Coagulation factor VIIa binds to herpes simplex virus 1‐encoded glycoprotein C forming a factor X‐enhanced tenase complex oriented on membranes
dc.contributor.author | Lin, Bryan H. | |
dc.contributor.author | Sutherland, Michael R. | |
dc.contributor.author | Rosell, Federico I. | |
dc.contributor.author | Morrissey, James H. | |
dc.contributor.author | Pryzdial, Edward L. G. | |
dc.date.accessioned | 2020-07-02T20:33:25Z | |
dc.date.available | WITHHELD_12_MONTHS | |
dc.date.available | 2020-07-02T20:33:25Z | |
dc.date.issued | 2020-06 | |
dc.identifier.citation | Lin, Bryan H.; Sutherland, Michael R.; Rosell, Federico I.; Morrissey, James H.; Pryzdial, Edward L. G. (2020). "Coagulation factor VIIa binds to herpes simplex virus 1‐encoded glycoprotein C forming a factor X‐enhanced tenase complex oriented on membranes." Journal of Thrombosis and Haemostasis 18(6): 1370-1380. | |
dc.identifier.issn | 1538-7933 | |
dc.identifier.issn | 1538-7836 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/155933 | |
dc.description.abstract | BackgroundThe cell membrane‐derived initiators of coagulation, tissue factor (TF) and anionic phospholipid (aPL), are constitutive on the herpes simplex virus type 1 (HSV1) surface, bypassing physiological regulation. TF and aPL accelerate proteolytic activation of factor (F) X to FXa by FVIIa to induce clot formation and cell signaling. Thus, infection in vivo is enhanced by virus surface TF. HSV1‐encoded glycoprotein C (gC) is implicated in this tenase activity by providing viral FX binding sites and increasing FVIIa function in solution.ObjectiveTo examine the biochemical influences of gC on FVIIa‐dependent FX activation.MethodsImmunogold electron microscopy (IEM), kinetic chromogenic assays and microscale thermophoresis were used to dissect tenase biochemistry. Recombinant TF and gC were solubilized (s) by substituting the transmembrane domain with poly‐histidine, which could be orientated on synthetic unilamellar vesicles containing Ni‐chelating lipid (Ni‐aPL). These constructs were compared to purified HSV1 TF±/gC ± variants.ResultsIEM confirmed that gC, TF, and aPL are simultaneously expressed on a single HSV1 particle where the contribution of gC to tenase activity required the availability of viral TF. Unlike viral tenase activity, the cofactor effects of sTF and sgC on FVIIa was additive when bound to Ni‐aPL. FVIIa was found to bind to sgC and this was enhanced by FX. Orientation of sgC on a lipid membrane was critical for FVIIa‐dependent FX activation.ConclusionsThe assembly of gC with FVIIa/FX parallels that of TF and may involve other constituents on the HSV1 envelope with implications in virus infection and pathology. | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | herpesvirus | |
dc.subject.other | enzyme kinetics | |
dc.subject.other | coagulation factor | |
dc.subject.other | tissue factor | |
dc.subject.other | enzyme mechanism | |
dc.title | Coagulation factor VIIa binds to herpes simplex virus 1‐encoded glycoprotein C forming a factor X‐enhanced tenase complex oriented on membranes | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Internal Medicine and Specialties | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/155933/1/jth14790-sup-0001-Supinfo.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/155933/2/jth14790.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/155933/3/jth14790_am.pdf | |
dc.identifier.doi | 10.1111/jth.14790 | |
dc.identifier.source | Journal of Thrombosis and Haemostasis | |
dc.identifier.citedreference | Nuzzio KM, Watt ED, Boettcher JM, Gajsiewicz JM, Morrissey JH, Rienstra CM. High‐resolution NMR studies of human tissue factor. PLoS One. 2016; 11: e0163206. | |
