Show simple item record

Estimating Risk for Future Intracranial, Fully Implanted, Modular Neuroprosthetic Systems: A Systematic Review of Hardware Complications in Clinical Deep Brain Stimulation and Experimental Human Intracortical Arrays

dc.contributor.authorBullard, Autumn J.
dc.contributor.authorHutchison, Brianna C.
dc.contributor.authorLee, Jiseon
dc.contributor.authorChestek, Cynthia A.
dc.contributor.authorPatil, Parag G.
dc.date.accessioned2020-07-02T20:33:34Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-07-02T20:33:34Z
dc.date.issued2020-06
dc.identifier.citationBullard, Autumn J.; Hutchison, Brianna C.; Lee, Jiseon; Chestek, Cynthia A.; Patil, Parag G. (2020). "Estimating Risk for Future Intracranial, Fully Implanted, Modular Neuroprosthetic Systems: A Systematic Review of Hardware Complications in Clinical Deep Brain Stimulation and Experimental Human Intracortical Arrays." Neuromodulation: Technology at the Neural Interface 23(4): 411-426.
dc.identifier.issn1094-7159
dc.identifier.issn1525-1403
dc.identifier.urihttps://hdl.handle.net/2027.42/155940
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherhardware
dc.subject.otherbrain machine interface
dc.subject.otherAdverse events
dc.subject.otherUtah array
dc.subject.otherdeep brain stimulation
dc.titleEstimating Risk for Future Intracranial, Fully Implanted, Modular Neuroprosthetic Systems: A Systematic Review of Hardware Complications in Clinical Deep Brain Stimulation and Experimental Human Intracortical Arrays
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurology and Neurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155940/1/ner13069.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155940/2/ner13069_am.pdf
dc.identifier.doi10.1111/ner.13069
dc.identifier.sourceNeuromodulation: Technology at the Neural Interface
dc.identifier.citedreferenceMovement Disorder Group, AYY C, JHM Y et al. Subthalamic nucleus deep brain stimulation for Parkinson’s disease: evidence for effectiveness and limitations from 12 years’ experience. Hong Kong Med J 2014; 20: 474 – 480. https://doi.org/10.12809/hkmj144242.
dc.identifier.citedreferenceWillett FR, Murphy BA, Young DR et al. A comparison of intention estimation methods for decoder calibration in intracortical brain‐computer interfaces. IEEE Trans Biomed Eng 2017; 65: 2066 – 2078. https://doi.org/10.1109/TBME.2017.2783358.
dc.identifier.citedreferenceWillett FR, Murphy BA, Memberg WD et al. Signal‐independent noise in intracortical brain‐computer interfaces causes movement time properties inconsistent with Fitts’ law. J Neural Eng 2017; 14: 026010. https://doi.org/10.1088/1741-2552/aa5990.
dc.identifier.citedreferenceAflalo T, Kellis S, Klaes C et al. Decoding motor imagery from the posterior parietal cortex of a tetraplecig human. Science 2015; 348: 906 – 910. https://doi.org/10.7910/DVN/GJDUTV.
dc.identifier.citedreferenceDeer TR, Lamer TJ, Pope JE et al. The neurostimulation appropriateness consensus committee (NACC) safety guidelines for the reduction of severe neurological injury. Neuromodul Technol Neural Interface 2017; 20: 15 – 30. https://doi.org/10.1111/ner.12564.
dc.identifier.citedreferenceChan DTM, Zhu XL, Yeung JHM et al. Complications of deep brain stimulation: a collective review. Asian J Surg 2009; 32: 258 – 263. https://doi.org/10.1016/S1015-9584(09)60404-8.
dc.identifier.citedreferencePiacentino M, Pilleri M, Bartolomei L. Hardware‐related infections after deep brain stimulation surgery: review of incidence, severity and management in 212 single‐center procedures in the first year after implantation. Acta Neurochir 2011; 153: 2337 – 2341. https://doi.org/10.1007/s00701-011-1130-2.
dc.identifier.citedreferenceFarris S, Giroux M. Deep brain stimulation: a review of the procedure and the complications. JAAPA 2011; 24: 39 – 40.
dc.identifier.citedreferenceBoviatsis EJ, Stavrinou LC, Themistocleous M, Kouyialis AT, Sakas DE. Surgical and hardware complications of deep brain stimulation. A seven‐year experience and review of the literature. Acta Neurochir 2010; 152: 2053 – 2062. https://doi.org/10.1007/s00701-010-0749-8.
dc.identifier.citedreferenceKozai TDY, Marzullo TC, Hooi F et al. Reduction of neurovascular damage resulting from microelectrode insertion into the cerebral cortex using in vivo two‐photon mapping. J Neural Eng 2010; 7: 046011. https://doi.org/10.1088/1741-2560/7/4/046011.
dc.identifier.citedreferenceXiaowu H, Xiufeng J, Xiaoping Z et al. Risks of intracranial hemorrhage in patients with Parkinson’s disease receiving deep brain stimulation and ablation. Parkinsonism Relat Disord 2010; 16: 96 – 100. https://doi.org/10.1016/j.parkreldis.2009.07.013.
dc.identifier.citedreferenceKochanski RB, Nazari P, Sani S. The utility of Vancomycin powder in reducing surgical site infections in deep brain stimulation surgery. Oper Neurosurg 2018; 15: 584 – 588. https://doi.org/10.1093/ons/opx293.
dc.identifier.citedreferenceHardaway FA, Raslan AM, Burchiel KJ. Deep brain stimulation‐related infections: analysis of rates, timing, and seasonality. Neurosurgery 2018; 83: 540 – 547. https://doi.org/10.1093/neuros/nyx505.
dc.identifier.citedreferenceSatyarthee GD. Optimal strategy to control surgical site infection following deep brain stimulation surgery: adequate Management of Risk Factors, topical application of Vancomycin powder in the surgical wound, and preoperative antibiotic prophylaxis. World Neurosurg 2017; 101: 789 – 790. https://doi.org/10.1016/j.wneu.2017.01.108.
dc.identifier.citedreferenceBarrese JC, Aceros J, Donoghue JP. Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non‐human primates. J Neural Eng 2016; 13: 26003. https://doi.org/10.1088/1741-2560/13/2/026003.
dc.identifier.citedreferenceBiran R, Martin DC, Tresco PA. The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull. J Biomed Mater Res Part A 2007; 82A: 169 – 178. https://doi.org/10.1002/jbm.a.31138.
dc.identifier.citedreferenceBlack BJ, Kanneganti A, Joshi‐Imre A et al. Chronic recording and electrochemical performance of Utah microelectrode arrays implanted in rat motor cortex. J Neurophysiol 2018; 120: 2083 – 2090. https://doi.org/10.1152/jn.00181.2018.
dc.identifier.citedreferenceNolta NF, Christensen MB, Crane PD, Skousen JL, Tresco PA. BBB leakage, astrogliosis, and tissue loss correlate with silicon microelectrode array recording performance. Biomaterials 2015; 53: 753 – 762. https://doi.org/10.1016/J.BIOMATERIALS.2015.02.081.
dc.identifier.citedreferenceStiller AM, Usoro J, Frewin CL et al. Chronic intracortical recording and electrochemical stability of thiol‐ene/acrylate shape memory polymer electrode arrays. Micromachines 2018; 9: 1 – 14. https://doi.org/10.3390/mi9100500.
dc.identifier.citedreferenceSzarowski DH, Andersen MD, Retterer S et al. Brain responses to micro‐machined silicon devices. Brain Res 2003; 983: 23 – 35.
dc.identifier.citedreferenceGoss‐Varley M, Dona KR, Mcmahon JA et al. Microelectrode implantation in motor cortex causes fine motor deficit: implications on potential considerations to brain computer interfacing and human augmentation. Sci Rep 2017; 7: 15254. https://doi.org/10.1038/s41598-017-15623-y.
dc.identifier.citedreferenceFeeney DM, Gonzalez A, Law WA. Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury. Science 1982; 217: 855 – 857.
dc.identifier.citedreferenceMagill ST, Han SJ, Li J, Berger MS. Resection of primary motor cortex tumors: feasibility and surgical outcomes. J Neurosurg 2018; 129: 961 – 972.
dc.identifier.citedreferenceOuyang W, Yan Q, Zhang Y, Fan Z. Moderate injury in motor‐sensory cortex causes behavioral deficits accompanied by electrophysiological changes in mice adulthood. PLoS ONE 2017; 12: e0171976. https://doi.org/10.1371/journal.pone.0171976.
dc.identifier.citedreferenceWeaver FM, Follett K, Stern M et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA 2009; 301: 63 – 73. https://doi.org/10.1001/jama.2008.929.
dc.identifier.citedreferenceRodríguez Cruz PM, Vargas A, Fernández‐Carballal C, Garbizu J, De La Casa‐Fages B, Grandas F. Long‐term thalamic deep brain stimulation for essential tremor: clinical outcome and stimulation parameters. Mov Disord Clin Pract 2016; 3: 567 – 572. https://doi.org/10.1002/mdc3.12337.
dc.identifier.citedreferenceAckermans L, Duits A, van der Linden C et al. Double‐blind clinical trial of thalamic stimulation in patients with Tourette syndrome. Brain 2011; 134: 832 – 844. https://doi.org/10.1093/brain/awq380.
dc.identifier.citedreferenceAbreu V, Vaz R, Rebelo V et al. Thalamic deep brain stimulation for neuropathic pain: efficacy at three years’ follow‐up. Neuromodul Technol Neural Interface 2017; 20: 504 – 513. https://doi.org/10.1111/ner.12620.
