Empirical Models for Predicting Water and Heat Flow Properties of Permafrost Soils
dc.contributor.author | O’Connor, Michael T. | |
dc.contributor.author | Cardenas, M. Bayani | |
dc.contributor.author | Ferencz, Stephen B. | |
dc.contributor.author | Wu, Yue | |
dc.contributor.author | Neilson, Bethany T. | |
dc.contributor.author | Chen, Jingyi | |
dc.contributor.author | Kling, George W. | |
dc.date.accessioned | 2020-07-02T20:33:33Z | |
dc.date.available | WITHHELD_12_MONTHS | |
dc.date.available | 2020-07-02T20:33:33Z | |
dc.date.issued | 2020-06-16 | |
dc.identifier.citation | O’Connor, Michael T.; Cardenas, M. Bayani; Ferencz, Stephen B.; Wu, Yue; Neilson, Bethany T.; Chen, Jingyi; Kling, George W. (2020). "Empirical Models for Predicting Water and Heat Flow Properties of Permafrost Soils." Geophysical Research Letters 47(11): n/a-n/a. | |
dc.identifier.issn | 0094-8276 | |
dc.identifier.issn | 1944-8007 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/155939 | |
dc.description.abstract | Warming and thawing in the Arctic are promoting biogeochemical processing and hydrologic transport in carbon‐rich permafrost and soils that transfer carbon to surface waters or the atmosphere. Hydrologic and biogeochemical impacts of thawing are challenging to predict with sparse information on arctic soil hydraulic and thermal properties. We developed empirical and statistical models of soil properties for three main strata in the shallow, seasonally thawed soils above permafrost in a study area of ~7,500 km2 in Alaska. The models show that soil vertical stratification and hydraulic properties are predictable based on vegetation cover and slope. We also show that the distinct hydraulic and thermal properties of each soil stratum can be predicted solely from bulk density. These findings fill the gap for a sparsely mapped region of the Arctic and enable regional interpolation of soil properties critical for determining future hydrologic responses and the fate of carbon in thawing permafrost.Plain Language SummaryArctic permafrost holds about as much carbon as currently present in the atmosphere. Rapid warming in the Arctic has raised concerns that this stored carbon could thaw and get released into the atmosphere, which would substantially amplify global warming. The rate of this carbon release to the atmosphere depends on the rate of environmental processes such as microbial respiration and heat and groundwater flow. The soil properties controlling these processes are currently unknown across most of the Arctic, making predictions of the processes highly uncertain at larger scales. This study uses hundreds of measurements of soil properties across an area of land larger than Delaware to show that soil properties in the foothills of the Brooks Range in northern Alaska are predictable if the landscape slope, dominant vegetation type, and local topography are known. This study provides a base for calculating transport processes related to soil carbon in the Arctic.Key PointsThermal and hydraulic properties of 265 permafrost soil samples from across the Arctic foothills of Alaska were measuredDifferent soil strata (acrotelm, catotelm, and mineral soil) have consistent properties and thickness over hundreds of kilometersThe soil properties are strongly related to vegetation and surface slope and can be independently predicted from soil bulk density | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.publisher | Oxford University Press | |
dc.subject.other | active layer | |
dc.subject.other | hydraulic conductivity | |
dc.subject.other | permafrost | |
