Show simple item record

Rapid Mineral Precipitation During Shear Fracturing of Carbonate‐Rich Shales

dc.contributor.authorMenefee, Anne H.
dc.contributor.authorWelch, Nathan J.
dc.contributor.authorFrash, Luke P.
dc.contributor.authorHicks, Wes
dc.contributor.authorCarey, J. William
dc.contributor.authorEllis, Brian R.
dc.date.accessioned2020-07-02T20:33:07Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-07-02T20:33:07Z
dc.date.issued2020-06
dc.identifier.citationMenefee, Anne H.; Welch, Nathan J.; Frash, Luke P.; Hicks, Wes; Carey, J. William; Ellis, Brian R. (2020). "Rapid Mineral Precipitation During Shear Fracturing of Carbonate‐Rich Shales." Journal of Geophysical Research: Solid Earth 125(6): n/a-n/a.
dc.identifier.issn2169-9313
dc.identifier.issn2169-9356
dc.identifier.urihttps://hdl.handle.net/2027.42/155917
dc.description.abstractTarget subsurface reservoirs for emerging low‐carbon energy technologies and geologic carbon sequestration typically have low permeability and thus rely heavily on fluid transport through natural and induced fracture networks. Sustainable development of these systems requires deeper understanding of how geochemically mediated deformation impacts fracture microstructure and permeability evolution, particularly with respect to geochemical reactions between pore fluids and the host rock. In this work, a series of triaxial direct shear experiments was designed to evaluate how fractures generated at subsurface conditions respond to penetration of reactive fluids with a focus on the role of mineral precipitation. Calcite‐rich shale cores were directly sheared under 3.5 MPa confining pressure using BaCl2‐rich solutions as a working fluid. Experiments were conducted within an X‐ray computed tomography (xCT) scanner to capture 4‐D evolution of fracture geometry and precipitate growth. Three shear tests evidenced nonuniform precipitation of barium carbonates (BaCO3) along through‐going fractures, where the extent of precipitation increased with increasing calcite content. Precipitates were strongly localized within fracture networks due to mineral, geochemical, and structural heterogeneities and generally concentrated in smaller apertures where rock:water ratios were highest. The combination of elevated fluid saturation and reactive surface area created in freshly activated fractures drove near‐immediate mineral precipitation that led to an 80% permeability reduction and significant flow obstruction in the most reactive core. While most previous studies have focused on mixing‐induced precipitation, this work demonstrates that fluid–rock interactions can trigger precipitation‐induced permeability alterations that can initiate or mitigate risks associated with subsurface energy systems.Key PointsBarium carbonates precipitate near‐immediately with injection of BaCl2‐rich fluid into freshly sheared calcite‐rich shalesPrecipitation reactions are strongly localized, favoring narrow apertures and zones of extensive fragmentationFluid–rock interactions can promote significant precipitation‐induced permeability alterations that remain challenging to predict
dc.publisherWiley Periodicals, Inc.
dc.subject.othermineral precipitation
dc.subject.otherwater–rock interaction
dc.subject.otherfracture permeability
dc.titleRapid Mineral Precipitation During Shear Fracturing of Carbonate‐Rich Shales
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155917/1/jgrb54184_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155917/2/jgrb54184-sup-0001-2019JB018864-SI.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155917/3/jgrb54184.pdf
