Show simple item record

Dense MoS2 Micro‐Flowers Planting on Biomass‐Derived Carbon Fiber Network for Multifunctional Sulfur Cathodes

dc.contributor.authorRazaq, Rameez
dc.contributor.authorZhang, Nana
dc.contributor.authorXin, Ying
dc.contributor.authorLi, Qian
dc.contributor.authorWang, Jin
dc.contributor.authorZhang, Zhaoliang
dc.date.accessioned2020-07-02T20:33:32Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-07-02T20:33:32Z
dc.date.issued2020-07-07
dc.identifier.citationRazaq, Rameez; Zhang, Nana; Xin, Ying; Li, Qian; Wang, Jin; Zhang, Zhaoliang (2020). "Dense MoS2 Micro‐Flowers Planting on Biomass‐Derived Carbon Fiber Network for Multifunctional Sulfur Cathodes." ChemistrySelect 5(25): 7563-7570.
dc.identifier.issn2365-6549
dc.identifier.issn2365-6549
dc.identifier.urihttps://hdl.handle.net/2027.42/155938
dc.description.abstractThe significant challenge in lithium‐sulfur batteries (LSBs) arises from low conductivity of sulfur cathode, loss of active sulfur species due to less anchoring sites and sluggish redox kinetics of lithium polysulfides (LPSs). Herein, the dense MoS2 micro‐flowers assembled by cross‐linked 2D MoS2 nanoflakes planting on biomass‐derived carbon fiber (CF) network (MoS2/CFs) are fabricated as multifunctional sulfur cathodes of LSBs. The 2D MoS2 nanoflakes supported on CF provide abundant anchoring sites for strong adsorption, while the 3D flowerlike structure prevents lamellar aggregation of 2D MoS2 nanoflakes. Importantly, the dense MoS2 micro‐flowers planting on the network weaved by biomass‐derived CFs ensures the high electronic conductivity of the MoS2/CFs composite, sufficient electrode/electrolyte interaction, fast electron and Li+ transportation. Moreover, the CF network weaved from cost‐effective tissue paper reduces the cost of LSBs. Thus, the S‐MoS2/CFs cathode exhibits a high rate capability (1149 and 608 mA h g−1 are obtained at 0.2 C and 4 C, respectively), excellent cyclic performance with ∼75% capacity retention and 99% Coulombic efficiency at 2 C after 500 cycles, corresponding to ∼0.05% capacity fading per cycle only, as well as structure integrity during the discharge/charge process.800 Dong Chuan Road, Minhang District, Shanghai 200240, ChinaA novel, cost‐effective, dense 3 D MoS2 micro‐flowers assembled by cross‐linked 2D MoS2 nanoflakes planting on biomass‐derived carbon fiber (CF) network (MoS2/CFs) are fabricated as multifunctional sulfur cathodes of LSBs. The 2D MoS2 nanoflakes provide abundant anchoring sites for strong adsorption, while the 3D flowerlike structure prevents lamellar aggregation of 2D MoS2 nanoflakes. Significantly, the dense MoS2 micro‐flowers supported on carbon fibers ensures the high electronic conductivity of the MoS2/CFs composite, sufficient electrode/electrolyte interaction, fast electron and Li+ transportation.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherRedox chemistry
dc.subject.otherPolysulfide adsorption
dc.subject.otherLithium
dc.subject.otherDense MoS2 micro-flower
dc.subject.otherBiomass-derived carbon fiber network
dc.titleDense MoS2 Micro‐Flowers Planting on Biomass‐Derived Carbon Fiber Network for Multifunctional Sulfur Cathodes
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155938/1/slct202001729-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155938/2/slct202001729_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155938/3/slct202001729.pdf
dc.identifier.doi10.1002/slct.202001729
dc.identifier.sourceChemistrySelect
dc.identifier.citedreferenceM. Chen, W. Xu, S. Jamil, S. Jiang, C. Huang, X. Wang, Y. Wang, H. Shu, K. Xiang, P. Zeng, Small 2018, 14, 1803134.