dc.subject.other | porosity | |
dc.subject.other | soil | |
dc.subject.other | thermal conductivity | |
dc.title | Empirical Models for Predicting Water and Heat Flow Properties of Permafrost Soils | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Geological Sciences | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/155939/1/grl60644_am.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/155939/2/grl60644.pdf | |
dc.identifier.doi | 10.1029/2020GL087646 | |
dc.identifier.source | Geophysical Research Letters | |
dc.identifier.citedreference | Serreze, M. C., & Barry, R. G. ( 2011 ). Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change, 77 ( 1–2 ), 85 – 96. https://doi.org/10.1016/j.gloplacha.2011.03.004 | |
dc.identifier.citedreference | McGuire, A. D., Koven, C., Lawrence, D. M., Clein, J. S., Xia, J., Beer, C., Burke, E., Chen, G., Chen, X., Delire, C., Jafarov, E., MacDougall, A. H., Marchenko, S., Nicolsky, D., Peng, S., Rinke, A., Saito, K., Zhang, W., Alkama, R., Bohn, T. J., Ciais, P., Decharme, B., Ekici, A., Gouttevin, I., Hajima, T., Hayes, D. J., Ji, D., Krinner, G., Lettenmaier, D. P., Luo, Y., Miller, P. A., Moore, J. C., Romanovsky, V., Schädel, C., Schaefer, K., Schuur, E. A. G., Smith, B., Sueyoshi, T., & Zhuang, Q. ( 2016 ). Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009. Global Biogeochemical Cycles, 30, 1015 – 1037. https://doi.org/10.1002/2016gb005405 | |
dc.identifier.citedreference | McGuire, A. D., Lawrence, D. M., Koven, C., Clein, J. S., Burke, E., Chen, G., Jafarov, E., MacDougall, A. H., Marchenko, S., Nicolsky, D., Peng, S., Rinke, A., Ciais, P., Gouttevin, I., Hayes, D. J., Ji, D., Krinner, G., Moore, J. C., Romanovsky, V., Schädel, C., Schaefer, K., Schuur, E. A. G., & Zhuang, Q. ( 2018 ). Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proceedings of the National Academy of Sciences of the U.S.A., 115 ( 15 ), 3882 – 3887. https://doi.org/10.1073/pnas.1719903115 | |
dc.identifier.citedreference | McNamara, J. P., Kane, D. L., & Hinzman, L. D. ( 1997 ). Hydrograph separations in an Arctic watershed using mixing model and graphical techniques. Water Resources Research, 33 ( 7 ), 1707 – 1719. https://doi.org/10.1029/97wr01033 | |
dc.identifier.citedreference | Morris, P. J., Baird, A. J., Eades, P. A., & Surridge, B. W. J. ( 2019 ). Controls on near‐surface hydraulic conductivity in a raised bog. Water Resources Research, 55, 1531 – 1543. https://doi.org/10.1029/2018wr024566 | |
dc.identifier.citedreference | Neilson, B. T., Cardenas, M. B., O’Connor, M. T., Rasmussen, M. T., King, T. V., & Kling, G. W. ( 2018 ). Groundwater flow and exchange across the land surface explain carbon export patterns in continuous permafrost watersheds. Geophysical Research Letters, 45, 7596 – 7605. https://doi.org/10.1029/2018gl078140 | |
dc.identifier.citedreference | Nicolsky, D. J., Romanovsky, V. E., Panda, S. K., Marchenko, S. S., & Muskett, R. R. ( 2017 ). Applicability of the ecosystem type approach to model permafrost dynamics across the Alaska North Slope. Journal of Geophysical Reseach: Earth Surface, 122, 50 – 75. https://doi.org/10.1002/2016JF003852 | |
dc.identifier.citedreference | Nicolsky, D. J., Romanovsky, V. E., & Panteleev, G. G. ( 2009 ). Estimation of soil thermal properties using in‐situ temperature measurements in the active layer and permafrost. Cold Regions Science and Technology, 55 ( 1 ), 120 – 129. https://doi.org/10.1016/j.coldregions.2008.03.003 | |