dc.identifier.doi10.1029/2019JB018864
dc.identifier.sourceJournal of Geophysical Research: Solid Earth
dc.identifier.citedreferencePlattenberger, D. A., Ling, F. T., Peters, C. A., & Clarens, A. F. ( 2019 ). Targeted permeability control in the subsurface via calcium silicate carbonation. Environmental Science & Technology, 53 ( 12 ), 7136 – 7144. https://doi.org/10.1021/acs.est.9b00707
dc.identifier.citedreferenceMenefee, A. H., Giammar, D. E., & Ellis, B. R. ( 2018 ). Permanent CO 2 trapping through localized and chemical gradient‐driven basalt carbonation. Environmental Science & Technology, 52 ( 15 ), 8954 – 8964. https://doi.org/10.1021/acs.est.8b01814
dc.identifier.citedreferenceMenefee, A. H., Li, P., Giammar, D. E., & Ellis, B. R. ( 2017 ). Roles of transport limitations and mineral heterogeneity in carbonation of fractured basalts. Environmental Science & Technology, 51 ( 16 ), 9352 – 9362. https://doi.org/10.1021/acs.est.7b00326
dc.identifier.citedreferenceNogues, J. P., Fitts, J. P., Celia, M. A., & Peters, C. A. ( 2013 ). Permeability evolution due to dissolution and precipitation of carbonates using reactive transport modeling in pore networks. Water Resources Research, 49, 6006 – 6021. https://doi.org/10.1002/wrcr.20486
dc.identifier.citedreferenceNoiriel, C. ( 2004 ). Investigation of porosity and permeability effects from microstructure changes during limestone dissolution. Geophysical Research Letters, 31, L24603. https://doi.org/10.1029/2004GL021572
dc.identifier.citedreferenceNoiriel, C., Gouze, P., & Madé, B. ( 2013 ). 3D analysis of geometry and flow changes in a limestone fracture during dissolution. Journal of Hydrology, 486, 211 – 223. https://doi.org/10.1016/j.jhydrol.2013.01.035
dc.identifier.citedreferenceNoiriel, C., Renard, F., Doan, M.‐L., & Gratier, J.‐P. ( 2010 ). Intense fracturing and fracture sealing induced by mineral growth in porous rocks. Chemical Geology, 269 ( 3–4 ), 197 – 209. https://doi.org/10.1016/j.chemgeo.2009.09.018
dc.identifier.citedreferenceNoiriel, C., Steefel, C. I., Yang, L., & Bernard, D. ( 2016 ). Effects of pore‐scale precipitation on permeability and flow. Advances in Water Resources, 95, 125 – 137. https://doi.org/10.1016/j.advwatres.2015.11.013
dc.identifier.citedreferenceOlson, J. E., Laubach, S. E., & Lander, R. H. ( 2007 ). Combining diagenesis and mechanics to quantify fracture aperture distributions and fracture pattern permeability. Geological Society, London, Special Publications, 270 ( 1 ), 101 – 116. https://doi.org/10.1144/GSL.SP.2007.270.01.08
dc.identifier.citedreferencePeuble, S., Godard, M., Luquot, L., Andreani, M., Martinez, I., & Gouze, P. ( 2015 ). CO 2 geological storage in olivine rich basaltic aquifers: New insights from reactive‐percolation experiments. Applied Geochemistry, 52, 174 – 190. https://doi.org/10.1016/j.apgeochem.2014.11.024
dc.identifier.citedreferencePolak, A., Elsworth, D., Liu, J., & Grader, A. S. ( 2004 ). Spontaneous switching of permeability changes in a limestone fracture with net dissolution: Spontaneous switching of permeability changes. Water Resources Research, 40, W03502. https://doi.org/10.1029/2003WR002717
dc.identifier.citedreferencePruess, K., & Müller, N. ( 2009 ). Formation dry‐out from CO 2 injection into saline aquifers: 1. Effects of solids precipitation and their mitigation. Water Resources Research, 45, W03402. https://doi.org/10.1029/2008WR007101
dc.identifier.citedreferencePyrak‐Nolte, L. J., DePaolo, D. J., & Pietra, T. ( 2015 ). Controlling subsurface fractures and fluid flow: a basic research agenda. USDOE Office of Science (SC) (United States).