dc.identifier.citedreferenceY. Wu, X. Zhu, P. Li, T. Zhang, M. Li, J. Deng, Y. Huang, P. Ding, S. Wang, R. Zhang, J. Lu, G. Lu, Y. Li, Y. Li, Nano Energy 2019, 59, 636 – 643;
dc.identifier.citedreferenceR. Razaq, N. Zhang, Y. Xin, Q. Li, J. Wang, Z. Zhang, EcoMat DOI 10.1002/eom2.12020.
dc.identifier.citedreferenceM. Zhao, H. J. Peng, B. Q. Li, X. Chen, J. Xie, X. Liu, Q. Zhang, J. Q. Huang, Angew. Chem. Int. Ed. 2020, 59, 9011.
dc.identifier.citedreference 
dc.identifier.citedreferenceT. Chen, Z. Zhang, B. Cheng, R. Chen, Y. Hu, L. Ma, G. Zhu, J. Liu, Z. Jin, J. Am. Chem. Soc. 2017, 139, 12710 – 12715;
dc.identifier.citedreferenceH. Zhang, M. Zou, W. Zhao, Y. Wang, Y. Chen, Y. Wu, L. Dai, A. Cao, ACS Nano 2019, 13, 3982 – 3991;
dc.identifier.citedreferenceX. Yang, X. Gao, Q. Sun, S. P. Jand, Y. Yu, Y. Zhao, X. Li, K. Adair, L. Y. Kuo, J. Rohrer, J. Liang, X. Lin, M. N. Banis, Y. Hu, H. Zhang, X. Li, R. Li, H. Zhang, P. Kaghazchi, T. K. Sham, X. Sun, Adv. Mater. 2019, 31, 1901220.
dc.identifier.citedreferenceZ. Yuan, H. J. Peng, T. Z. Hou, J. Q. Huang, C. M. Chen, D. W. Wang, X. B. Cheng, F. Wei, Q. Zhang, Nano Lett. 2016, 16, 519 – 527.
dc.identifier.citedreferenceR. Razaq, D. Sun, J. Wang, Y. Xin, G. Abbas, J. Zhang, Q. Li, T. Huang, Z. Zhang, Y. Huang, J. Power Sources 2019, 414, 453 – 459.
dc.identifier.citedreference 
dc.identifier.citedreferenceB.-Q. Li, H.-J. Peng, X. Chen, S.-Y. Zhang, J. Xie, C.-X. Zhao, Q. Zhang, CCS Chem. 2019, 1, 128 – 137.
dc.identifier.citedreferenceP. T. Dirlam, J. Park, A. G. Simmonds, K. Domanik, C. B. Arrington, J. L. Schaefer, V. P. Oleshko, T. S. Kleine, K. Char, R. S. Glass, C. L. Soles, C. Kim, N. Pinna, Y. E. Sung, J. Pyun, ACS Appl. Mater. Interfaces 2016, 8, 13437 – 13848.
dc.identifier.citedreferenceH. Lin, L. Yang, X. Jiang, G. Li, T. Zhang, Q. Yao, G. W. Zheng, J. Y. Lee, Energy Environ. Sci. 2017, 10, 1476 – 1486.
dc.identifier.citedreferenceG. Liu, A. W. Robertson, M. M.-J. Li, W. C. H. Kuo, M. T. Darby, M. H. Muhieddine, Y.-C. Lin, K. Suenaga, M. Stamatakis, J. H. Warner, S. C. E. Tsang, Nat. Chem. 2017, 9, 810 – 816.
dc.identifier.citedreferenceX. Yang, Q. Li, E. Lu, Z. Wang, X. Gong, Z. Yu, Y. Guo, L. Wang, Y. Guo, W. Zhan, J. Zhang, S. Dai, Nat. Commun. 2019, 10, 1611.
dc.identifier.citedreferenceW. Xue, Z. Shi, L. Suo, C. Wang, Z. Wang, H. Wang, K. P. So, A. Maurano, D. Yu, Y. Chen, L. Qie, Z. Zhu, G. Xu, J. Kong, J. Li, Nat. Energy 2019, 4, 374 – 382.