dc.identifier.citedreferenceOoms P, Mantione M, Figee M, Schuurman PR, van den Munckhof P, Denys D. Deep brain stimulation for obsessive‐compulsive disorders: long‐term analysis of quality of life. J Neurol Neurosurg Psychiatry 2014; 85: 153 – 158. https://doi.org/10.1136/jnnp-2012-302550.
dc.identifier.citedreferenceKim SH, Lim SC, Kim J, Son B‐C, Lee KJ, Shon Y‐M. Long‐term follow‐up of anterior thalamic deep brain stimulation in epilepsy: a 11‐year, single center experience. Seizure 2017; 52: 154 – 161. https://doi.org/10.1016/j.seizure.2017.10.009.
dc.identifier.citedreferenceHeck CN, King‐Stephens D, Massey AD et al. Two‐year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the RNS system pivotal trial. Epilepsia 2014; 55: 432 – 441. https://doi.org/10.1111/epi.12534.
dc.identifier.citedreferenceHochberg LR, Serruya MD, Friehs GM et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 2006; 442: 164 – 171. https://doi.org/10.1038/nature04970.
dc.identifier.citedreferenceTruccolo W, Friehs GM, Donoghue JP, Hochberg LR. Primary motor cortex tuning to intended movement kinematics in humans with tetraplegia. J Neurosci 2008; 28: 1163 – 1178. https://doi.org/10.1523/JNEUROSCI.4415-07.2008.
dc.identifier.citedreferenceKilgore KL, Peckham PH, Crish TJ, Smith B. United States Patent. 2007;1(12):0‐3. doi: https://doi.org/10.1016/j.(73).
dc.identifier.citedreferenceSmith B, Crish TJ, Buckett JR, Kilgore KL, Peckham PH. Development of an implantable networked neuroprosthesis. 2nd Int IEEE EMBS Conf Neural Eng 2005; 2005: 454 – 457. https://doi.org/10.1109/CNE.2005.1419657.
dc.identifier.citedreferenceHilliard JD, Bona A, Vaziri S, Walz R, Okun MS, Foote KD. 138 delayed scalp erosion after deep brain stimulation surgery. Neurosurgery 2016; 63: 156. https://doi.org/10.1227/01.neu.0000489708.21831.66.
dc.identifier.citedreferenceSixel‐Döring F, Trenkwalder C, Kappus C, Hellwig D. Skin complications in deep brain stimulation for Parkinson’s disease: frequency, time course, and risk factors. Acta Neurochir 2010; 152: 195 – 200. https://doi.org/10.1007/s00701-009-0490-3.
dc.identifier.citedreferenceKochanski RB, Nazari P, Sani S. The utility of vancomycin powder in reducing surgical site infections in deep brain stimulation surgery. Oper Neurosurg 2018; 15: 584 – 588. https://doi.org/10.1093/ons/opx293.
dc.identifier.citedreferenceMessina G, Rizzi M, Dones I, Franzini A. Cosmetic posterior implant of internal pulse generators in deep brain stimulation procedures: technical report. Neuromodulation 2014; 17: 729 – 730. https://doi.org/10.1111/ner.12156.
dc.identifier.citedreferenceMotlagh MG, Smith ME, Landeros‐Weisenberger A et al. Lessons learned from open‐label deep brain stimulation for Tourette syndrome: eight cases over 7 years. Tremor Other Hyperkinet Mov 2013; 3: PMC3822402.
dc.identifier.citedreferenceFenoy AJ, Simpson RK. Risks of common complications in deep brain stimulation surgery: management and avoidance. J Neurosurg 2014; 120: 132 – 139. https://doi.org/10.3171/2013.10.JNS131225.
dc.identifier.citedreferenceBaizabal‐Carvallo JF, Kagnoff MN, Jimenez‐Shahed J, Fekete R, Jankovic J. The safety and efficacy of thalamic deep brain stimulation in essential tremor: 10 years and beyond. J Neurol Neurosurg Psychiatry 2014; 85: 567 – 572. https://doi.org/10.1136/jnnp-2013-304943.
dc.identifier.citedreferencePanov F, Gologorsky Y, Connors G, Tagliati M, Miravite J, Alterman RL. Deep brain stimulation in DYT1 dystonia: a 10‐year experience. Neurosurgery 2013; 73: 86 – 93. https://doi.org/10.1227/01.neu.0000429841.84083.c8.
dc.identifier.citedreferencePetrossian MT, Paul LR, Multhaupt‐Buell TJ et al. Pallidal deep brain stimulation for dystonia: a case series. J Neurosurg Pediatr 2013; 12: 582 – 587. https://doi.org/10.3171/2013.8.PEDS13134.
dc.identifier.citedreferencePepper J, Zrinzo L, Mirza B, Foltynie T, Limousin P, Hariz M. The risk of hardware infection in deep brain stimulation surgery is greater at impulse generator replacement than at the primary procedure. Stereotact Funct Neurosurg 2013; 91: 56 – 65. https://doi.org/10.1159/000343202.
dc.identifier.citedreferenceOdekerken VJJ, van Laar T, Staal MJ et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol 2013; 12: 37 – 44. https://doi.org/10.1016/S1474-4422(12)70264-8.
dc.identifier.citedreferenceLeone M, Franzini A, Proietti Cecchini A, Bussone G. Success, failure, and putative mechanisms in hypothalamic stimulation for drug‐resistant chronic cluster headache. Pain 2013; 154: 89 – 94. https://doi.org/10.1016/j.pain.2012.09.011.
dc.identifier.citedreferenceOstrem JL, Galifianakis NB, Markun LC et al. Clinical outcomes of PD patients having bilateral STN DBS using high‐field interventional MR‐imaging for lead placement. Clin Neurol Neurosurg 2013; 115: 708 – 712. https://doi.org/10.1016/j.clineuro.2012.08.019.
dc.identifier.citedreferenceZhang J, Wang T, Zhang C‐C et al. The safety issues and hardware‐related complications of deep brain stimulation therapy: a single‐center retrospective analysis of 478 patients with Parkinson’s disease. Clin Interv Aging 2017; 12: 923 – 928. https://doi.org/10.2147/CIA.S130882.
dc.identifier.citedreferenceDlouhy BJ, Reddy A, Dahdaleh NS, Greenlee JDW. Antibiotic impregnated catheter coverage of deep brain stimulation leads facilitates lead preservation after hardware infection. J Clin Neurosci 2012; 19: 1369 – 1375. https://doi.org/10.1016/j.jocn.2012.02.008.
dc.identifier.citedreferenceGuridi J, Rodriguez‐Oroz MC, Alegre M, Obeso JA. Hardware complications in deep brain stimulation: electrode impedance and loss of clinical benefit. Parkinsonism Relat Disord 2012; 18: 765 – 769. https://doi.org/10.1016/j.parkreldis.2012.03.014.
dc.identifier.citedreferenceMendes Martins V, Coste J, Derost P et al. Surgical complications of deep brain stimulation: clinical experience of 184 cases. Neurochirurgie 2012; 58: 219 – 224. https://doi.org/10.1016/j.neuchi.2012.02.004.
dc.identifier.citedreferenceBourne SK, Conrad A, Konrad PE, Neimat JS, Davis TL. Ventricular width and complicated recovery following deep brain stimulation surgery. Stereotact Funct Neurosurg 2012; 90: 167 – 172. https://doi.org/10.1159/000338094.
dc.identifier.citedreferenceFenoy AJ, Simpson RK. Management of device‐related wound complications in deep brain stimulation surgery. J Neurosurg 2012; 116: 1324 – 1332. https://doi.org/10.3171/2012.1.JNS111798.
dc.identifier.citedreferenceSon B, Han S, Choi Y et al. Transaxillary subpectoral implantation of implantable pulse generator for deep brain stimulation. Neuromodulation 2012; 15: 260 – 266. https://doi.org/10.1111/j.1525-1403.2011.00420.x.
dc.identifier.citedreferenceCharles PD, Dolhun RM, Gill CE et al. Deep brain stimulation in early Parkinson’s disease: enrollment experience from a pilot trial. Parkinsonism Relat Disord 2012; 18: 268 – 273. https://doi.org/10.1016/j.parkreldis.2011.11.001.
dc.identifier.citedreferenceHarries AM, Kausar J, Roberts SAG et al. Deep brain stimulation of the subthalamic nucleus for advanced Parkinson disease using general anesthesia: long‐term results. J Neurosurg 2012; 116: 107 – 113. https://doi.org/10.3171/2011.7.JNS11319.
dc.identifier.citedreferencePiacentino M, Pilleri M, Bartolomei L. Hardware‐related infections after deep brain stimulation surgery: review of incidence, severity and management in 212 single‐center procedures in the first year after implantation. Acta Neurochir 2011; 153: 2337 – 2341. https://doi.org/10.1007/s00701-011-1130-2.
dc.identifier.citedreferenceBhatia R, Dalton A, Richards M, Hopkins C, Aziz T, Nandi D. The incidence of deep brain stimulator hardware infection: the effect of change in antibiotic prophylaxis regimen and review of the literature. Br J Neurosurg 2011; 25: 625 – 631. https://doi.org/10.3109/02688697.2011.566384.
dc.identifier.citedreferenceLevy RM, Lamb S, Adams JE. Treatment of chronic pain by deep brain stimulation: long term follow‐up and review of the literature. Neurosurgery 1987; 21: 885 – 893.
