Show simple item record

Plasmonic nanoparticles assemblies templated by helical bacteria and resulting optical activity

dc.contributor.authorFeng, Wenchun
dc.contributor.authorKadiyala, Usha
dc.contributor.authorYan, Jiao
dc.contributor.authorWang, Yichun
dc.contributor.authorDiRita, Victor J.
dc.contributor.authorVanEpps, J. Scott
dc.contributor.authorKotov, Nicholas A.
dc.date.accessioned2020-07-02T20:33:19Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-07-02T20:33:19Z
dc.date.issued2020-07
dc.identifier.citationFeng, Wenchun; Kadiyala, Usha; Yan, Jiao; Wang, Yichun; DiRita, Victor J.; VanEpps, J. Scott; Kotov, Nicholas A. (2020). "Plasmonic nanoparticles assemblies templated by helical bacteria and resulting optical activity." Chirality 32(7): 899-906.
dc.identifier.issn0899-0042
dc.identifier.issn1520-636X
dc.identifier.urihttps://hdl.handle.net/2027.42/155927
dc.description.abstractPlasmonic nanoparticles (NPs) adsorbing onto helical bacteria can lead to formation of NP helicoids with micron scale pitch. Associated chiroptical effects can be utilized as bioanalytical tool for bacterial detection and better understanding of the spectral behavior of helical self‐assembled structures with different scales. Here, we report that enantiomerically pure helices with micron scale of chirality can be assembled on Campylobacter jejuni, a helical bacterium known for severe stomach infections. These organisms have right‐handed helical shapes with a pitch of 1–2 microns and can serve as versatile templates for a variety of NPs. The bacteria itself shows no observable rotatory activity in the visible, red, and near‐IR ranges of electromagnetic spectrum. The bacterial dispersion acquires chiroptical activity at 500–750 nm upon plasmonic functionalization with Au NPs. Finite‐difference time‐domain simulations confirmed the attribution of the chiroptical activity to the helical assembly of gold nanoparticles. The position of the circular dichroism peaks observed for these chiral structures overlaps with those obtained before for Au NPs and their constructs with molecular and nanoscale chirality. This work provides an experimental and computational pathway to utilize chiroplasmonic particles assembled on bacteria for bioanalytical purposes.Gold nanoparticles assemble onto the surface of helical bacterium, Campylobacter jejuni, producing right‐handed helices with a pitch of 1–2 microns. The bacterial dispersion acquires chiroptical activity at 500–750 nm that matches the calculated chiroplasmonic spectra. This study provides a pathway to utilize chiroplasmonic particles for monitoring shape dynamics of bacteria and identification of helical bacteria in complex microbiomes.
dc.publisherWiley‐VCH
dc.subject.othersimulation
dc.subject.otherplasmonic
dc.subject.otherbacteria
dc.subject.otherbiotechnology
dc.subject.otherC. jejuni
dc.subject.othercircular dichroism
dc.subject.othergold nanoparticle
dc.subject.othermesoscale
dc.subject.otherplasmonic
dc.titlePlasmonic nanoparticles assemblies templated by helical bacteria and resulting optical activity
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155927/1/Supporting_information_Chirality_Manuscript_2020.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155927/2/chir23225_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155927/3/chir23225.pdf
dc.identifier.doi10.1002/chir.23225
dc.identifier.sourceChirality
dc.identifier.citedreferenceNiidome T, Nakashima K, Takahashi H, Niidome Y. Preparation of primary amine‐modified gold nanoparticles and their transfection ability into cultivated cells. Chem Commun (Camb). 2004; 1978 ‐ 1979. https://doi.org/10.1039/b406189f
dc.identifier.citedreferenceWaltham C, Boyle J, Ramey B, Smit J. Light scattering and absorption caused by bacterial activity in water. Appl Optics. 1994; 33 ( 31 ): 7536 ‐ 7540.
dc.identifier.citedreferenceUlloa O, Sathyendranath S, Platt T, Quiñones RA. Light scattering by marine heterotrophic bacteria. J Geophys Res. 1992; 97: 9619 ‐ 9629.
dc.identifier.citedreferenceKrepelka, P., Martos, F. C., Posada‐Izquierdo, G. D. & Pérez‐Rodríguez, F. Measuring and application of NIR light absorption coefficient of bacteria. in Progress in Electromagnetics Research Symposium 2336–2339 ( 2014 ).
dc.identifier.citedreferenceBateman JB, Wagman J, Carstensen EL. Refraction and absorption of light in bacterial suspensions. Kolloid‐Zeitschrift Und Zeitschrift für Polym. 1966; 208: 44 ‐ 58.