dc.identifier.citedreferenceI. S. Amiinu, Z. Pu, X. Liu, K. A. Owusu, H. G. R. Monestel, F. O. Boakye, H. Zhang, S. Mu, Adv. Funct. Mater. 2017, 27, 1702300.
dc.identifier.citedreferenceX. Tang, Z. Sun, H. Yang, H. Fang, F. Wei, H.-M. Cheng, S. Zhuo, F. Li, J. Energy Chem. 2019, 31, 119.
dc.identifier.citedreferenceX. Huang, J. Tang, B. Luo, R. Knibbe, T. Lin, H. Hu, M. Rana, Y. Hu, X. Zhu, Q. Gu, D. Wang, L. Wang, Adv. Energy Mater. 2019, 9, 1901872.
dc.identifier.citedreferenceX. Xie, T. Makaryan, M. Zhao, K. L. Van Aken, Y. Gogotsi, G. Wang, Adv. Energy Mater. 2016, 6, 1502161.
dc.identifier.citedreferenceY. Li, P. Xu, G. Chen, J. Mou, S. Xue, K. Li, F. Zheng, Q. Dong, J. Hu, C. Yang, M. Liu, Chem. Eng. J. 2020, 380, 122595.
dc.identifier.citedreferenceZ. Zeng, W. Li, Q. Wang, X. Liu, Adv. Sci. 2019, 6, 1900711.
dc.identifier.citedreferenceM. Zhao, H. J. Peng, Z. W. Zhang, B. Q. Li, X. Chen, J. Xie, X. Chen, J. Y. Wei, Q. Zhang, J. Q. Huang, Angew. Chem. Int. Ed. 2019, 58, 3779.
dc.identifier.citedreferenceY. Song, W. Zhao, X. Zhu, L. Zhang, Q. Li, F. Ding, Z. Liu, J. Sun, ACS Appl. Mater. Interfaces 2018, 10, 15733 – 15741.
dc.identifier.citedreferenceC. Ye, D. Chao, J. Shan, H. Li, K. Davey, S.-Z. Qiao, Matter 2020, 2, 323 – 344.
dc.identifier.citedreferenceZ. Cui, C. Zu, W. Zhou, A. Manthiram, J. B. Goodenough, Adv. Mater. 2016, 28, 6926;
dc.identifier.citedreferenceZ. Sun, J. Zhang, L. Yin, G. Hu, R. Fang, H. M. Cheng, F. Li, Nat. Commun. 2017, 8, 14627.
dc.identifier.citedreferenceW. G. Lim, C. Jo, A. Cho, J. Hwang, S. Kim, J. W. Han, J. Lee, Adv. Mater. 2019, 31, 1806547.
dc.identifier.citedreferenceQ. Pang, X. Liang, C. Y. Kwok, L. F. Nazar, Nat. Energy 2016, 1, 16132.
dc.identifier.citedreferenceJ. He, A. Manthiram, Energy Storage Mater. 2019, 20, 55 – 70.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. Manthiram, Y. Fu, S. H. Chung, C. Zu, Y. S. Su, Chem. Rev. 2014, 114, 11751 – 11787;
dc.identifier.citedreferenceX. Liu, J. Q. Huang, Q. Zhang, L. Mai, Adv. Mater. 2017, 29, 1601795.
dc.identifier.citedreferenceZ. Li, L. Yuan, Z. Yi, Y. Sun, Y. Liu, Y. Jiang, Y. Shen, Y. Xin, Z. Zhang, Y. Huang, Adv. Energy Mater. 2014, 4, 1301473.
dc.identifier.citedreferenceD. Li, F. Han, S. Wang, F. Cheng, Q. Sun, W. C. Li, ACS Appl. Mater. Interfaces 2013, 5, 2208 – 2213.