dc.identifier.citedreferenceOyama G, Okun MS, Zesiewicz TA et al. Delayed clinical improvement after deep brain stimulation‐related subdural hematoma. Report of 4 cases. J Neurosurg 2011; 115: 289 – 294. https://doi.org/10.3171/2011.3.JNS101424.
dc.identifier.citedreferencePark JH, Chung SJ, Lee CS, Jeon SR. Analysis of hemorrhagic risk factors during deep brain stimulation surgery for movement disorders: comparison of the circumferential paired and multiple electrode insertion methods. Acta Neurochir 2011; 153: 1573 – 1578. https://doi.org/10.1007/s00701-011-0997-2.
dc.identifier.citedreferenceFily F, Haegelen C, Tattevin P et al. Deep brain stimulation hardware‐related infections: a report of 12 cases and review of the literature. Clin Infect Dis 2011; 52: 1020 – 1023. https://doi.org/10.1093/cid/cir065.
dc.identifier.citedreferenceOstrem JL, Racine CA, Glass GA et al. Subthalamic nucleus deep brain stimulation in primary cervical dystonia. Neurology 2011; 76: 870 – 878. https://doi.org/10.1212/WNL.0b013e31820f2e4f.
dc.identifier.citedreferenceChang WS, Kim HY, Kim JP, Park YS, Chung SS, Chang JW. Bilateral subthalamic deep brain stimulation using single track microelectrode recording. Acta Neurochir 2011; 153: 1087 – 1095. https://doi.org/10.1007/s00701-011-0953-1.
dc.identifier.citedreferenceAckermans L, Duits A, van der Linden C et al. Double‐blind clinical trial of thalamic stimulation in patients with Tourette syndrome. Brain 2011; 134: 832 – 844. https://doi.org/10.1093/brain/awq380.
dc.identifier.citedreferenceDoshi PK. Long‐term surgical and hardware‐related complications of deep brain stimulation. Stereotact Funct Neurosurg 2011; 89: 89 – 95. https://doi.org/10.1159/000323372.
dc.identifier.citedreferenceNazzaro JM, Lyons KE, Honea RA et al. Head positioning and risk of pneumocephalus, air embolism, and hemorrhage during subthalamic deep brain stimulation surgery. Acta Neurochir 2010; 152: 2047 – 2052. https://doi.org/10.1007/s00701-010-0776-5.
dc.identifier.citedreferenceFollett KA, Weaver FM, Stern M et al. Pallidal versus subthalamic deep‐brain stimulation for Parkinson’s disease. N Engl J Med 2010; 362: 2077 – 2091. https://doi.org/10.1056/NEJMoa0907083.
dc.identifier.citedreferenceBurdick AP, Fernandez HH, Okun MS, Chi Y‐Y, Jacobson C, Foote KD. Relationship between higher rates of adverse events in deep brain stimulation using standardized prospective recording and patient outcomes. Neurosurg Focus 2010; 29: E4. https://doi.org/10.3171/2010.4.FOCUS10100.
dc.identifier.citedreferenceSydow O, Thobois S, Alesch F, Speelman JD. Multicentre European study of thalamic stimulation in essential tremor: a six year follow up. J Neurol Neurosurg Psychiatry 2003; 74: 1387 – 1391.
dc.identifier.citedreferenceMoro E, Lozano AM, Pollak P et al. Long‐term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson’s disease. Mov Disord 2010; 25: 578 – 586. https://doi.org/10.1002/mds.22735.
dc.identifier.citedreferencePandarinath C, Gilja V, Blabe CH et al. Neural population dynamics in human motor cortex during movements in people with ALS. Elife 2015; 4: e07436. https://doi.org/10.7554/eLife.07436.
dc.identifier.citedreferenceNunta‐Aree S, Sitthinamsuwan B, Boonyapisit K, Pisarnpong A. SW2‐year outcomes of subthalamic deep brain stimulation for idiopathic Parkinson’s disease. J Med Assoc Thai 2010; 93: 529 – 540.
dc.identifier.citedreferenceBhatia S, Zhang K, Oh M, Angle C, Whiting D. Infections and hardware salvage after deep brain stimulation surgery: a single‐center study and review of the literature. Stereotact Funct Neurosurg 2010; 88: 147 – 155. https://doi.org/10.1159/000303528.
dc.identifier.citedreferenceMaldonado IL, Roujeau T, Cif L et al. Magnetic resonance‐based deep brain stimulation technique: a series of 478 consecutive implanted electrodes with no perioperative intracerebral hemorrhage. Neurosurgery 2009; 65: 196 – 201. https://doi.org/10.1227/01.NEU.0000342404.14347.FB.
dc.identifier.citedreferenceChan DTM, Zhu XL, Yeung JHM et al. Complications of deep brain stimulation: a collective review. Asian J Surg 2009; 32: 258 – 263. https://doi.org/10.1016/S1015-9584(09)60404-8.
dc.identifier.citedreferenceNahas Z, Anderson BS, Borckardt J et al. Bilateral epidural prefrontal cortical stimulation for treatment‐resistant depression. Biol Psychiatry 2010; 67: 101 – 109. https://doi.org/10.1016/j.biopsych.2009.08.021.
dc.identifier.citedreferenceBen‐Haim S, Asaad WF, Gale JT, Eskandar EN. Risk factors for hemorrhage during microelectrode‐guided deep brain stimulation and the introduction of an improved microelectrode design. Neurosurgery 2009; 64: 754 – 762. https://doi.org/10.1227/01.NEU.0000339173.77240.34.
dc.identifier.citedreferenceXiaowu H, Xiufeng J, Xiaoping Z et al. Risks of intracranial hemorrhage in patients with Parkinson’s disease receiving deep brain stimulation and ablation. Parkinsonism Relat Disord 2010; 16: 96 – 100. https://doi.org/10.1016/j.parkreldis.2009.07.013.
dc.identifier.citedreferenceMiller JP, Acar F, Burchiel KJ. Significant reduction in stereotactic and functional neurosurgical hardware infection after local neomycin/polymyxin application. J Neurosurg 2009; 110: 247 – 250.
dc.identifier.citedreferenceGervais‐Bernard H, Xie‐Brustolin J, Mertens P et al. Bilateral subthalamic nucleus stimulation in advanced Parkinson’s disease: five year follow‐up. J Neurol 2009; 256: 225 – 233. https://doi.org/10.1007/s00415-009-0076-2.
dc.identifier.citedreferenceAllert N, Jusciute E, Weirich O, Daryaeitabar M, Nolden BM, Karbe H. Long‐term stability of Short circuits in deep brain stimulation. Neuromodulation 2018; 21: 562 – 567. https://doi.org/10.1111/ner.12709.
dc.identifier.citedreferenceBhatia S, Oh M, Whiting T, Quigley M, Whiting D. Surgical complications of deep brain stimulation. A longitudinal single surgeon, single institution study. Stereotact Funct Neurosurg 2008; 86: 367 – 372. https://doi.org/10.1159/000175799.
dc.identifier.citedreferenceGorgulho A, Juillard C, Uslan DZ et al. Infection following deep brain stimulator implantation performed in the conventional versus magnetic resonance imaging‐equipped operating room. J Neurosurg 2009; 110: 239 – 246. https://doi.org/10.3171/2008.6.17603.
dc.identifier.citedreferenceO’Sullivan D, Pell M. Long‐term follow‐up of DBS of thalamus for tremor and STN for Parkinson’s disease. Brain Res Bull 2009; 78: 119 – 121. https://doi.org/10.1016/j.brainresbull.2008.09.001.
dc.identifier.citedreferenceDelavallée M, Abu‐Serieh B, de Tourchaninoff M, Raftopoulos C. Subdural motor cortex stimulation for central and peripheral neuropathic pain: a long‐term follow‐up study in a series of eight patients. Neurosurgery 2008; 63: 101 – 108. https://doi.org/10.1227/01.NEU.0000335076.24481.B6.
dc.identifier.citedreferenceSillay KA, Larson PS, Starr PA. Deep brain stimulator hardware‐related infections: incidence and management in a large series. Neurosurgery 2008; 62: 360 – 367. https://doi.org/10.1227/01.neu.0000316002.03765.33.
dc.identifier.citedreferenceCersosimo MG, Raina GB, Piedimonte F, Antico J, Graff P, Micheli FE. Pallidal surgery for the treatment of primary generalized dystonia: long‐term follow‐up. Clin Neurol Neurosurg 2008; 110: 145 – 150. https://doi.org/10.1016/j.clineuro.2007.10.003.
dc.identifier.citedreferenceSansur CA, Frysinger RC, Pouratian N et al. Incidence of symptomatic hemorrhage after stereotactic electrode placement. J Neurosurg 2007; 107: 998 – 1003. https://doi.org/10.3171/JNS-07/11/0998.
dc.identifier.citedreferenceAlterman RL, Miravite J, Weisz D, Shils JL, Bressman SB, Tagliati M. Sixty hertz pallidal deep brain stimulation for primary torsion dystonia. Neurology 2007; 69: 681 – 688. https://doi.org/10.1212/01.wnl.0000267430.95106.ff.
dc.identifier.citedreferenceSeijo FJ, Alvarez‐Vega MA, Gutierrez JC, Fdez‐Glez F, Lozano B. Complications in subthalamic nucleus stimulation surgery for treatment of Parkinson’s disease. Review of 272 procedures. Acta Neurochir 2007; 149: 867 – 876. https://doi.org/10.1007/s00701-007-1267-1.