dc.identifier.citedreferenceWang S, Furchtgott L, Huang KC, Shaevitz JW. Helical insertion of peptidoglycan produces chiral ordering of the bacterial cell wall. Proc Natl Acad Sci U S A. 2012; 109 ( 10 ): E595 ‐ E604.
dc.identifier.citedreferenceBen‐Jacob E, Cohen II, Shochet O, Tenenbaum A, Czirók A, Vicsek T. Cooperative formation of chiral patterns during growth of bacterial colonies. Phys Rev Lett. 1995; 75 ( 15 ): 2899 ‐ 2902.
dc.identifier.citedreferenceMijalkov M, Volpe G. Sorting of chiral microswimmers. Soft Matter. 2013; 9: 6376 ‐ 6381.
dc.identifier.citedreferenceFakhrullin RF, Zamaleeva AI, Minullina RT. Cyborg cells: Functionalisation of living cells with polymers and nanomaterials. Chem Soc Rev. 2012; 41 ( 11 ): 4189 ‐ 4206.
dc.identifier.citedreferenceFakhrullin RF, Lvov YM. “Face‐lifting” and “make‐up” for microorganisms: Layer‐by‐layer polyelectrolyte Nanocoating. ACS Nano. 2012; 6 ( 6 ): 4557 ‐ 4564.
dc.identifier.citedreferenceKahraman M, Zamaleeva AI. Layer‐by‐layer coating of bacteria with noble metal nanoparticles for surface‐enhanced Raman scattering. Anal Bioanal Chem. 2009; 395 ( 8 ): 2559 ‐ 2567.
dc.identifier.citedreferenceKim Y, Zhu J, Yeom B, et al. Stretchable nanoparticle conductors with self‐organized conductive pathways. Nature. 2013; 500 ( 7460 ): 59 ‐ 63.
dc.identifier.citedreferenceKhlebtsov NG. Determination of size and concentration of gold nanoparticles from extinction spectra. Anal Chem. 2008; 80 ( 17 ): 6620 ‐ 6625.
dc.identifier.citedreferenceLiu X, Atwater M, Wang J, Huo Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B Biointerfaces. 2007; 58 ( 1 ): 3 ‐ 7.
dc.identifier.citedreferenceNikoobakht B, El‐sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed‐mediated growth method. Chem Mater. 2003; 15: 1957 ‐ 1962.
dc.identifier.citedreferenceLiu PY, Chin LK, Ser W, et al. Real‐time measurement of single bacterium’s refractive index using optofluidic immersion refractometry. Procedia Eng. 2014; 87: 356 ‐ 359.
dc.identifier.citedreferenceJohnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B. 1972; 6: 4370 ‐ 4379.
dc.identifier.citedreferenceEpps SV, Harvey RB, Hume ME, Phillips TD, Anderson RC, Nisbet DJ. Foodborne campylobacter: Infections, metabolism, pathogenesis and reservoirs. Int J Environ Res Public Health. 2013; 10 ( 12 ): 6292 ‐ 6304.
dc.identifier.citedreferenceAltekruse SF, Stern NJ, Fields PI, Swerdlow DL. Campylobacter jejuni—an emerging foodborne pathogen. Emerg Infect Dis. 1999; 5 ( 1 ): 28 ‐ 35.
dc.identifier.citedreferencePark JH, Hong D, Lee J, Choi IS. Cell‐in‐shell hybrids: Chemical nanoencapsulation of individual cells. Acc Chem Res. 2016; 49 ( 5 ): 792 ‐ 800.
dc.identifier.citedreferenceSeisenbaeva GA, Moloney MP, Tekoriute R, et al. Biomimetic synthesis of hierarchically porous nanostructured metal oxide microparticles‐potential scaffolds for drug delivery and catalysis. Langmuir. 2010; 26 ( 12 ): 9809 ‐ 9817.
dc.identifier.citedreferenceLee J, Govorov AO, Dulka J, Kotov NA. Bioconjugates of CdTe nanowires and Au nanoparticles: Plasmon‐exciton interactions, luminescence enhancement and collective effects. Nano Lett. 2004; 4 ( 12 ): 2323 ‐ 2330.
dc.identifier.citedreferenceGuerrero‐Martínez A, Auguié B, Alonso‐Gómez JL, et al. Intense optical activity from three‐dimensional chiral ordering of plasmonic nanoantennas. Angew Chem Int Ed Engl. 2011; 50 ( 24 ): 5499 ‐ 5503.
dc.identifier.citedreferenceTarantola M, Pietuch A, Schneider D, et al. Toxicity of gold‐nanoparticles: Synergistic effects of shape and surface functionalization on micromotility of epithelial cells. Nanotoxicology. 2011; 5 ( 2 ): 254 ‐ 268.
dc.identifier.citedreferenceFrench S, Cote J‐P, Stokes JM, Truant R, Brown ED. Bacteria getting into shape: Genetic determinants of E. coli morphology. MBio. 2017; 8: e01977‐16.
