinelibrary.wiley.com/doi/abs/10.1002/eco.81
dc.identifier.citedreferenceJasper, J. T., Nguyen, M. T., Jones, Z. L., Ismail, N. S., Sedlak, D. L., Sharp, J. O., - ¦ Nelson, K. J. ( 2013 ). Unit process wetlands for removal of trace organic contaminants and pathogens from municipal wastewater effluents. Environmental Engineering Science, 30 ( 8 ), 421 - 436. https://doi.org/10.1089/ees.2012.0239
dc.identifier.citedreferenceJensco, K. G., & McGlynn, B. ( 2011 ). Hierarchical controls on runoff generation: Topographically driven hydrologic connectivity, geology, and vegetation. Water Resources Research, 47 ( 11 ), W11527. https://doi.org/10.1029/2011WR010666
dc.identifier.citedreferenceJunior, J. A. J., de Mello, C. R., de Mello, J. M., Scolforo, H. F., Beskow, S., & McCarter, J. ( 2019 ). Rainfall partitioning measurement and rainfall interception modelling in a tropical semi- deciduous Atlantic forest remnant. Agricultural and Forest Meteorology, 275, 170 - 183. https://doi.org/10.1016/j.agrformet.2019.05.016
dc.identifier.citedreferenceKeeler, B. L., Hamel, P., McPhearson, T., Hamann, M. H., Donahue, M. L., Meza Prado, K. A., - ¦ Wood, S. A. ( 2019 ). Social- ecological and technological factors moderate the value of urban nature. Nature Sustainability, 2, 29 - 38. https://doi.org/10.1038/s41893-018-0202-1
dc.identifier.citedreferenceKelleher, C., McGlynn, B., & Wagener, T. ( 2017 ). Characterizing and reducing equifinality by constraining a distributed catchment model with regional signatures, local observations, and process understanding. Hydrology and Earth System Sciences, 21, 3325 - 3352. https://doi.org/10.5194/hess-21-3325-2017
dc.identifier.citedreferenceKeys, P. W., van der Ent, R. J., Gordon, L. J., Hoff, H., Nikoli, R., & Savenije, H. H. G. ( 2012 ). Analysing precipitationsheds to understand the vulnerability of rainfall dependent regions. Biogeosciences, 9, 733 - 746. https://doi.org/10.5194/bg-9-733-2012
dc.identifier.citedreferenceKirchner, J. W. ( 2006 ). Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology. Water Resources Research, 42, W03S04. https://doi.org/10.1029/2005WR004362
dc.identifier.citedreferenceKoster, R., Jouzel, J., Suozzo, R., Russell, G., Broecker, W., Rind, D., & Eagleson, P. ( 1986 ). Global sources of local precipitation as determined by the Nasa/Giss GCM. Geophysical Research Letters, 13 ( 2 ), 121 - 124. https://doi.org/10.1029/GL013i002p00121
dc.identifier.citedreferenceKotthoff, L., Thornton, C., Hoos, H. H., Hutter, F., & Leyton- Brown, K. ( 2017 ). Auto- WEKA 2.0: Automatic model selection and hyperparameter optimization in WEKA. Journal of Machine Learning Research, 18, 1 - 5. https://doi.org/10.1007/978-3-030-05318-5_4
dc.identifier.citedreferenceKuehni, S. M., Bou- Zeid, E., Webb, C., & Shokri, N. ( 2016 ). Roof cooling by direct evaporation from a porous roof layer. Energy and Buildings, 127, 512 - 528. https://doi.org/10.1016/j.enbuild.2016.06.019
dc.identifier.citedreferenceKuppel, S., Tetzlaff, D., Maneta, M. P., & Soulsby, C. ( 2018 ). What can we learn from multidata calibration of a process- based ecohydrological model? Environmental Modelling & Software, 101, 301 - 316. https://doi.org/10.1016/j.envsoft.2018.01.001
dc.identifier.citedreferenceLaaha, G., Skoien, J. O., Nobilis, F., & Blöschl, G. ( 2013 ). Spatial predictions of stream temperatures using top- kriging with an external drift. Environmental Modeling and Assessment, 18 ( 6 ), 671 - 683. https://doi.org/10.1007/s10666-013-9373-3
dc.identifier.citedreferenceLange, H., & Sippel, S. ( 2020 ). Machine learning applications in hydrology. In D. F. Levia, D. E. Carlyle- Moses, S. Iida, B. Michalzik, K. Nanko, & A. Tischer (Eds.), Forest- water interactions. Ecological Studies, 240. (pp. 233 - 257 ). Cham, Switzerland: Springer Nature. https://doi.org/10.1007/978-3-030-26086-6_10
dc.identifier.citedreferenceLeonard, R. E. ( 1967 ). Mathematical theory of interception. In W. E. Sopper, & H. W. Hull (Eds.), International symposium on forest hydrology (pp. 131 - 136 ). Oxford: Pergamon Press.