dc.identifier.citedreferenceChou Y‐C, Lin S‐Z, Hsieh WA et al. Surgical and hardware complications in subthalamic nucleus deep brain stimulation. J Clin Neurosci 2007; 14: 643 – 649. https://doi.org/10.1016/j.jocn.2006.02.016.
dc.identifier.citedreferenceZsigmond P, Hemm‐Ode S, Wårdell K. Optical measurements during deep brain stimulation Lead implantation: safety aspects. Stereotact Funct Neurosurg 2017; 95: 392 – 399. https://doi.org/10.1159/000484944.
dc.identifier.citedreferenceVoges J, Hilker R, Bötzel K et al. Thirty days complication rate following surgery performed for deep‐brain‐stimulation. Mov Disord 2007; 22: 1486 – 1489. https://doi.org/10.1002/mds.21481.
dc.identifier.citedreferenceVesper J, Haak S, Ostertag C, Nikkhah G. Subthalamic nucleus deep brain stimulation in elderly patients—Analysis of outcome and complications. BMC Neurol 2007; 7: 7. https://doi.org/10.1186/1471-2377-7-7.
dc.identifier.citedreferencePaluzzi A, Belli A, Bain P, Liu X, Aziz TM. Operative and hardware complications of deep brain stimulation for movement disorders. Br J Neurosurg 2006; 20: 290 – 295. https://doi.org/10.1080/02688690601012175.
dc.identifier.citedreferenceKupsch A, Benecke R, Müller J et al. Pallidal deep‐brain stimulation in primary generalized or segmental dystonia. N Engl J Med 2006; 355: 1978 – 1990. https://doi.org/10.1056/NEJMoa063618.
dc.identifier.citedreferenceGreenberg BD, Malone DA, Friehs GM et al. Three‐year outcomes in deep brain stimulation for highly resistant obsessive–compulsive disorder. Neuropsychopharmacology 2006; 31: 2384 – 2393. https://doi.org/10.1038/sj.npp.1301165.
dc.identifier.citedreferenceAmirnovin R, Williams ZM, Cosgrove GR, Eskandar EN. Experience with microelectrode guided subthalamic nucleus deep brain stimulation. Oper Neurosurg 2006; 58: 96 – 102. https://doi.org/10.1227/01.NEU.0000192690.45680.C2.
dc.identifier.citedreferenceLee JYK, Kondziolka D. Thalamic deep brain stimulation for management of essential tremor. J Neurosurg 2005; 103: 400 – 403. https://doi.org/10.3171/jns.2005.103.3.0400.
dc.identifier.citedreferenceKawakami N, Jessen H, Bordini B, Gallagher C, Klootwyk J, Garell CP. Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease. WMJ 2005; 104: 35 – 38.
dc.identifier.citedreferenceGorgulho A, De Salles AAF, Frighetto L, Behnke E. Incidence of hemorrhage associated with electrophysiological studies performed using macroelectrodes and microelectrodes in functional neurosurgery. J Neurosurg 2005; 102: 888 – 896. https://doi.org/10.3171/jns.2005.102.5.0888.
dc.identifier.citedreferenceBinder DK, Rau GM, Starr PA. Risk factors for hemorrhage during microelectrode‐guided deep brain stimulator implantation for movement disorders. Neurosurgery 2005; 56: 722 – 732.
dc.identifier.citedreferenceOh MY, Abosch A, Kim SH, Lang AE, Lozano AM. Long‐term hardware‐related complications of deep brain stimulation. Neurosurgery 2002; 50: 1268 – 1274.
dc.identifier.citedreferenceVesper J, Klostermann F, Wille C, Funk T, Brock M. Long‐term suppression of extrapyramidal motor symptoms with deep brain stimulation (DBS). Zentralbl Neurochir 2004; 65: 117 – 122. https://doi.org/10.1055/s-2004-822789.
dc.identifier.citedreferenceYianni J, Nandi D, Shad A, Bain P, Gregory R, Aziz T. Increased risk of lead fracture and migration in dystonia compared with other movement disorders following deep brain stimulation. J Clin Neurosci 2004; 11: 243 – 245. https://doi.org/10.1016/j.jocn.2003.10.003.
dc.identifier.citedreferenceBinder DK, Rau G, Starr PA. Hemorrhagic complications of microelectrode‐guided deep brain stimulation. Stereotact Funct Neurosurg 2003; 80: 28 – 31. https://doi.org/10.1159/000075156.
dc.identifier.citedreferencePutzke JD, Wharen RE, Wszolek ZK, Turk MF, Strongosky AJ, Uitti RJ. Thalamic deep brain stimulation for tremor‐predominant Parkinson’s disease. Parkinsonism Relat Disord 2003; 10: 81 – 88.
dc.identifier.citedreferenceKondziolka D, Whiting D, Germanwala A, Oh M. Hardware‐related complications after placement of thalamic deep brain stimulator systems. Stereotact Funct Neurosurg 2002; 79: 228 – 233. https://doi.org/10.1159/000070836.
dc.identifier.citedreferenceTerao T, Takahashi H, Yokochi F, Taniguchi M, Okiyama R, Hamada I. Hemorrhagic complication of stereotactic surgery in patients with movement disorders. J Neurosurg 2003; 98: 1241 – 1246. https://doi.org/10.3171/jns.2003.98.6.1241.
dc.identifier.citedreferenceLandi A, Parolin M, Piolti R et al. Deep brain stimulation for the treatment of Parkinson’s disease: the experience of the neurosurgical Department in Monza. Neurol Sci 2003; 24 (0): s43 ‐ s44. doi: https://doi.org/10.1007/s100720300039.
dc.identifier.citedreferenceVesper J, Klostermann F, Stockhammer F, Funk T, Brock M. Results of chronic subthalamic nucleus stimulation for Parkinson’s disease: a 1‐year follow‐up study. Surg Neurol 2002; 57: 306 – 311.
dc.identifier.citedreferenceLoher TJ, Burgunder J‐M, Pohle T, Weber S, Sommerhalder R, Krauss JK. Long‐term pallidal deep brain stimulation in patients with advanced Parkinson disease: 1‐year follow‐up study. J Neurosurg 2002; 96: 844 – 853. https://doi.org/10.3171/jns.2002.96.5.0844.
dc.identifier.citedreferenceJoint C, Nandi D, Parkin S, Gregory R, Aziz T. Hardware‐related problems of deep brain stimulation. Mov Disord 2002; 17: S175 – S180.
dc.identifier.citedreferenceKim SH, Lim SC, Kim J, Son B‐C, Lee KJ, Shon Y‐M. Long‐term follow‐up of anterior thalamic deep brain stimulation in epilepsy: a 11‐year, single center experience. Seizure 2017; 52: 154 – 161. https://doi.org/10.1016/j.seizure.2017.10.009.
dc.identifier.citedreferenceKumar R, Lang AE, Rodriguez‐Oroz MC et al. Deep brain stimulation of the globus pallidus pars interna in advanced Parkinson’s disease. Neurology 2000; 55: S34 – S39.
dc.identifier.citedreferencePahwa R, Lyons KL, Wilkinson SB et al. Bilateral thalamic stimulation for the treatment of essential tremor. Neurology 1999; 53: 1447 – 1450.
dc.identifier.citedreferenceStaudt MD, Pourtaheri N, Lakin GE, Soltanian HT, Miller JP. Surgical Management of deep brain stimulator scalp erosion without hardware removal. Stereotact Funct Neurosurg 2017; 95: 385 – 391. https://doi.org/10.1159/000484323.
dc.identifier.citedreferenceLi D, Zhang C, Gault J et al. Remotely programmed deep brain stimulation of the bilateral subthalamic nucleus for the treatment of primary Parkinson disease: a randomized controlled trial investigating the safety and efficacy of a novel deep brain stimulation system. Stereotact Funct Neurosurg 2017; 95: 174 – 182. https://doi.org/10.1159/000475765.
dc.identifier.citedreferenceLipsman N, Lam E, Volpini M et al. Deep brain stimulation of the subcallosal cingulate for treatment‐refractory anorexia nervosa: 1 year follow‐up of an open‐label trial. Lancet Psychiatry 2017; 4: 285 – 294. https://doi.org/10.1016/S2215-0366(17)30076-7.
dc.identifier.citedreferenceLozano AM, Fosdick L, Chakravarty MM et al. A phase II study of fornix deep brain stimulation in mild Alzheimer’s disease. J Alzheimers Dis 2016; 54: 777 – 787. https://doi.org/10.3233/JAD-160017.
dc.identifier.citedreferenceBergfeld IO, Mantione M, Hoogendoorn MLC et al. Deep brain stimulation of the ventral anterior limb of the internal capsule for treatment‐resistant depression. JAMA Psychiat 2016; 73: 456. https://doi.org/10.1001/jamapsychiatry.2016.0152.
dc.identifier.citedreferenceLezcano E, Gómez‐Esteban JC, Tijero B et al. Long‐term impact on quality of life of subthalamic nucleus stimulation in Parkinson’s disease. J Neurol 2016; 263: 895 – 905. https://doi.org/10.1007/s00415-016-8077-4.
dc.identifier.citedreferencePetraglia FW, Farber SH, Han JL et al. Comparison of bilateral vs. staged unilateral deep brain stimulation (DBS) in Parkinson’s disease in patients under 70 years of age. Neuromodul Technol Neural Interface 2016; 19: 31 – 37. https://doi.org/10.1111/ner.12351.