dc.identifier.citedreferenceG. Zheng, Q. Zhang, J. J. Cha, Y. Yang, W. Li, Z. W. Seh, Y. Cui, Nano Lett. 2013, 13, 1265 – 1270.
dc.identifier.citedreferenceN. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, L. A. Archer, Angew. Chem. Int. Ed. 2011, 50, 5904 – 5908; Angew. Chem. 2011, 123, 6026 – 6030.
dc.identifier.citedreferenceX.-B. Cheng, J.-Q. Huang, Q. Zhang, H.-J. Peng, M.-Q. Zhao, F. Wei, Nano Energy 2014, 4, 65 – 72.
dc.identifier.citedreferenceL. Wang, Z. Yang, H. Nie, C. Gu, W. Hua, X. Xu, X. a Chen, Y. Chen, S. Huang, J. Mater. Chem. A 2016, 4, 15343 – 15352.
dc.identifier.citedreferenceR. Elazari, G. Salitra, A. Garsuch, A. Panchenko, D. Aurbach, Adv. Mater. 2011, 23, 5641 – 5644.
dc.identifier.citedreferenceL. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li, W. Duan, J. Guo, E. J. Cairns, Y. Zhang, J. Am. Chem. Soc. 2011, 133, 18522 – 18525.
dc.identifier.citedreferenceC. Jin, W. Zhang, Z. Zhuang, J. Wang, H. Huang, Y. Gan, Y. Xia, C. Liang, J. Zhang, X. Tao, J. Mater. Chem. A 2017, 5, 632 – 640.
dc.identifier.citedreferenceD. Su, M. Cortie, G. Wang, Adv. Energy Mater. 2017, 7, 1602014.
dc.identifier.citedreferenceP. Shi, Y. Wang, X. Liang, Y. Sun, S. Cheng, C. Chen, H. Xiang, ACS Sustainable Chem. Eng. 2018, 6, 9661 – 9670.
dc.identifier.citedreferenceW. Zhou, X. Xiao, M. Cai, L. Yang, Nano Lett. 2014, 14, 5250 – 5256.
dc.identifier.citedreferenceJ. Wang, H. Yang, Z. Chen, L. Zhang, J. Liu, P. Liang, H. Yang, X. Shen, Z. X. Shen, Adv. Sci. 2018, 5, 1800621.
dc.identifier.citedreferenceM. Chen, S. Jiang, S. Cai, X. Wang, K. Xiang, Z. Ma, P. Song, A. C. Fisher, Chem. Engineering J. 2017, 313, 404.
dc.identifier.citedreference 
dc.identifier.citedreferenceH. Wang, T. Zhou, D. Li, H. Gao, G. Gao, A. Du, H. Liu, Z. Guo, ACS Appl. Mater. Interfaces 2017, 9, 4320 – 4325;
dc.identifier.citedreferenceZ. Li, J. Zhang, B. Guan, D. Wang, L.-M. Liu, X. W. Lou, Nat. Commun. 2016, 7, 13065;
dc.identifier.citedreferenceS. Imtiaz, Z. A. Zafar, R. Razaq, D. Sun, Y. Xin, Q. Li, Z. Zhang, L. Zheng, Y. Huang, J. A. Anderson, Adv. Mater. Interfaces 2018, 5, 1800243.
dc.identifier.citedreferenceR. Razaq, D. Sun, Y. Xin, Q. Li, T. Huang, Z. Zhang, Y. Huang, Adv. Mater. Interfaces 2019, 6, 1801636.
dc.identifier.citedreference 
dc.identifier.citedreferenceB. Cao, Y. Chen, D. Li, L. Yin, Y. Mo, ChemSusChem 2016, 9, 3338 – 3344;
dc.identifier.citedreferenceW. Bao, D. Su, W. Zhang, X. Guo, G. Wang, Adv. Funct. Mater. 2016, 20, 8746 – 4756;
dc.identifier.citedreferenceR. Razaq, D. Sun, Y. Xin, Q. Li, T. Huang, L. Zheng, Z. Zhang, Y. Huang, Nanotechnology 2018, 29, 295401;
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.