dc.identifier.citedreference | O’Connor, M. T. ( 2019 ), Controls governing active layer thermal hydrology: How predictable subsurface properties influence thaw, groundwater flow, and soil moisture, 218 pp, The University of Texas at Austin. | |
dc.identifier.citedreference | O’Connor, M. T., Cardenas, M. B., Neilson, B. T., Nicholaides, K. D., & Kling, G. W. ( 2019 ). Active layer groundwater flow: The interrelated effects of stratigraphy, thaw, and topography. Water Resources Research, 55, 6555 – 6576. https://doi.org/10.1029/2018wr024636 | |
dc.identifier.citedreference | Painter, S. L., Coon, E. T., Atchley, A., Berndt, M., Garimella, R., Moulton, D., et al. ( 2016 ). Integrated surface/subsurface permafrost thermal hydrology: Model formulation and proof‐of‐concept simulations. Water Resources Research, 52, 6062 – 6077. https://doi.org/10.1002/2015WR018427 | |
dc.identifier.citedreference | Payne, J. ( 2013 ), NSSI Landcover Report: Landcover Mapping for North Slope of Alaska, edited, United States Bureau of Land Management. | |
dc.identifier.citedreference | Ping, C. L., Michaelson, G. J., Jorgenson, M. T., Kimble, J. M., Epstein, H., Romanovsky, V. E., & Walker, D. A. ( 2008 ). High stocks of soil organic carbon in the North American Arctic region. Nature Geoscience, 1 ( 9 ), 615 – 619. https://doi.org/10.1038/ngeo284 | |
dc.identifier.citedreference | Plaza, C., Pegoraro, E., Bracho, R., Celis, G., Crummer, K. G., Hutchings, J. A., Hicks Pries, C. E., Mauritz, M., Natali, S. M., Salmon, V. G., Schädel, C., Webb, E. E., & Schuur, E. A. G. ( 2019 ). Direct observation of permafrost degradation and rapid soil carbon loss in tundra. Nature Geoscience, 12 ( 8 ), 627 – 631. https://doi.org/10.1038/s41561-019-0387-6 | |
dc.identifier.citedreference | Quinton, W. L., Hayashi, M., & Carey, S. K. ( 2008 ). Peat hydraulic conductivity in cold regions and its relation to pore size and geometry. Hydrological Processes, 22 ( 15 ), 2829 – 2837. https://doi.org/10.1002/hyp.7027 | |
dc.identifier.citedreference | Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G., & Witt, R. ( 2014 ). The impact of the permafrost carbon feedback on global climate. Environmental Research Letters, 9 ( 8 ), 085003. https://doi.org/10.1088/1748-9326/9/8/085003 | |
dc.identifier.citedreference | Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., & Vonk, J. E. ( 2015 ). Climate change and the permafrost carbon feedback. Nature, 520 ( 7546 ), 171 – 179. https://doi.org/10.1038/nature14338 | |
dc.identifier.citedreference | Shiklomanov, N. I., Streletskiy, D. A., Nelson, F. E., Hollister, R. D., Romanovsky, V. E., Tweedie, C. E., Bockheim, J. G., & Brown, J. ( 2010 ). Decadal variations of active‐layer thickness in moisture‐controlled landscapes, Barrow, Alaska. Journal of Geophysical Research, 115, G00I04. https://doi.org/10.1029/2009JG001248 | |
dc.identifier.citedreference | Sjöberg, Y., Coon, E., K. Sannel, A. B., Pannetier, R., Harp, D., Frampton, A., Painter, S. L., & Lyon, S. W. ( 2016 ). Thermal effects of groundwater flow through subarctic fens: A case study based on field observations and numerical modeling. Water Resources Research, 52, 1591 – 1606. https://doi.org/10.1002/2015WR017571 | |
dc.identifier.citedreference | Stow, D. A., Hope, A., McGuire, D., Verbyla, D., Gamon, J., Huemmrich, F., Houston, S., Racine, C., Sturm, M., Tape, K., Hinzman, L., Yoshikawa, K., Tweedie, C., Noyle, B., Silapaswan, C., Douglas, D., Griffith, B., Jia, G., Epstein, H., Walker, D., Daeschner, S., Petersen, A., Zhou, L., & Myneni, R. ( 2004 ). Remote sensing of vegetation and land‐cover change in Arctic tundra ecosystems. Remote Sensing of Environment, 89 ( 3 ), 281 – 308. https://doi.org/10.1016/j.rse.2003.10.018 | |