dc.identifier.citedreferenceWojtecki L, Groiss SJ, Ferrea S et al. A prospective pilot trial for Pallidal deep brain stimulation in Huntington’s disease. Front Neurol 2015; 6: 177. https://doi.org/10.3389/fneur.2015.00177.
dc.identifier.citedreferenceHenssen DJHA, Kurt E, van Cappellen van Walsum A‐M et al. Long‐term effect of motor cortex stimulation in patients suffering from chronic neuropathic pain: an observational study. PLoS ONE 2018; 13: e0191774. https://doi.org/10.1371/journal.pone.0191774.
dc.identifier.citedreferenceAviles‐Olmos I, Kefalopoulou Z, Tripoliti E et al. Long‐term outcome of subthalamic nucleus deep brain stimulation for Parkinson’s disease using an MRI‐guided and MRI‐verified approach. J Neurol Neurosurg Psychiatry 2014; 85: 1419 – 1425. https://doi.org/10.1136/jnnp-2013-306907.
dc.identifier.citedreferenceKramer DR, Halpern CH, Danish SF, Jaggi JL, Baltuch GH. The effect of Intraventricular trajectory on brain shift in deep brain stimulation. Stereotact Funct Neurosurg 2012; 90: 20 – 24. https://doi.org/10.1159/000332056.
dc.identifier.citedreferenceGologorsky Y, Ben‐Haim S, Moshier EL et al. Transgressing the ventricular wall during subthalamic deep brain stimulation surgery for Parkinson disease increases the risk of adverse neurological Sequelae. Neurosurgery 2011; 69: 294 – 300. https://doi.org/10.1227/NEU.0b013e318214abda.
dc.identifier.citedreferenceBurdick AP, Okun MS, Haq IU et al. Prevalence of Twiddler’s syndrome as a cause of deep brain stimulation hardware failure. Stereotact Funct Neurosurg 2010; 88: 353 – 359. https://doi.org/10.1159/000319039.
dc.identifier.citedreferenceTanei T, Kajita Y, Kaneoke Y, Takebayashi S, Nakatsubo D, Wakabayashi T. Staged bilateral deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Acta Neurochir 2009; 151: 589 – 594. https://doi.org/10.1007/s00701-009-0293-6.
dc.identifier.citedreferenceEgidi M, Franzini A, Marras C et al. A survey of Italian cases of dystonia treated by deep brain stimulation. J Neurosurg Sci 2007; 51: 153 – 158.
dc.identifier.citedreferenceKhatib R, Ebrahim Z, Rezai A et al. Perioperative events during deep brain stimulation: the experience at Cleveland Clinic. J Neurosurg Anesthesiol 2008; 20: 36 – 40. https://doi.org/10.1097/ANA.0b013e318157a15a.
dc.identifier.citedreferenceEsselink RAJ, de Bie RMA, de Haan RJ et al. Unilateral pallidotomy versus bilateral subthalamic nucleus stimulation in PD: a randomized trial. Neurology 2004; 62: 201 – 207.
dc.identifier.citedreferenceIansek R, Rosenfeld JV, Huxham FE. Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease. Med J Aust 2002; 177: 142 – 146.
dc.identifier.citedreferenceServello D, Sassi M, Gaeta M, Ricci C, Porta M. Tourette syndrome (TS) bears a higher rate of inflammatory complications at the implanted hardware in deep brain stimulation (DBS). Acta Neurochir 2011; 153: 629 – 632. https://doi.org/10.1007/s00701-010-0851-y.
dc.identifier.citedreferenceFernández FS, Alvarez Vega MA, Antuña Ramos A, Fernández González F, Lozano AB. Lead fractures in deep brain stimulation during long‐term follow‐up. Parkinson Dis 2010; 2010: 409356. https://doi.org/10.4061/2010/409356.
dc.identifier.citedreferenceVergani F, Landi A, Pirillo D, Cilia R, Antonini A, Sganzerla EP. Surgical, medical, and hardware adverse events in a series of 141 patients undergoing subthalamic deep brain stimulation for Parkinson disease. World Neurosurg 2010; 73: 338 – 344. https://doi.org/10.1016/j.wneu.2010.01.017.
dc.identifier.citedreferenceMeoni S, Fraix V, Castrioto A et al. Pallidal deep brain stimulation for dystonia: a long term study. J Neurol Neurosurg Psychiatry 2017; 88: 960 – 967. https://doi.org/10.1136/jnnp-2016-315504.
dc.identifier.citedreferenceOliveria SF, Rodriguez RL, Bowers D et al. Safety and efficacy of dual‐lead thalamic deep brain stimulation for patients with treatment‐refractory multiple sclerosis tremor: a single‐Centre, randomised, single‐blind, pilot trial. Lancet Neurol 2017; 16: 691 – 700. https://doi.org/10.1016/S1474-4422(17)30166-7.
dc.identifier.citedreferenceDowd RS, Pourfar M, Mogilner AY. Deep brain stimulation for Tourette syndrome: a single‐center series. J Neurosurg 2018; 128: 596 – 604. https://doi.org/10.3171/2016.10.JNS161573.
dc.identifier.citedreferenceVolkmann J, Wolters A, Kupsch A et al. Pallidal deep brain stimulation in patients with primary generalised or segmental dystonia: 5‐year follow‐up of a randomised trial. Lancet Neurol 2012; 11: 1029 – 1038. https://doi.org/10.1016/S1474-4422(12)70257-0.
dc.identifier.citedreferenceAir EL, Ostrem JL, Sanger TD, Starr PA. Deep brain stimulation in children: experience and technical pearls. J Neurosurg Pediatr 2011; 8: 566 – 574. https://doi.org/10.3171/2011.8.PEDS11153.
dc.identifier.citedreferenceCif L, Gonzalez‐Martinez V, Vasques X et al. Staged implantation of multiple electrodes in the internal globus pallidus in the treatment of primary generalized dystonia. J Neurosurg 2012; 116: 1144 – 1152. https://doi.org/10.3171/2012.1.JNS102045.
dc.identifier.citedreferenceMehrkens JH, Borggraefe I, Feddersen B, Heinen F, Bötzel K. Early globus pallidus internus stimulation in pediatric patients with generalized primary dystonia: long‐term efficacy and safety. J Child Neurol 2010; 25: 1355 – 1361. https://doi.org/10.1177/0883073810365369.
dc.identifier.citedreferenceMehrkens JH, Bötzel K, Steude U et al. Long‐term efficacy and safety of chronic globus pallidus internus stimulation in different types of primary dystonia. Stereotact Funct Neurosurg 2009; 87: 8 – 17. https://doi.org/10.1159/000177623.
dc.identifier.citedreferenceLyons KE, Koller WC, Wilkinson SB, Pahwa R. Long term safety and efficacy of unilateral deep brain stimulation of the thalamus for Parkinsonian tremor. J Neurol Neurosurg Psychiatry 2001; 71: 682 – 684.
dc.identifier.citedreferenceFalowski SM, Bakay RAE. Revision surgery of deep brain stimulation leads. Neuromodulation 2016; 19: 443 – 450. https://doi.org/10.1111/ner.12404.
dc.identifier.citedreferenceChen T, Mirzadeh Z, Chapple KM et al. Intraoperative test stimulation versus stereotactic accuracy as a surgical end point: a comparison of essential tremor outcomes after ventral intermediate nucleus deep brain stimulation. J Neurosurg 2018; 129: 290 – 298. https://doi.org/10.3171/2017.3.JNS162487.
dc.identifier.citedreferenceKoller W, Pahwa R, Busenbark K et al. High‐frequency unilateral thalamic stimulation in the treatment of essential and parkinsonian tremor. Ann Neurol 1997; 42: 292 – 299. https://doi.org/10.1002/ana.410420304.
dc.identifier.citedreferenceIsaias IU, Alterman RL, Tagliati M. Deep brain stimulation for primary generalized dystonia: long‐term outcomes. Arch Neurol 2009; 66: 465 – 470. https://doi.org/10.1001/archneurol.2009.20.
dc.identifier.citedreferenceLyons KE, Wilkinson SB, Overman J, Pahwa R. Surgical and hardware complications of subthalamic stimulation: a series of 160 procedures. Neurology 2004; 63: 612 – 616.
dc.identifier.citedreferenceConstantoyannis C, Berk C, Honey CR, Mendez I, Brownstone RM. Reducing hardware‐related complications of deep brain stimulation. Can J Neurol Sci 2005; 32: 194 – 200.
dc.identifier.citedreferenceBlomstedt P, Hariz MI. Hardware‐related complications of deep brain stimulation: a ten year experience. Acta Neurochir 2005; 147: 1061 – 1064. https://doi.org/10.1007/s00701-005-0576-5.
dc.identifier.citedreferenceBoviatsis EJ, Stavrinou LC, Themistocleous M, Kouyialis AT, Sakas DE. Surgical and hardware complications of deep brain stimulation. A seven‐year experience and review of the literature. Acta Neurochir 2010; 152: 2053 – 2062. doi: https://doi.org/10.1007/s00701-010-0749-8.
dc.identifier.citedreferenceFytagoridis A, Blomstedt P. Complications and side effects of deep brain stimulation in the posterior subthalamic area. Stereotact Funct Neurosurg 2010; 88: 88 – 93. https://doi.org/10.1159/000271824.
dc.identifier.citedreferenceMorishita T, Hilliard JD, Okun MS et al. Postoperative lead migration in deep brain stimulation surgery: incidence, risk factors, and clinical impact. PLoS ONE 2017; 12: e0183711. https://doi.org/10.1371/journal.pone.0183711.