dc.identifier.citedreference | Mackman N. The role of tissue factor and factor VIIa in hemostasis. Anesth Analg. 2009; 108: 1447 ‐ 1452. | |
dc.identifier.citedreference | Sutherland MR, Simon AY, Shanina I, Horwitz MS, Ruf W, Pryzdial ELG. Virus envelope tissue factor promotes infection in mice. J Thromb Haemost. 2019; 17: 482 ‐ 491. | |
dc.identifier.citedreference | Altgärde N, Eriksson C, Peerboom N, et al. Mucin‐like region of herpes simplex virus type 1 attachment protein glycoprotein C (gC) modulates the virus‐glycosaminoglycan interaction. J Biol Chem. 2015; 290: 21473 ‐ 21485. | |
dc.identifier.citedreference | Mardberg K, Trybala E, Tufaro F, Bergstrom T. Herpes simplex virus type 1 glycoprotein C is necessary for efficient infection of chondroitin sulfate‐expressing gro2C cells. J Gen Virol. 2002; 83: 291 ‐ 300. | |
dc.identifier.citedreference | Rux AH, Lou H, Lambris JD, Friedman HM, Eisenberg RJ, Cohen GH. Kinetic analysis of glycoprotein C of herpes simplex virus types 1 and 2 binding to heparin, heparan sulfate, and complement component C3b. Virology. 2002; 332: 324 ‐ 332. | |
dc.identifier.citedreference | Friedman HM, Cohen GH, Eisenberg RJ, Seidel CA, Cines DB. Glycoprotein C of herpes simplex virus 1 acts as a receptor for the C3b complement component on infected cells. Nature. 1984; 309: 633 ‐ 635. | |
dc.identifier.citedreference | Hung SL, Peng C, Kostavasili I, et al. The interaction of glycoprotein C of herpes simplex virus types 1 and 2 with the alternative complement pathway. Virology. 1994; 203: 299 ‐ 312. | |
dc.identifier.citedreference | Etingin OR, Silverstein RL, Friedman HM, Hajjar DP. Viral activation of the coagulation cascade: molecular interactions at the surface of infected endothelial cells. Cell. 1990; 61: 657 ‐ 662. | |
dc.identifier.citedreference | Livingston JR, Sutherland MR, Friedman HM, Pryzdial ELG. Herpes simplex virus type 1‐encoded glycoprotein C contributes to direct coagulation factor X‐virus binding. Biochem J. 2006; 393: 529 ‐ 535. | |
dc.identifier.citedreference | Sutherland MR, Friedman HM, Pryzdial ELG. Herpes simplex virus type 1‐encoded glycoprotein C enhances coagulation factor VIIa activity on the virus. Thromb Haemost. 2004; 92: 947 ‐ 955. | |
dc.identifier.citedreference | Tal‐Singer R, Peng C, Ponce De Leon M, et al. Interaction of herpes simplex virus glycoprotein gC with mammalian cell surface molecules. J Virol. 1995; 69: 4471 ‐ 4483. | |
dc.identifier.citedreference | Willis SH, Peng C, Leon MP, et al. Expression and purification of secreted forms of HSV glycoproteins from baculovirus‐infected insect cells. Methods Mol Med. 1998; 10: 131 ‐ 156. | |
dc.identifier.citedreference | Morrissey JH, Fair DS, Edgington TS. Monoclonal antibody analysis of purified and cell‐associated tissue factor. Thromb Res. 1988; 52: 247 ‐ 261. | |
dc.identifier.citedreference | Waters EK, Morrissey JH. Restoring full biological activity to the isolated ectodomain of an integral membrane protein. Biochemistry. 2006; 45: 3769 ‐ 3774. | |
dc.identifier.citedreference | Higgins DL, Mann KG. The interaction of bovine factor V and factor V‐derived peptides with phospholipid vesicles. J Biol Chem. 1983; 258: 6503 ‐ 6508. | |
dc.identifier.citedreference | Wienken CJ, Baaske P, Rothbauer U, Braun D, Duhr S. Protein‐binding assays in biological liquids using microscale thermophoresis. Nat Commun. 2010; 1: 100. | |
dc.identifier.citedreference | Scheuermann TH, Padrick SB, Gardner KH, Brautigam CA. On the acquisition and analysis of microscale thermophoresis data. Anal Biochem. 2016; 496: 79 ‐ 93. | |