dc.identifier.citedreferenceSteefel, C. I., Appelo, C. A. J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., Lagneau, V., Lichtner, P. C., Mayer, K. U., Meeussen, J. C. L., Molins, S., Moulton, D., Shao, H., Šimůnek, J., Spycher, N., Yabusaki, S. B., & Yeh, G. T. ( 2015 ). Reactive transport codes for subsurface environmental simulation. Computational Geosciences, 19 ( 3 ), 445 – 478. https://doi.org/10.1007/s10596-014-9443-x
dc.identifier.citedreferenceTartakovsky, A. M., Redden, G., Lichtner, P. C., Scheibe, T. D., & Meakin, P. ( 2008 ). Mixing‐induced precipitation: Experimental study and multiscale numerical analysis: Mixing‐induced precipitation. Water Resources Research, 44, W06S04. https://doi.org/10.1029/2006WR005725
dc.identifier.citedreferenceVankeuren, A. N. P., Hakala, J. A., Jarvis, K., & Moore, J. E. ( 2017 ). Mineral reactions in shale gas reservoirs: Barite scale formation from reusing produced water as hydraulic fracturing fluid. Environmental Science & Technology, 51 ( 16 ), 9391 – 9402. https://doi.org/10.1021/acs.est.7b01979
dc.identifier.citedreferenceWalsh, S. D. C., Du Frane, W. L., Mason, H. E., & Carroll, S. A. ( 2013 ). Permeability of wellbore‐cement fractures following degradation by carbonated brine. Rock Mechanics and Rock Engineering, 46 ( 3 ), 455 – 464. https://doi.org/10.1007/s00603-012-0336-9
dc.identifier.citedreferenceWeng, X., Chuprakov, D., Kresse, O., Prioul, R., & Wang, H. ( 2018 ). Hydraulic fracture‐height containment by permeable weak bedding interfaces. Geophysics, 83 ( 3 ), MR137 – MR152. https://doi.org/10.1190/geo2017-0048.1
dc.identifier.citedreferenceWildenschild, D., & Sheppard, A. P. ( 2013 ). X‐ray imaging and analysis techniques for quantifying pore‐scale structure and processes in subsurface porous medium systems. Advances in Water Resources, 51, 217 – 246. https://doi.org/10.1016/j.advwatres.2012.07.018
dc.identifier.citedreferenceXie, M., Mayer, K. U., Claret, F., Alt‐Epping, P., Jacques, D., Steefel, C., Chiaberge, C., & Simunek, J. ( 2015 ). Implementation and evaluation of permeability‐porosity and tortuosity‐porosity relationships linked to mineral dissolution‐precipitation. Computational Geosciences, 19 ( 3 ), 655 – 671. https://doi.org/10.1007/s10596-014-9458-3
dc.identifier.citedreferenceYasuhara, H. ( 2003 ). A mechanistic model for compaction of granular aggregates moderated by pressure solution. Journal of Geophysical Research, 108 ( B11 ). https://doi.org/10.1029/2003JB002536
dc.identifier.citedreferenceYasuhara, H., & Elsworth, D. ( 2008 ). Compaction of a rock fracture moderated by competing roles of stress corrosion and pressure solution. Pure and Applied Geophysics, 165 ( 7 ), 1289 – 1306. https://doi.org/10.1007/s00024-008-0356-2
dc.identifier.citedreferenceZhang, C., Dehoff, K., Hess, N., Oostrom, M., Wietsma, T. W., Valocchi, A. J., Fouke, B. W., & Werth, C. J. ( 2010 ). Pore‐scale study of transverse mixing induced CaCO 3 precipitation and permeability reduction in a model subsurface sedimentary system. Environmental Science & Technology, 44 ( 20 ), 7833 – 7838. https://doi.org/10.1021/es1019788
dc.identifier.citedreferenceAben, F. M., Doan, M.‐L., Gratier, J.‐P., & Renard, F. ( 2017 ). Experimental postseismic recovery of fractured rocks assisted by calcite sealing: Experimental recovery of fractured rocks. Geophysical Research Letters, 44, 7228 – 7238. https://doi.org/10.1002/2017GL073965
dc.identifier.citedreferenceAl‐Khulaifi, Y., Lin, Q., Blunt, M. J., & Bijeljic, B. ( 2019 ). Pore‐scale dissolution by CO 2 ‐saturated brine in a multimineral carbonate at reservoir conditions: Impact of physical and chemical heterogeneity. Water Resources Research, 55, 3171 – 3193. https://doi.org/10.1029/2018WR024137
dc.identifier.citedreferenceAstilleros, J. M., Pina, C. M., Fernández‐Dıaz, L., & Putnis, A. ( 2000 ). The effect of barium on calcite 1014 surfaces during growth. Geochimica et Cosmochimica Acta, 64 ( 17 ), 2965 – 2972. https://doi.org/10.1016/S0016-7037(00)00405-1
dc.identifier.citedreferenceBeckingham, L. E. ( 2017 ). Evaluation of macroscopic porosity‐permeability relationships in heterogeneous mineral dissolution and precipitation scenarios: Evaluation of permeability relationships. Water Resources Research, 53, 10,217 – 10,230. https://doi.org/10.1002/2017WR021306
dc.identifier.citedreferenceCarey, J. W., Frash, L. P., Viswanathan, H. S., & others. ( 2016 ). Dynamic triaxial study of direct shear fracturing and precipitation‐induced transient permeability observed by in situ X‐ray radiography. In 50th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association. Retrieved from https://www.onepetro.org/conference-paper/ARMA-2016-566
dc.identifier.citedreferenceCarey, J. W., Lei, Z., Rougier, E., Mori, H., & Viswanathan, H. ( 2015 ). Fracture‐permeability behavior of shale. Journal of Unconventional Oil and Gas Resources, 11, 27 – 43. https://doi.org/10.1016/j.juogr.2015.04.003
dc.identifier.citedreferenceCarey, J. W., Rougier, E., Lei, Z., & Viswanathan, H. ( 2015 ). Experimental investigation of fracturing of shale with water. In 49th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association.