dc.identifier.citedreferenceBeric A, Kelly PJ, Rezai A et al. Complications of deep brain stimulation surgery. Stereotact Funct Neurosurg 2001; 77: 73 – 78. https://doi.org/10.1159/000064600.
dc.identifier.citedreferenceSobstyl MR, Ząbek M, Brzuszkiewicz‐Kuźmicka G, Pasterski T. Dual anchor internal pulse generator technique may lower risk of Twiddler’s syndrome: a case series and literature review. Neuromodulation 2017; 20: 606 – 612. https://doi.org/10.1111/ner.12581.
dc.identifier.citedreferenceGubler FS, Ackermans L, Kubben PL et al. Infections in deep brain stimulation: shaving versus not shaving. Surg Neurol Int 2017; 8: 249. https://doi.org/10.4103/sni.sni_172_17.
dc.identifier.citedreferenceFalowski S, Ooi YC, Smith A, Verhargen Metman L, Bakay RAE. An evaluation of hardware and surgical complications with deep brain stimulation based on diagnosis and lead location. Stereotact Funct Neurosurg 2012; 90: 173 – 180. https://doi.org/10.1159/000338254.
dc.identifier.citedreferenceKaminska M, Perides S, Lumsden DE et al. Complications of deep brain stimulation (DBS) for dystonia in children—The challenges and 10 year experience in a large paediatric cohort. Eur J Paediatr Neurol 2017; 21: 168 – 175. https://doi.org/10.1016/j.ejpn.2016.07.024.
dc.identifier.citedreferenceMiller PM, Gross RE. Wire tethering or “bowstringing” as a long‐term hardware‐related complication of deep brain stimulation. Stereotact Funct Neurosurg 2009; 87: 353 – 359. https://doi.org/10.1159/000236369.
dc.identifier.citedreferenceAlex Mohit A, Samii A, Slimp JC, Grady MS, Goodkin R. Mechanical failure of the electrode wire in deep brain stimulation. Parkinsonism Relat Disord 2004; 10: 153 – 156. https://doi.org/10.1016/j.parkreldis.2003.11.001.
dc.identifier.citedreferenceJanson C, Maxwell R, Gupte AA, Abosch A. Bowstringing as a complication of deep brain stimulation: case report. Neurosurgery 2010; 66: E1205. https://doi.org/10.1227/01.NEU.0000369199.72783.F9.
dc.identifier.citedreferenceWharen RE, Okun MS, Guthrie BL et al. Thalamic DBS with a constant‐current device in essential tremor: a controlled clinical trial. Parkinsonism Relat Disord 2017; 40: 18 – 26. https://doi.org/10.1016/j.parkreldis.2017.03.017.
dc.identifier.citedreferenceHoltzheimer PE, Husain MM, Lisanby SH et al. Subcallosal cingulate deep brain stimulation for treatment‐resistant depression: a multisite, randomised, sham‐controlled trial. Lancet Psychiatry 2017; 4: 839 – 849. https://doi.org/10.1016/S2215-0366(17)30371-1.
dc.identifier.citedreferenceKahn E, D’Haese P‐F, Dawant B et al. Deep brain stimulation in early stage Parkinson’s disease: operative experience from a prospective randomised clinical trial. J Neurol Neurosurg Psychiatry 2012; 83: 164 – 170. https://doi.org/10.1136/jnnp-2011-300008.
dc.identifier.citedreferenceLinhares P, Carvalho B, Vaz R. One‐step tunneling of DBS extensions—a technical note. Acta Neurochir 2013; 155: 837 – 840. https://doi.org/10.1007/s00701-013-1667-3.
dc.identifier.citedreferenceKaminska M, Lumsden DE, Ashkan K, Malik I, Selway R, Lin J‐P. Rechargeable deep brain stimulators in the management of paediatric dystonia: well tolerated with a low complication rate. Stereotact Funct Neurosurg 2012; 90: 233 – 239. https://doi.org/10.1159/000337768.
dc.identifier.citedreferenceKim MS, Jeong JS, Ryu H‐S, Choi S‐H, Chung SJ. Infection related to deep brain stimulation in patients with Parkinson disease: clinical characteristics and risk factors. J Neurol Sci 2017; 383: 135 – 141. https://doi.org/10.1016/j.jns.2017.10.031.
dc.identifier.citedreferenceSobstyl M, Ząbek M, Dzierzęcki S, Koziara H, Mossakowski Z. Chronic bilateral pallidal stimulation in patients with generalized primary dystonia—multi‐contact cathodal stimulation is superior to bipolar stimulation mode. Preliminary results. Neurol Neurochir Pol 2011; 45: 252 – 259.
dc.identifier.citedreferenceOkun MS, Gallo BV, Mandybur G et al. Subthalamic deep brain stimulation with a constant‐current device in Parkinson’s disease: an open‐label randomised controlled trial. Lancet Neurol 2012; 11: 140 – 149. https://doi.org/10.1016/S1474-4422(11)70308-8.
dc.identifier.citedreferenceZrinzo L, Foltynie T, Limousin P, Hariz MI. Reducing hemorrhagic complications in functional neurosurgery: a large case series and systematic literature review. J Neurosurg 2012; 116: 84 – 94. https://doi.org/10.3171/2011.8.JNS101407.
dc.identifier.citedreferenceLim S‐N, Lee S‐T, Tsai Y‐T et al. Long‐term anterior thalamus stimulation for intractable epilepsy. Chang Gung Med J 2008; 31: 287 – 296.
dc.identifier.citedreferenceVoges J, Waerzeggers Y, Maarouf M et al. Deep‐brain stimulation: long‐term analysis of complications caused by hardware and surgery—experiences from a single Centre. J Neurol Neurosurg Psychiatry 2006; 77: 868 – 872. https://doi.org/10.1136/jnnp.2005.081232.
dc.identifier.citedreferenceLim S‐N, Lee S‐T, Tsai Y‐T et al. Electrical stimulation of the anterior nucleus of the thalamus for intractable epilepsy: a long‐term follow‐up study. Epilepsia 2007; 48: 342 – 347. https://doi.org/10.1111/j.1528-1167.2006.00898.x.
dc.identifier.citedreferenceDiamond A, Shahed J, Azher S, Dat‐Vuong K, Jankovic J. Globus pallidus deep brain stimulation in dystonia. Mov Disord 2006; 21: 692 – 695. https://doi.org/10.1002/mds.20767.
dc.identifier.citedreferenceVidailhet M, Vercueil L, Houeto J‐L et al. Bilateral deep‐brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med 2005; 352: 459 – 467. https://doi.org/10.1056/NEJMoa042187.
dc.identifier.citedreferenceTemel Y, Ackermans L, Celik H et al. Management of hardware infections following deep brain stimulation. Acta Neurochir 2004; 146: 355 – 361. https://doi.org/10.1007/s00701-004-0219-2.
dc.identifier.citedreferenceCoubes P, Vayssiere N, El Fertit H et al. Deep brain stimulation for dystonia. Surgical technique. Stereotact Funct Neurosurg 2002; 78: 183 – 191. https://doi.org/10.1159/000068962.
dc.identifier.citedreferenceChowdhury T, Wilkinson M, Cappellani RB. Hemodynamic perturbations in deep brain stimulation surgery: first detailed description. Front Neurosci 2017; 11: 477. https://doi.org/10.3389/fnins.2017.00477.
dc.identifier.citedreferenceUmemura A, Jaggi JL, Hurtig HI et al. Deep brain stimulation for movement disorders: morbidity and mortality in 109 patients. J Neurosurg 2003; 98: 779 – 784. https://doi.org/10.3171/jns.2003.98.4.0779.
dc.identifier.citedreferenceDeep‐brain Stimulation for Parkinson’s Disease Study Group, Obeso JA, Olanow CW et al. Deep‐brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med 2001; 345: 956 – 963. https://doi.org/10.1056/NEJMoa000827.
dc.identifier.citedreferenceLi D, Cao C, Zhang J, Zhan S, Chen S, Sun B. Subthalamic nucleus deep brain stimulation for Parkinson’s disease: 8 years of follow‐up. Transl Neurodegener 2013; 2: 11. https://doi.org/10.1186/2047-9158-2-11.
dc.identifier.citedreferenceLimousin P, Speelman JD, Gielen F, Janssens M. Multicentre European study of thalamic stimulation in parkinsonian and essential tremor. J Neurol Neurosurg Psychiatry 1999; 66: 289 – 296.
dc.identifier.citedreferenceSchuurman PR, Bosch DA, Merkus MP, Speelman JD. Long‐term follow‐up of thalamic stimulation versus thalamotomy for tremor suppression. Mov Disord 2008; 23: 1146 – 1153. https://doi.org/10.1002/mds.22059.
dc.identifier.citedreferenceZhang K, Bhatia S, Oh MY, Cohen D, Angle C, Whiting D. Long‐term results of thalamic deep brain stimulation for essential tremor. J Neurosurg 2010; 112: 1271 – 1276. https://doi.org/10.3171/2009.10.JNS09371.
dc.identifier.citedreferenceTir M, Devos D, Blond S et al. Exhaustive, one‐year follow‐up of subthalamic nucleus deep brain stimulation in a large, single‐center cohort of Parkinsonian patients. Neurosurgery 2007; 61: 297 – 304. https://doi.org/10.1227/01.NEU.0000285347.50028.B9.
dc.identifier.citedreferenceHu X, Jiang X, Zhou X et al. Avoidance and management of surgical and hardware‐related complications of deep brain stimulation. Stereotact Funct Neurosurg 2010; 88: 296 – 303. https://doi.org/10.1159/000316762.