dc.identifier.citedreference | Neuenschwander PF, Morrissey JH. Roles of the membrane‐interactive regions of factor VIIa and tissue factor. The factor VIIa Gla domain is dispensable for binding to tissue factor but important for activation of factor X. J Biol Chem. 1994; 269: 8007 ‐ 8013. | |
dc.identifier.citedreference | Sen P, Neuenschwander PF, Pendurthi UR, Rao LVM. Analysis of factor VIIa binding to relipidated tissue factor by surface plasmon resonance. Blood Coagul Fibrinolysis. 2010; 21: 376 ‐ 379. | |
dc.identifier.citedreference | Ruf W, Rehemtulla A, Morrissey JH, Edgington TS. Phospholipid‐independent and ‐dependent interactions required for tissue factor receptor and cofactor function. J Biol Chem. 1991; 266: 2158 ‐ 2166. | |
dc.identifier.citedreference | Huang Q, Neuenschwander PF, Rezaie AR, Morrissey JH. Substrate recognition by tissue factor‐factor VIIa. Evidence for interaction of residues Lys165 and Lys166 of tissue factor with the 4‐carboxyglutamate‐rich domain of factor X. J Biol Chem. 1996; 271: 21752 ‐ 21757. | |
dc.identifier.citedreference | Petersen LC, Albrektsen T, Hjorto GM, Kjalke M, Bjorn SE, Sorensen BB. Factor VIIa/tissue factor‐dependent gene regulation and pro‐coagulant activity: effect of factor VIIa concentration. Thromb Haemost. 2007; 98: 909 ‐ 911. | |
dc.identifier.citedreference | Waxman E, Ross JB, Laue TM, et al. Tissue factor and its extracellular soluble domain: the relationship between intermolecular association with factor VIIa and enzymatic activity of the complex. Biochemistry. 1992; 31: 3998 ‐ 4003. | |
dc.identifier.citedreference | Småbrekke B, Rinde LB, Hindberg K, et al. Atherosclerotic risk factors and risk of myocardial infarction and venous thromboembolism; time‐fixed versus time‐varying analyses. The Tromsø Study. PLoS One. 2016; 11: e0163242. | |
dc.identifier.citedreference | Anderson FAJ, Spencer FA. Risk factors for venous thromboembolism. Circulation. 2003; 107: I9 ‐ 16. | |
dc.identifier.citedreference | Gregson J, Kaptoge S, Bolton T, et al. Cardiovascular risk factors associated with venous thromboembolism. JAMA Cardiol. 2019; 4: 163 ‐ 173. | |
dc.identifier.citedreference | Previtali E, Bucciarelli P, Passamonti SM, Martinelli I. Risk factors for venous and arterial thrombosis. Blood Transfus. 2011; 53: 120 ‐ 138. | |
dc.identifier.citedreference | Yonemitsu Y. Viruses and vascular disease. Nat Med. 1998; 4: 253. | |
dc.identifier.citedreference | Morre S, Stooker W, Lagrand W, van den Brule AJC, Niessen H. Microorganisms in the aetiology of atherosclerosis. J Clin Pathol. 2000; 53: 647 ‐ 654. | |
dc.identifier.citedreference | Funahara Y, Sumarmo WR. Features of DIC in dengue hemorrhagic fever. Bibl Haematol. 1983; 201 ‐ 211. | |
dc.identifier.citedreference | Srichaikul T, Nimmannitya S. Haematology in dengue and dengue haemorrhagic fever. Baillieres Best Pract Res Clin Haematol. 2000; 13: 261 ‐ 276. | |
dc.identifier.citedreference | Chuansumrit A, Chaiyaratana W. Hemostatic derangement in dengue hemorrhagic fever. Thromb Res. 2014; 133: 10 ‐ 16. | |
dc.identifier.citedreference | Ambrosino P, Tarantino L, Criscuolo L, Nasto A, Celentano A, Di Minno MN. The risk of venous thromboembolism in patients with hepatitis C. A systematic review and meta‐analysis. Thromb Haemost. 2016; 116: 958 ‐ 966. | |
dc.identifier.citedreference | Kiefer EM, Shi Q, Hoover DR, et al. Association of hepatitis C with markers of hemostasis in HIV‐infected and uninfected women in the women’s interagency HIV study (WIHS). J Acquir Immune Defic Syndr. 2013; 62: 301 ‐ 310. | |
dc.identifier.citedreference | Violi F, Ferro D, Basili S, et al. Increased rate of thrombin generation in hepatitis C virus cirrhotic patients. Relationship to venous thrombosis. J Investig Med. 1995; 43: 550 ‐ 554. | |