dc.identifier.citedreferenceDeng, H., & Peters, C. A. ( 2019 ). Reactive transport simulation of fracture channelization and transmissivity evolution. Environmental Engineering Science, 36 ( 1 ), 90 – 101. https://doi.org/10.1089/ees.2018.0244
dc.identifier.citedreferenceDeng, H., Steefel, C., Molins, S., & DePaolo, D. ( 2018 ). Fracture evolution in multimineral systems: The role of mineral composition, flow rate, and fracture aperture heterogeneity. ACS Earth and Space Chemistry, 2 ( 2 ), 112 – 124. https://doi.org/10.1021/acsearthspacechem.7b00130
dc.identifier.citedreferenceDetwiler, R. L. ( 2008 ). Experimental observations of deformation caused by mineral dissolution in variable‐aperture fractures: Dissolution and deformation in fractures. Journal of Geophysical Research, 113, B08202. https://doi.org/10.1029/2008JB005697
dc.identifier.citedreferenceEllis, B. R., Fitts, J. P., Bromhal, G. S., McIntyre, D. L., Tappero, R., & Peters, C. A. ( 2013 ). Dissolution‐driven permeability reduction of a fractured carbonate caprock. Environmental Engineering Science, 30 ( 4 ), 187 – 193. https://doi.org/10.1089/ees.2012.0337
dc.identifier.citedreferenceElsworth, D., & Yasuhara, H. ( 2010 ). Mechanical and transport constitutive models for fractures subject to dissolution and precipitation. International Journal for Numerical and Analytical Methods in Geomechanics, 34 ( 5 ), 533 – 549. https://doi.org/10.1002/nag.831
dc.identifier.citedreferenceEmmanuel, S., Ague, J. J., & Walderhaug, O. ( 2010 ). Interfacial energy effects and the evolution of pore size distributions during quartz precipitation in sandstone. Geochimica et Cosmochimica Acta, 74 ( 12 ), 3539 – 3552. https://doi.org/10.1016/j.gca.2010.03.019
dc.identifier.citedreferenceEmmanuel, S., & Berkowitz, B. ( 2005 ). Mixing‐induced precipitation and porosity evolution in porous media. Advances in Water Resources, 28 ( 4 ), 337 – 344. https://doi.org/10.1016/j.advwatres.2004.11.010
dc.identifier.citedreferenceFrash, L., Carey, J. W., Ickes, T. L., Porter, M. L., & Viswanathan, H. S. ( 2018 ). Permeability of fractures created by triaxial direct shear and simultaneous X‐ray imaging. Los Alamos National Lab (LANL), Los Alamos, NM (United States).
dc.identifier.citedreferenceFrash, L. P. ( 2016 ). DIsco. Los Alamos National Laboratory: Richard P. Feynman Center for Innovation.