dc.identifier.citedreferenceYoung KD. Bacterial morphology: Why have different shapes? Curr Opin Microbiol. 2007; 10 ( 6 ): 596 ‐ 600.
dc.identifier.citedreferenceCabeen MT, Jacobs‐Wagner C. Bacterial cell shape. Nat Rev Microbiol. 2005; 3 ( 8 ): 601 ‐ 610.
dc.identifier.citedreferenceHajipour MJ, Fromm KM, Ashkarran AA, et al. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012; 30 ( 10 ): 499 ‐ 511.
dc.identifier.citedreferenceCha S‐H, Hong J, McGuffie M, Yeom B, VanEpps J, Kotov NA. Shape‐dependent biomimetic inhibition of enzyme by nanoparticles and their antibacterial activity. ACS Nano. 2015; 9 ( 9 ): 9097 ‐ 9105.
dc.identifier.citedreferenceChoi WJ, Cheng G, Huang Z, Zhang S, Norris TB, Kotov NA. Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators. Nat Mater. 2019; 18: 826 ‐ 829.
dc.identifier.citedreferenceNakanishi K, Berova N, Woody RW. Circular Dichroism: Principles and Applications. Wiley‐VCH; 2000.
dc.identifier.citedreferenceMiles AJ, Whitmore L, Wallace BA. Spectral magnitude effects on the analyses of secondary structure from circular dichroism spectroscopic data. Protein Sci. 2005; 14 ( 2 ): 368 ‐ 374.
dc.identifier.citedreferenceYeom J, Santos U, Chekini M, Cha M, de Moura AF, Kotov NA. Chiromagnetic nanoparticles and gels. Science. 2018; 359 ( 6373 ): 309 ‐ 314.
dc.identifier.citedreferenceMorrow SM, Bissette AJ, Fletcher SP. Transmission of chirality through space and across length scales. Nat Nanotechnol. 2017; 12: 410 ‐ 419.
dc.identifier.citedreferenceMa W, Xu L, de Moura AF, et al. Chiral inorganic nanostructures. Chem Rev. 2017; 117 ( 12 ): 8041 ‐ 8093.
dc.identifier.citedreferenceGuerrero‐Martínez A, Alonso‐Gómez JL, Auguié B, Cid MM, Liz‐Marzán LM. From individual to collective chirality in metal nanoparticles. Nano Today. 2011; 6: 381 ‐ 400.
dc.identifier.citedreferenceXia Y, Zhou Y, Tang Z. Chiral inorganic nanoparticles: Origin, optical properties and bioapplications. Nanoscale. 2011; 3: 1374 ‐ 1382.
dc.identifier.citedreferenceOaki Y, Imai H. Amplification of chirality from molecules into morphology of crystals through molecular recognition. J Am Chem Soc. 2004; 126 ( 30 ): 9271 ‐ 9275.
dc.identifier.citedreferenceMark AG, Gibbs JG, Lee T‐C, Fischer P. Hybrid nanocolloids with programmed three‐dimensional shape and material composition. Nat Mater. 2013; 12 ( 9 ): 802 ‐ 807.
dc.identifier.citedreferenceZhou Y et al. Biomimetic Hierarchical Assembly of Helical Supraparticles from Chiral Nanoparticles. ACS Nano. 2016; 10 ( 3 ): 3248 ‐ 3256.
dc.identifier.citedreferenceSingh G, Chan H, Baskin A, et al. Self‐assembly of magnetite nanocubes into helical superstructures. Science. 2014; 345 ( 6201 ): 1149 ‐ 1153.
dc.identifier.citedreferenceDuan Y, Han L, Zhang J, et al. Angewandte optically active nanostructured ZnO films. Angew. 2015; 54 ( 50 ): 15170 ‐ 15175.
dc.identifier.citedreferenceKim Y, Yeom B, Arteaga O, et al. Reconfigurable chiroptical nanocomposites with chirality transfer from the macro‐ to the nanoscale. Nat Mater. 2016; 15 ( 4 ): 461 ‐ 468.
dc.identifier.citedreferenceYan J, Feng W, Kim J‐Y, et al. Self‐assembly of chiral nanoparticles into semiconductor helices with tunable near‐infrared optical activity. Chem Mater. 2020; 32 ( 1 ): 476 ‐ 488.
dc.identifier.citedreferenceLan X, Lu X, Shen C, Ke Y, Ni W, Wang Q. Au nanorod helical superstructures with designed chirality. J Am Chem Soc. 2015; 137 ( 1 ): 457 ‐ 462.