dc.identifier.citedreferenceGoodman RR. Operative techniques and morbidity with subthalamic nucleus deep brain stimulation in 100 consecutive patients with advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 2006; 77: 12 – 17. https://doi.org/10.1136/jnnp.2005.069161.
dc.identifier.citedreferenceMartinez‐Ramirez D, Jimenez‐Shahed J, Leckman JF et al. Efficacy and safety of deep brain stimulation in Tourette syndrome: the international Tourette syndrome deep brain stimulation public database and registry. JAMA Neurol 2018; 75: 353 – 359. https://doi.org/10.1001/jamaneurol.2017.4317.
dc.identifier.citedreferenceVelasco AL, Velasco F, Velasco M, Trejo D, Castro G, Carrillo‐Ruiz JD. Electrical stimulation of the hippocampal epileptic foci for seizure control: a double‐blind, long‐term follow‐up study. Epilepsia 2007; 48: 1895 – 1903. https://doi.org/10.1111/j.1528-1167.2007.01181.x.
dc.identifier.citedreferenceVesper J, Chabardes S, Fraix V, Sunde N, Østergaard K, Kinetra Study Group. Dual channel deep brain stimulation system (Kinetra) for Parkinson’s disease and essential tremor: a prospective multicentre open label clinical study. J Neurol Neurosurg Psychiatry 2002; 73: 275 – 280.
dc.identifier.citedreferenceFernández‐Pajarín G, Sesar A, Ares B et al. Delayed complications of deep brain stimulation: 16‐year experience in 249 patients. Acta Neurochir 2017; 159: 1713 – 1719. https://doi.org/10.1007/s00701-017-3252-7.
dc.identifier.citedreferenceAbode‐Iyamah KO, Chiang H‐Y, Woodroffe RW et al. Deep brain stimulation hardware‐related infections: 10‐year experience at a single institution. J Neurosurg 2018; 1: 1 – 10. https://doi.org/10.3171/2017.9.JNS1780.
dc.identifier.citedreferenceBaizabal Carvallo JF, Mostile G, Almaguer M, Davidson A, Simpson R, Jankovic J. Deep brain stimulation hardware complications in patients with movement disorders: risk factors and clinical correlations. Stereotact Funct Neurosurg 2012; 90: 300 – 306. https://doi.org/10.1159/000338222.
dc.identifier.citedreferenceHardaway FA, Raslan AM, Burchiel KJ. Deep brain stimulation‐related infections: analysis of rates, timing, and seasonality. Neurosurgery 2018; 83: 540 – 547. https://doi.org/10.1093/neuros/nyx505.
dc.identifier.citedreferenceHolslag JAH, Neef N, Beudel M et al. Deep brain stimulation for essential tremor: a comparison of targets. World Neurosurg 2018; 110: e580 – e584. https://doi.org/10.1016/j.wneu.2017.11.064.
dc.identifier.citedreferenceUmemura A, Oka Y, Yamamoto K, Okita K, Matsukawa N, Yamada K. Complications of subthalamic nucleus stimulation in Parkinson’s disease. Neurol Med Chir 2011; 51: 749 – 755.
dc.identifier.citedreferencePahwa R, Lyons KE, Wilkinson SB et al. Comparison of thalamotomy to deep brain stimulation of the thalamus in essential tremor. Mov Disord 2001; 16: 140 – 143.
dc.identifier.citedreferenceKim M, Jung NY, Park CK, Chang WS, Jung HH, Chang JW. Comparative evaluation of magnetic resonance‐guided focused ultrasound surgery for essential tremor. Stereotact Funct Neurosurg 2017; 95: 279 – 286. https://doi.org/10.1159/000478866.
dc.identifier.citedreferenceVidailhet M, Vercueil L, Houeto J‐L et al. Bilateral, pallidal, deep‐brain stimulation in primary generalised dystonia: a prospective 3 year follow‐up study. Lancet Neurol 2007; 6: 223 – 229. https://doi.org/10.1016/S1474-4422(07)70035-2.
dc.identifier.citedreferenceBlomstedt P, Hariz MI. Are complications less common in deep brain stimulation than in ablative procedures for movement disorders? Stereotact Funct Neurosurg 2006; 84: 72 – 81. https://doi.org/10.1159/000094035.
dc.identifier.citedreferenceStroop R, Holms F, Nakamura M, Lehrke R. A Submammarian approach for cosmetically improved implantation of deep brain stimulation generators. World Neurosurg 2018; 109: e699 – e706. https://doi.org/10.1016/j.wneu.2017.10.057.
dc.identifier.citedreferenceDeuschl G, Schade‐Brittinger C, Krack P et al. A randomized trial of deep‐brain stimulation for Parkinson’s disease. N Engl J Med 2006; 355: 896 – 908. https://doi.org/10.1056/NEJMoa060281.
dc.identifier.citedreferencePark YS, Kang J‐H, Kim HY et al. A combination procedure with double C‐shaped skin incision and dual‐floor burr hole method to prevent skin erosion on the scalp and reduce postoperative skin complications in deep brain stimulation. Stereotact Funct Neurosurg 2011; 89: 178 – 184. https://doi.org/10.1159/000324903.
dc.identifier.citedreferencePeña E, Pastor J, Hernando V et al. Skin erosion over implants in deep brain stimulation patients. Stereotact Funct Neurosurg 2008; 86: 120 – 126. https://doi.org/10.1159/000116216.
dc.identifier.citedreferenceWelter M‐L, Houeto J‐L, Thobois S et al. Anterior pallidal deep brain stimulation for Tourette’s syndrome: a randomised, double‐blind, controlled trial. Lancet Neurol 2017; 16: 610 – 619. https://doi.org/10.1016/S1474-4422(17)30160-6.
dc.identifier.citedreferenceMerola A, Fasano A, Hassan A et al. Thalamic deep brain stimulation for orthostatic tremor: a multicenter international registry. Mov Disord 2017; 32: 1240 – 1244. https://doi.org/10.1002/mds.27082.
dc.identifier.citedreferenceAbreu V, Vaz R, Rebelo V et al. Thalamic deep brain stimulation for neuropathic pain: efficacy at three years’ follow‐up. Neuromodulation 2017; 20: 504 – 513. https://doi.org/10.1111/ner.12620.
dc.identifier.citedreferenceAlomar S, Mullin JP, Smithason S, Gonzalez‐Martinez J. Indications, technique, and safety profile of insular stereoelectroencephalography electrode implantation in medically intractable epilepsy. J Neurosurg 2018; 128: 1147 – 1157. https://doi.org/10.3171/2017.1.JNS161070.
dc.identifier.citedreferenceKlein J, Büntjen L, Jacobi G et al. Bilateral thalamic deep brain stimulation for essential tremor in elderly patients. J Neural Transm 2017; 124: 1093 – 1096. https://doi.org/10.1007/s00702-017-1741-8.
dc.identifier.citedreferenceZhan S, Sun F, Pan Y et al. Bilateral deep brain stimulation of the subthalamic nucleus in primary Meige syndrome. J Neurosurg 2018; 128: 897 – 902. https://doi.org/10.3171/2016.12.JNS16383.
dc.identifier.citedreferenceRyu H‐S, Kim M‐S, You S et al. Comparison of pallidal and subthalamic deep brain stimulation in Parkinson’s disease: therapeutic and adverse effects. J Mov Disord 2017; 10: 80 – 86. https://doi.org/10.14802/jmd.17001.
dc.identifier.citedreferencePark CK, Jung NY, Kim M, Chang JW. Analysis of delayed intracerebral hemorrhage associated with deep brain stimulation surgery. World Neurosurg 2017; 104: 537 – 544. https://doi.org/10.1016/j.wneu.2017.05.075.
dc.identifier.citedreferenceFrizon LA, Hogue O, Wathen C et al. Subsequent pulse generator replacement surgery does not increase the infection rate in patients with deep brain stimulator systems: a review of 1537 unique implants at a single center. Neuromodulation 2017; 20: 444 – 449. https://doi.org/10.1111/ner.12605.
dc.identifier.citedreferenceGeller EB, Skarpaas TL, Gross RE et al. Brain‐responsive neurostimulation in patients with medically intractable mesial temporal lobe epilepsy. Epilepsia 2017; 58: 994 – 1004. https://doi.org/10.1111/epi.13740.
dc.identifier.citedreferenceWhite‐Dzuro GA, Lake W, Neimat JS. Subpectoral implantation of internal pulse generators for deep brain stimulation: technical note for improved cosmetic outcomes. Oper Neurosurg 2017; 13: 529 – 534. https://doi.org/10.1093/ons/opx018.
dc.identifier.citedreferenceChen T, Mirzadeh Z, Lambert M et al. Cost of deep brain stimulation infection resulting in explantation. Stereotact Funct Neurosurg 2017; 95: 117 – 124. https://doi.org/10.1159/000457964.
dc.identifier.citedreferenceThemistocleous MS, Sakas DE, Boviatsis E et al. The insertion of electrodes in the brain for electrophysiological recording or chronic stimulation is not associated with any biochemically detectable neuronal injury. Neuromodulation 2017; 20: 424 – 428. https://doi.org/10.1111/ner.12598.
dc.identifier.citedreferenceJobst BC, Kapur R, Barkley GL et al. Brain‐responsive neurostimulation in patients with medically intractable seizures arising from eloquent and other neocortical areas. Epilepsia 2017; 58: 1005 – 1014. https://doi.org/10.1111/epi.13739.