dc.identifier.citedreferenceFrash, L. P., Carey, J. W., Lei, Z., Rougier, E., Ickes, T., & Viswanathan, H. S. ( 2016 ). High‐stress triaxial direct‐shear fracturing of Utica shale and in situ X‐ray microtomography with permeability measurement: Shale fracture, μCT, and permeability. Journal of Geophysical Research: Solid Earth, 121, 5493 – 5508. https://doi.org/10.1002/2016JB012850
dc.identifier.citedreferenceFrash, L. P., Carey, J. W., & Welch, N. J. ( 2019 ). Scalable en echelon shear‐fracture aperture‐roughness mechanism: Theory, validation, and implications. Journal of Geophysical Research: Solid Earth, 124, 957 – 977. https://doi.org/10.1029/2018JB016525
dc.identifier.citedreferenceGaring, C., Gouze, P., Kassab, M., Riva, M., & Guadagnini, A. ( 2015 ). Anti‐correlated porosity–permeability changes during the dissolution of carbonate rocks: Experimental evidences and modeling. Transport in Porous Media, 107 ( 2 ), 595 – 621. https://doi.org/10.1007/s11242-015-0456-2
dc.identifier.citedreferenceGiammar, D. E., Bruant, R. G., & Peters, C. A. ( 2005 ). Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide. Chemical Geology, 217 ( 3–4 ), 257 – 276. https://doi.org/10.1016/j.chemgeo.2004.12.013
dc.identifier.citedreferenceGouze, P., & Luquot, L. ( 2011 ). X‐ray microtomography characterization of porosity, permeability and reactive surface changes during dissolution. Journal of Contaminant Hydrology, 120‐121, 45 – 55. https://doi.org/10.1016/j.jconhyd.2010.07.004
dc.identifier.citedreferenceHuerta, N. J., Hesse, M. A., Bryant, S. L., Strazisar, B. R., & Lopano, C. L. ( 2013 ). Experimental evidence for self‐limiting reactive flow through a fractured cement core: Implications for time‐dependent wellbore leakage. Environmental Science & Technology, 47 ( 1 ), 269 – 275. https://doi.org/10.1021/es3013003
dc.identifier.citedreferenceJones, T. A., & Detwiler, R. L. ( 2016 ). Fracture sealing by mineral precipitation: The role of small‐scale mineral heterogeneity: Mineral precipitation in fractures. Geophysical Research Letters, 43, 7564 – 7571. https://doi.org/10.1002/2016GL069598
dc.identifier.citedreferenceKang, Q., Zhang, D., & Chen, S. ( 2003 ). Simulation of dissolution and precipitation in porous media: Dissolution and precipitation in porous media. Journal of Geophysical Research, 108 ( B10 ), 2505. https://doi.org/10.1029/2003JB002504
dc.identifier.citedreferenceLi, L., Peters, C. A., & Celia, M. A. ( 2006 ). Upscaling geochemical reaction rates using pore‐scale network modeling. Advances in Water Resources, 29 ( 9 ), 1351 – 1370. https://doi.org/10.1016/j.advwatres.2005.10.011
dc.identifier.citedreferenceLi, L., Peters, C. A., & Celia, M. A. ( 2007 ). Effects of mineral spatial distribution on reaction rates in porous media. Water Resources Research, 43, W01419. https://doi.org/10.1029/2005WR004848
dc.identifier.citedreferenceLisabeth, H. P., Zhu, W., Kelemen, P. B., & Ilgen, A. ( 2017 ). Experimental evidence for chemo‐mechanical coupling during carbon mineralization in ultramafic rocks. Earth and Planetary Science Letters, 474, 355 – 367. https://doi.org/10.1016/j.epsl.2017.06.045
dc.identifier.citedreferenceLuhmann, A. J., Tutolo, B. M., Bagley, B. C., Mildner, D. F. R., Seyfried, W. E., & Saar, M. O. ( 2017 ). Permeability, porosity, and mineral surface area changes in basalt cores induced by reactive transport of CO 2 ‐rich brine: Physical changes from reaction in basalt. Water Resources Research, 53, 1908 – 1927. https://doi.org/10.1002/2016WR019216
dc.identifier.citedreferenceLuquot, L., & Gouze, P. ( 2009 ). Experimental determination of porosity and permeability changes induced by injection of CO 2 into carbonate rocks. Chemical Geology, 265 ( 1–2 ), 148 – 159. https://doi.org/10.1016/j.chemgeo.2009.03.028
dc.identifier.citedreferenceMatter, J. M., & Kelemen, P. B. ( 2009 ). Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nature Geoscience, 2 ( 12 ), 837 – 841. https://doi.org/10.1038/ngeo683
dc.identifier.citedreferenceMavromatis, V., van Zuilen, K., Purgstaller, B., Baldermann, A., Nägler, T. F., & Dietzel, M. ( 2016 ). Barium isotope fractionation during witherite (BaCO 3 ) dissolution, precipitation and at equilibrium. Geochimica et Cosmochimica Acta, 190, 72 – 84. https://doi.org/10.1016/j.gca.2016.06.024
dc.identifier.citedreferenceMcGuire, T. P., Elsworth, D., & Karcz, Z. ( 2013 ). Experimental measurements of stress and chemical controls on the evolution of fracture permeability. Transport in Porous Media, 98 ( 1 ), 15 – 34. https://doi.org/10.1007/s11242-013-0123-4
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.