dc.identifier.citedreference | Tian, Z. C., Gao, W. D., Kool, D., Ren, T. S., Horton, R., & Heitman, J. L. ( 2018 ). Approaches for estimating soil water retention curves at various bulk densities with the extended van Genuchten model. Water Resources Research, 54, 5584 – 5601. https://doi.org/10.1029/2018wr022871 | |
dc.identifier.citedreference | van Genuchten, M. T. ( 1980 ). A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44 ( 5 ), 892 – 898. https://doi.org/10.2136/sssaj1980.03615995004400050002x | |
dc.identifier.citedreference | Walker, D. A., Daniëls, F. J. A., Matveyeva, N. V., Šibík, J., Walker, M. D., Breen, A. L., Druckenmiller, L. A., Raynolds, M. K., Bültmann, H., Hennekens, S., Buchhorn, M., Epstein, H. E., Ermokhina, K., Fosaa, A. M., Hei∂marsson, S., Heim, B., Jónsdóttir, I. S., Koroleva, N., Lévesque, E., MacKenzie, W. H., Henry, G. H. R., Nilsen, L., Peet, R., Razzhivin, V., Talbot, S. S., Telyatnikov, M., Thannheiser, D., Webber, P. J., & Wirth, L. M. ( 2018 ). Circumpolar Arctic vegetation classification. Phytocoenologia, 48 ( 2 ), 181 – 201. https://doi.org/10.1127/phyto/2017/0192 | |
dc.identifier.citedreference | Walker, D. A., & Everett, K. R. ( 1991 ). Loess ecosystems of northern Alaska—Regional gradient and Toposequence at Prudhoe Bay. Ecological Monographs, 61 ( 4 ), 437 – 464. https://doi.org/10.2307/2937050 | |
dc.identifier.citedreference | Walker, D. A., Jia, G. J., Epstein, H. E., Raynolds, M. K., Chapin, F. S. III, Copass, C., Hinzman, L. D., Knudson, J. A., Maier, H. A., Michaelson, G. J., Nelson, F., Ping, C. L., Romanovsky, V. E., & Shiklomanov, N. ( 2003 ). Vegetation‐soil‐thaw‐depth relationships along a low‐Arctic bioclimate gradient, Alaska: Synthesis of information from the ATLAS studies. Permafrost and Periglacial Processes, 14 ( 2 ), 103 – 123. https://doi.org/10.1002/ppp.452 | |
dc.identifier.citedreference | Walker, D. A., & Walker, M. D. ( 1996 ). In J. F. R. J. D. Tenhunen (Ed.), Terrain and vegetation of the Imnavait Creek watershed, in landscape function and disturbance in Arctic tundra (pp. 73 – 108 ). Berlin: Springer. | |
dc.identifier.citedreference | Xie, X. T., Lu, Y. L., Ren, T. S., & Horton, R. ( 2018 ). An empirical model for estimating soil thermal diffusivity from texture, bulk density, and degree of saturation. Journal of Hydrometeorology, 19 ( 2 ), 445 – 457. https://doi.org/10.1175/jhm-d-17-0131.1 | |
dc.identifier.citedreference | Yumashev, D., Hope, C., Schaefer, K., Riemann‐Campe, K., Iglesias‐Suarez, F., Jafarov, E., Burke, E. J., Young, P. J., Elshorbany, Y., & Whiteman, G. ( 2019 ). Climate policy implications of nonlinear decline of Arctic land permafrost and other cryosphere elements. Nature Communications, 10 ( 1 ), 1900. https://doi.org/10.1038/s41467-019-09863-x | |
dc.identifier.citedreference | Beckwith, C. W., Baird, A. J., & Heathwaite, A. L. ( 2003 ). Anisotropy and depth‐related heterogeneity of hydraulic conductivity in a bog peat. I: laboratory measurements. Hydrological Processes, 17 ( 1 ), 89 – 101. | |
dc.identifier.citedreference | Bockheim, J. G., Walker, D. A., Everett, L. R., Nelson, F. E., & Shiklomanov, N. I. ( 1998 ). Soils and cryoturbation in moist nonacidic and acidic tundra in the Kuparuk River Basin, Arctic Alaska. Arctic and Alpine Research, 30 ( 2 ), 166 – 174. https://doi.org/10.1080/00040851.1998.12002888 | |