dc.identifier.citedreferenceLevia, D. F., Carlyle- Moses, D. E., Iida, S., Michalzik, B., Nanko, K., & Tischer, A. (Eds.) ( 2020 ). Forest- water interactions. Ecological studies series, No. 240. (p. 628 ). Switzerland AG: Springer Nature. https://doi.org/10.1007/978-3-030-26086-6
dc.identifier.citedreferenceLevia, D. F., Hudson, S. A., Llorens, P., & Nanko, K. ( 2017 ). Throughfall drop size distributions: A review and prospectus for future research. WIREs Water, 4, e1225. https://doi.org/10.1002/wat2.1225
dc.identifier.citedreferenceLevia, D.F., Nanko, K., Amasaki, H., Giambelluca, T.W., Hotta, N., Iida, S., Mudd, R.G., Nullet, M. A, Sakai, N., Shinohara, Y., Sun, X., Suzuki, M., Tanaka, N., Tanatsirin, C., & Yamada, K. ( 2019 ). Throughfall partitioning by trees. Hydrological Processes, 33 ( 12 ), 1698 - 1708. https://doi.org/10.1002/hyp.13432
dc.identifier.citedreferenceLiu, J., Li, S., Ouyang, Z., Tam, C., & Chen, X. ( 2008 ). Ecological and socioeconomic effects of China’s policies for ecosystem services. Proceedings of the National Academy of Sciences of the United States of America, 105 ( 28 ), 9477 - 9482. https://doi.org/10.1073/pnas.0706436105
dc.identifier.citedreferenceMackay, D. S. ( 2019 ). Ecohydrology: What’s in a name? Eos, 100, 1 - 7. https://doi.org/10.1029/2019EO123093 Published on 13 May 2019
dc.identifier.citedreferenceManeta, M. P., & Silverman, N. L. ( 2013 ). A spatially distributed model to simulate water, energy, and vegetation dynamics using information from regional climate models. Earth Interactions, 17, 1 - 44. https://doi.org/10.1175/2012EI000472.1
dc.identifier.citedreferenceMaxwell, R. M., & Condon, L. E. ( 2016 ). Connections between groundwater flow and transpiration partitioning. Science, 353, 377 - 380. https://doi.org/10.1126/science.aaf7891
dc.identifier.citedreferenceMcDonnell, J. J., & Beven, K. ( 2014 ). Debates- The future of hydrological sciences: A (common) path forward? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph. Water Resources Research, 50 ( 6 ), 5342 - 5350. https://doi.org/10.1002/2013WR015141
dc.identifier.citedreferenceMerriam, R. A. ( 1960 ). A note on the interception loss equation. Journal of Geophysical Research, 65, 3850 - 3851. https://doi.org/10.1029/JZ065i011p03850
dc.identifier.citedreferenceMillennium Ecosystem Assessment. ( 2005 ). Ecosystems and human well- being: Synthesis (pp. 155). Washington, DC: Island Press.
dc.identifier.citedreferenceMirfenderesgi, G., Bohrer, G., Matheny, A. M., Fatichi, S., Moraes Frasson, R. P., & Schäfer, K. V. R. ( 2016 ). Tree level hydrodynamic approach for resolving above ground water storage and stomatal conductance and modeling the effects of tree hydraulic strategy. Journal of Geophysical Research: Biogeosciences, 121, 1792 - 1813. https://doi.org/10.1002/2016JG003467
dc.identifier.citedreferenceMurakami, S. ( 2006 ). A proposal for a new forest canopy interception mechanism: Splash droplet evaporation. Journal of Hydrology, 318, 72 - 82. https://doi.org/10.1016/j.jhydrol.2005.07.002
dc.identifier.citedreferenceNadeau, D. F., Brutsaert, W., Parlange, M. B., Bou- Zeid, E., Barrenetxea, G., Couach, O., - ¦ Vetterli, M. ( 2009 ). Estimation of urban sensible heat flux using a dense wireless network of observations. Environmental Fluid Mechanics, 9 ( 6 ), 635 - 653. https://doi.org/10.1007/s10652-009-9150-7
dc.identifier.citedreferenceNanko, K., Hotta, N., & Suzuki, M. ( 2006 ). Evaluating the influence of canopy species and meteorological factors on throughfall drop size distribution. Journal of Hydrology, 329, 422 - 431. https://doi.org/10.1016/j.jhydrol.2006.02.036
dc.identifier.citedreferenceNanko, K., Hudson, S. A., & Levia, D. F. ( 2016 ). Differences in throughfall drop size distributions in the presence and absence of foliage. Hydrological Sciences Journal, 61, 620 - 627. http://doi.org/10.1080/02626667.2015.1052454
dc.identifier.citedreferenceNational Research Council. ( 2004 ). Valuing ecosystem services: Toward better environmental decision- making. Washington, D.C: National Academic Press.
dc.identifier.citedreferenceNiu, G.- Y., Paniconi, C., Troch, P. A., Scott, R. L., Durcik, M., Zeng, X., - ¦ Goodrich, D. C. ( 2014 ). An integrated modelling framework of catchment- scale ecohydrological processes: 1. Model description and tests over an energy- limited watershed. Ecohydrology, 7 ( 2 ), 427 - 439. https://doi.org/10.1002/eco.1362
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.