dc.identifier.citedreferenceChen W, Bian A, Agarwal A, et al. Nanoparticle superstructures made by polymerase chain reaction: Collective interactions of nanoparticles and a new principle for chiral materials. Nano Lett. 2009; 9 ( 5 ): 2153 ‐ 2159.
dc.identifier.citedreferenceMastroianni AJ. Pyramidal and chiral grouping of gold nanocrystals assembled using DNA scaffolds. J Am Chem Soc. 2010; 131;( 24 ): 8455 ‐ 8459.
dc.identifier.citedreferenceHou K, Ali W, Lv J, et al. Optically active inverse opal photonic crystals. J Am Chem Soc. 2018; 140 ( 48 ): 16446 ‐ 16449.
dc.identifier.citedreferenceLv J, Ding D, Yang X, et al. Biomimetic chiral photonic crystals. Angew Chem Int Ed. 2019; 58 ( 23 ): 7783 ‐ 7787.
dc.identifier.citedreferenceLv J, Hou K, Ding D, et al. Gold nanowire chiral ultrathin films with ultrastrong and broadband optical activity. Angew Chem Int Ed. 2017; 56 ( 18 ): 5055 ‐ 5060.
dc.identifier.citedreferenceYeom J, Yeom B, Chan H, et al. Chiral templating of self‐assembling nanostructures by circularly polarized light. Nat Mater. 2015; 14 ( 1 ): 66 ‐ 72.
dc.identifier.citedreferenceFeng W, Kim JY, Wang X, et al. Assembly of mesoscale helices with near‐unity enantiomeric excess and light‐matter interactions for chiral semiconductors. Sci Adv. 2017; 3 ( 3 ): e1601159.
dc.identifier.citedreferenceGansel JK, Thiel M, Rill MS, et al. Gold helix photonic metamaterial as broadband circular polarizer. Science. 2009; 325 ( 5947 ): 1513 ‐ 1515.
dc.identifier.citedreferenceEsposito M, Tasco V, Todisco F, et al. Triple‐helical nanowires by tomographic rotatory growth for chiral photonics. Nat Commun. 2015; 6 ( 1 ): 6484.
dc.identifier.citedreferenceKotov NA. Self‐assembly of inorganic nanoparticles: ab ovo. Europhys Lett. 2017; 119: 66008.
dc.identifier.citedreferenceHug LA, Baker BJ, Anantharaman K, et al. A new view of the tree and life’s diversity. Nat Microbiol. 2016; 1 ( 5 ): 16048.
dc.identifier.citedreferenceZhang J, Feng W, Zhang H, et al. Multiscale deformations lead to high toughness and circularly polarized emission in helical nacre‐like fibres. Nat Commun. 2016; 7 ( 1 ): 10701.
dc.identifier.citedreferenceRoche C, Sun HJ, Prendergast ME, et al. Homochiral columns constructed by chiral self‐sorting during supramolecular helical organization of hat‐shaped molecules. J Am Chem Soc. 2014; 136: 7169 ‐ 7185.
dc.identifier.citedreferenceFields, P. & Fitzgerald, C. Campylobacter jejuni. ( 2004 ). https://phil.cdc.gov/Details.aspx?pid=5778
dc.identifier.citedreferenceCarleton O, Charon NW, Allender P, O’Brien S. Helix handedness of Leptospira interrogans as determined by scanning electron microscopy. J Bacteriol. 1979; 137 ( 3 ): 1413 ‐ 1416.
dc.identifier.citedreferenceMendelson NH, Karamata D. Inversion of helix orientation in Bacillus subtilis macrofibers. J Bacteriol. 1982; 151 ( 1 ): 450 ‐ 454.
dc.identifier.citedreferenceFerrari GM, Tassan S. A method for the experimental determination of light absorption by aquatic heterotrophic bacteria. J Plankton Res. 1998; 20: 757 ‐ 766.
dc.identifier.citedreferenceKatz A, Alimova A, Min Xu, et al. Bacteria size determination by elastic light scattering. IEEE J Sel Top Quantum Electron. 2003; 9 ( 2 ): 277 ‐ 287.
dc.identifier.citedreferenceXu, M. & Katz, A. Statistical interpretation of light anomalous diffraction by small particles and its applications in bio‐agent detection and monitoring. in Light Scattering Reviews 3 27 – 67 ( Springer, 2008 ).
dc.identifier.citedreferenceBalch WM, Vaughn JMJ, Novotny JF, et al. Fundamental changes in light scattering associated with infection of marine bacteria by bacteriophage. Limnol Oceanogr. 2002; 47 ( 5 ): 1554 ‐ 1561.
dc.identifier.citedreferenceS-nchez O, Mas J. Light absorption by phototrophic bacteria: effects of scattering, cell concentration and size of the culture vessel. Int Microbiol. 1999; 2 ( 4 ): 233 ‐ 240.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.