dc.identifier.citedreference | Fisher, J. B., Hayes, D. J., Schwalm, C. R., Huntzinger, D. N., Stofferahn, E., Schaefer, K., Luo, Y., Wullschleger, S. D., Goetz, S., Miller, C. E., Griffith, P., Chadburn, S., Chatterjee, A., Ciais, P., Douglas, T. A., Genet, H., Ito, A., Neigh, C. S. R., Poulter, B., Rogers, B. M., Sonnentag, O., Tian, H., Wang, W., Xue, Y., Yang, Z. L., Zeng, N., & Zhang, Z. ( 2018 ). Missing pieces to modeling the Arctic‐Boreal puzzle. Environmental Research Letters, 13 ( 2 ), 020202. https://doi.org/10.1088/1748-9326/aa9d9a | |
dc.identifier.citedreference | Hamilton, T. D. ( 1982 ). A Late Pleistocene glacial chronology for the southern Brooks Range—Stratigraphic record and regional significance. Geological Society of America Bulletin, 93 ( 8 ), 700 – 716. https://doi.org/10.1130/0016-7606(1982)93<700:ALPGCF>2.0.CO;2 | |
dc.identifier.citedreference | Harp, D. R., Atchley, A. L., Painter, S. L., Coon, E. T., Wilson, C. J., Romanovsky, V. E., & Rowland, J. C. ( 2016 ). Effect of soil property uncertainties on permafrost thaw projections: A calibration‐constrained analysis. The Cryosphere, 10 ( 1 ), 341 – 358. https://doi.org/10.5194/tc-10-341-2016 | |
dc.identifier.citedreference | Hinzman, L. D., Kane, D. L., Gieck, R. E., & Everett, K. R. ( 1991 ). Hydrologic and thermal properties of the active layer in the Alaskan Arctic, in Cold Regions Science and Technology, pp. 95 – 110. | |
dc.identifier.citedreference | Holden, J., & Burt, T. P. ( 2003 ). Hydrological studies on blanket peat: The significance of the acrotelm‐catotelm model. Journal of Ecology, 91 ( 1 ), 86 – 102. https://doi.org/10.1046/j.1365-2745.2003.00748.x | |
dc.identifier.citedreference | Hope, C., & Schaefer, K. ( 2016 ). Economic impacts of carbon dioxide and methane released from thawing permafrost. Nature Climate Change, 6 ( 1 ), 56 – 59. https://doi.org/10.1038/nclimate2807 | |
dc.identifier.citedreference | Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.‐L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O’Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., & Kuhry, P. ( 2014 ). Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11 ( 23 ), 6573 – 6593. https://doi.org/10.5194/bg-11-6573-2014 | |
dc.identifier.citedreference | Jafarov, E., & Schaefer, K. ( 2016 ). The importance of a surface organic layer in simulating permafrost thermal and carbon dynamics. The Cryosphere, 10 ( 1 ), 465 – 475. https://doi.org/10.5194/tc-10-465-2016 | |
dc.identifier.citedreference | Kling, G. W., Kipphut, G. W., & Miller, M. C. ( 1991 ). Arctic lakes and streams as gas conduits to the atmosphere—Implications for tundra carbon budgets. Science, 251 ( 4991 ), 298 – 301. https://doi.org/10.1126/science.251.4991.298 | |
dc.identifier.citedreference | Kling, G. W., Adams, H. E., Bettez, N. D., Bowden, W. B., Crump, B. C., Giblin, A. E., Judd, K. E., Keller, K., Kipphut, G. W., Rastetter, E. R., Shaver, G. R., & Stieglitz, M. ( 2014 ). Land‐water interactions. In J. E. Hobbie & G. W. Kling (Eds.), A changing Arctic: Ecological consequences for tundra, streams, and lakes (pp. 143 – 172 ). New York, NY: Oxford University Press. | |
dc.identifier.citedreference | Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J., & Slater, A. G. ( 2015 ). Permafrost thaw and resulting soil moisture changes regulate projected high‐latitude CO 2 and CH 4 emissions. Environmental Research Letters, 10 ( 9 ), 094011. https://doi.org/10.1088/1748-9326/10/9/094011 | |
dc.identifier.citedreference | Liu, H. J., & Lennartz, B. ( 2019 ). Hydraulic properties of peat soils along a bulk density gradient—A meta study. Hydrological Processes, 33 ( 1 ), 101 – 114. https://doi.org/10.1002/hyp.13314 | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.