dc.identifier.citedreference | Bibas M, Biava G, Antinori A. HIV‐associated venous thromboembolism. Mediterr J Hematol Infect Dis. 2011; 3: e2011030. | |
dc.identifier.citedreference | Garlassi E, Carli F, Orlando G, et al. Premature age‐related comorbidities among HIV‐infected persons compared with the general population. Clin Infect Dis. 2011; 53: 1120 ‐ 1126. | |
dc.identifier.citedreference | Vercellotti GM. Effects of viral activation of the vessel wall on inflammation and thrombosis. Blood Coagul Fibrinolysis. 1998; 9 ( Suppl 2 ): S3 ‐ S6. | |
dc.identifier.citedreference | Etingin OR, Hajjar DP. Evidence for cytokine regulation of cholesterol metabolism in herpesvirus‐infected arterial cells by the lipoxygenase pathway. J Lipid Res. 1990; 31: 299 ‐ 305. | |
dc.identifier.citedreference | Span AH, van Dam‐Mieras MC, Mullers W, Endert J, Muller AD, Bruggeman CA. The effect of virus infection on the adherence of leukocytes or platelets to endothelial cells. Eur J Clin Invest. 1991; 21: 331 ‐ 338. | |
dc.identifier.citedreference | Key NS, Vercellotti GM, Winkelmann JC, et al. Infection of vascular endothelial cells with herpes simplex virus enhances tissue factor activity and reduces thrombomodulin expression. Proc Natl Acad Sci U S A. 1990; 87: 7095 ‐ 7099. | |
dc.identifier.citedreference | Harrington KJ, Andtbacka RH, Collichio F, et al. Efficacy and safety of talimogene laherparepvec versus granulocyte‐macrophage colony‐stimulating factor in patients with stage IIIB/C and IVM1a melanoma: subanalysis of the Phase III OPTiM trial. Onco Targets Ther. 2016; 9: 7081 ‐ 7093. | |
dc.identifier.citedreference | Leite J, Ribeiro A, Goncalves D, Sargento‐Freitas J, Trindade L, Duque V. Cerebral venous thrombosis as rare presentation of herpes simplex virus encephalitis. Case Rep Infect Dis. 2019; 2019: 7835420. | |
dc.identifier.citedreference | Görek A, Akçay Ş, Ibiş OA, et al. Herpes simplex virus infection, massive pulmonary thromboembolism, and right atrial thrombi in a single patient: case report. Heart Lung. 2007; 36: 148 ‐ 153. | |
dc.identifier.citedreference | Li JZ, Sax PE. HSV‐1 encephalitis complicated by cerebral hemorrhage in an HIV‐positive person. AIDS Read. 2009; 19: 153 ‐ 155. | |
dc.identifier.citedreference | Singh TD, Fugate JE, Hocker S, Wijdicks EFM, Aksamit AJ, Rabinstein AA. Predictors of outcome in HSV encephalitis. J Neurol. 2016; 263: 277 ‐ 289. | |
dc.identifier.citedreference | Sutherland MR, Raynor CM, Leenknegt H, Wright JF, Pryzdial EL. Coagulation initiated on herpesviruses. Proc Natl Acad Sci U S A. 1997; 94: 13510 ‐ 13514. | |
dc.identifier.citedreference | Sutherland MR, Ruf W, Pryzdial ELG. Tissue factor and glycoprotein C on herpes simplex virus type 1 are protease‐activated receptor 2 cofactors that enhance infection. Blood. 2012; 119: 3638 ‐ 3645. | |
dc.identifier.citedreference | Pryzdial EL, Wright JF. Prothrombinase assembly on an enveloped virus: evidence that the cytomegalovirus surface contains procoagulant phospholipid. Blood. 1994; 84: 3749 ‐ 3757. | |
dc.identifier.citedreference | Aasrum M, Prydz H. Gene targeting of tissue factor, factor X, and factor VII in mice: their involvement in embryonic development. Biochemistry (Mosc). 2002; 67: 25 ‐ 32. | |
dc.identifier.citedreference | Nakagaki T, Foster DC, Berkner KL, Kisiel W. Initiation of the extrinsic pathway of blood coagulation: evidence for the tissue factor dependent autoactivation of human coagulation factor VII. Biochemistry. 1991; 30: 10819 ‐ 10824. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.