dc.identifier.citedreferenceLempka SF, Malone DA, Hu B et al. Randomized clinical trial of deep brain stimulation for poststroke pain. Ann Neurol 2017; 81: 653 – 663. https://doi.org/10.1002/ana.24927.
dc.identifier.citedreferenceRamayya AG, Abdullah KG, Mallela AN et al. Thirty‐day readmission rates following deep brain stimulation surgery. Neurosurgery 2017; 81: 259 – 267. https://doi.org/10.1093/neuros/nyx019.
dc.identifier.citedreferenceLefebvre J, Buffet‐Bataillon S, Henaux PL, Riffaud L, Morandi X, Haegelen C. Staphylococcus aureus screening and decolonization reduces the risk of surgical site infections in patients undergoing deep brain stimulation surgery. J Hosp Infect 2017; 95: 144 – 147. https://doi.org/10.1016/j.jhin.2016.11.019.
dc.identifier.citedreferenceOstrem JL, San Luciano M, Dodenhoff KA et al. Subthalamic nucleus deep brain stimulation in isolated dystonia: a 3‐year follow‐up study. Neurology 2017; 88: 25 – 35. https://doi.org/10.1212/WNL.0000000000003451.
dc.identifier.citedreferenceDownes AE, Pezeshkian P, Behnke E et al. Acute ischemic stroke during deep brain stimulation surgery of Globus Pallidus Internus: report of 5 cases. Oper Neurosurg 2016; 12: 383 – 390. https://doi.org/10.1227/NEU.0000000000001359.
dc.identifier.citedreferenceWang X, Wang J, Zhao H et al. Clinical analysis and treatment of symptomatic intracranial hemorrhage after deep brain stimulation surgery. Br J Neurosurg 2017; 31: 217 – 222. https://doi.org/10.1080/02688697.2016.1244252.
dc.identifier.citedreferenceRosa M, Scelzo E, Locatelli M et al. Risk of infection after local field potential recording from externalized deep brain stimulation leads in Parkinson’s disease. World Neurosurg 2017; 97: 64 – 69. https://doi.org/10.1016/j.wneu.2016.09.069.
dc.identifier.citedreferenceMandat T, Tykocki T, Koziara H et al. Subthalamic deep brain stimulation for the treatment of Parkinson disease. Neurol Neurochir Pol 2011; 45: 32 – 36.
dc.identifier.citedreferenceHu K, Moses ZB, Hutter MM, Williams Z. Short‐term adverse outcomes after deep brain stimulation treatment in patients with Parkinson disease. World Neurosurg 2017; 98: 365 – 374. https://doi.org/10.1016/j.wneu.2016.10.138.
dc.identifier.citedreferenceKrause P, Lauritsch K, Lipp A et al. Long‐term results of deep brain stimulation in a cohort of eight children with isolated dystonia. J Neurol 2016; 263: 2319 – 2326. https://doi.org/10.1007/s00415-016-8253-6.
dc.identifier.citedreferenceChen T, Mirzadeh Z, Chapple K, Lambert M, Ponce FA. Complication rates, lengths of stay, and readmission rates in ‘awake’ and ‘asleep’ deep brain simulation. J Neurosurg 2017; 127: 360 – 369. https://doi.org/10.3171/2016.6.JNS152946.
dc.identifier.citedreferenceMiller S, Akram H, Lagrata S, Hariz M, Zrinzo L, Matharu M. Ventral tegmental area deep brain stimulation in refractory short‐lasting unilateral neuralgiform headache attacks. Brain 2016; 139: 2631 – 2640. https://doi.org/10.1093/brain/aww204.
dc.identifier.citedreferenceMartin AJ, Larson PS, Ziman N et al. Deep brain stimulator implantation in a diagnostic MRI suite: infection history over a 10‐year period. J Neurosurg 2017; 126: 108 – 113. https://doi.org/10.3171/2015.7.JNS15750.
dc.identifier.citedreferenceChiou S‐M. Benefits of subthalamic stimulation for elderly Parkinsonian patients aged 70 years or older. Clin Neurol Neurosurg 2016; 149: 81 – 86. https://doi.org/10.1016/j.clineuro.2016.07.028.
dc.identifier.citedreferenceWilliams NR, Short EB, Hopkins T et al. Five‐year follow‐up of bilateral epidural prefrontal cortical stimulation for treatment‐resistant depression. Brain Stimul 2016; 9: 897 – 904. https://doi.org/10.1016/j.brs.2016.06.054.
dc.identifier.citedreferenceRasouli JJ, Kopell BH. The adjunctive use of Vancomycin powder appears safe and may reduce the incidence of surgical‐site infections after deep brain stimulation surgery. World Neurosurg 2016; 95: 9 – 13. https://doi.org/10.1016/j.wneu.2016.07.063.
dc.identifier.citedreferenceKoy A, Weinsheimer M, Pauls KAM et al. German registry of paediatric deep brain stimulation in patients with childhood‐onset dystonia (GEPESTIM). Eur J Paediatr Neurol 2017; 21: 136 – 146. https://doi.org/10.1016/j.ejpn.2016.05.023.
dc.identifier.citedreferenceTestini P, Zhao CZ, Stead M, Duffy PS, Klassen BT, Lee KH. Centromedian‐parafascicular complex deep brain stimulation for Tourette syndrome: a retrospective study. Mayo Clin Proc 2016; 91: 218 – 225. https://doi.org/10.1016/j.mayocp.2015.11.016.
dc.identifier.citedreferenceDafsari HS, Reker P, Silverdale M et al. Subthalamic stimulation improves quality of life of patients aged 61 years or older with short duration of Parkinson’s disease. Neuromodulation 2018; 21: 532 – 540. https://doi.org/10.1111/ner.12740.
dc.identifier.citedreferenceWhite‐Dzuro GA, Lake W, Eli IM, Neimat JS. Novel approach to securing deep brain stimulation leads: technique and analysis of lead migration, breakage, and surgical infection. Stereotact Funct Neurosurg 2016; 94: 18 – 23. https://doi.org/10.1159/000442893.
dc.identifier.citedreferenceDelavallée M, Delaunois J, Ruwet J, Jeanjean A, Raftopoulos C. STN DBS for Parkinson’s disease: results from a series of ten consecutive patients implanted under general anaesthesia with intraoperative use of 3D fluoroscopy to control lead placement. Acta Neurochir 2016; 158: 1783 – 1788. https://doi.org/10.1007/s00701-016-2889-y.
dc.identifier.citedreferenceHiguchi M‐A, Martinez‐Ramirez D, Morita H et al. Interdisciplinary Parkinson’s disease deep brain stimulation screening and the relationship to unintended hospitalizations and quality of life. PLoS ONE 2016; 11: e0153785. https://doi.org/10.1371/journal.pone.0153785.
dc.identifier.citedreferencePonce FA, Asaad WF, Foote KD et al. Bilateral deep brain stimulation of the fornix for Alzheimer’s disease: surgical safety in the ADvance trial. J Neurosurg 2016; 125: 75 – 84. https://doi.org/10.3171/2015.6.JNS15716.
dc.identifier.citedreferenceAshkan K, Alamri A, Ughratdar I. Anti‐coagulation and deep brain stimulation: never the twain shall meet. Stereotact Funct Neurosurg 2015; 93: 373 – 377. https://doi.org/10.1159/000441232.
dc.identifier.citedreferenceTonge M, Ackermans L, Kocabicak E et al. A detailed analysis of intracerebral hemorrhages in DBS surgeries. Clin Neurol Neurosurg 2015; 139: 183 – 187. https://doi.org/10.1016/j.clineuro.2015.10.017.
dc.identifier.citedreferenceOstrem JL, Ziman N, Galifianakis NB et al. Clinical outcomes using ClearPoint interventional MRI for deep brain stimulation lead placement in Parkinson’s disease. J Neurosurg 2016; 124: 908 – 916. https://doi.org/10.3171/2015.4.JNS15173.
dc.identifier.citedreferenceLevi V, Carrabba G, Rampini P, Locatelli M. Short term surgical complications after subthalamic deep brain stimulation for Parkinson’s disease: does old age matter? BMC Geriatr 2015; 15: 116. https://doi.org/10.1186/s12877-015-0112-2.
dc.identifier.citedreferenceFalowski SM, Ooi YC, Bakay RAE. Long‐term evaluation of changes in operative technique and hardware‐related complications with deep brain stimulation. Neuromodulation 2015; 18: 670 – 677. https://doi.org/10.1111/ner.12335.
dc.identifier.citedreferenceAkram H, Limousin P, Hyam J, Hariz MI, Zrinzo L. Aim for the suprasternal notch: technical note to avoid bowstringing after deep brain stimulation. Stereotact Funct Neurosurg 2015; 93: 227 – 230. https://doi.org/10.1159/000381680.
dc.identifier.citedreferenceCury RG, Fraix V, Castrioto A et al. Thalamic deep brain stimulation for tremor in Parkinson disease, essential tremor, and dystonia. Neurology 2017; 89: 1416 – 1423. https://doi.org/10.1212/WNL.0000000000004295.
dc.identifier.citedreferenceReuter S, Deuschl G, Falk D, Mehdorn M, Witt K. Uncoupling of dopaminergic and subthalamic stimulation: life‐threatening DBS withdrawal syndrome. Mov Disord 2015; 30: 1407 – 1413. https://doi.org/10.1002/mds.26324.
dc.identifier.citedreferenceKefalopoulou Z, Zrinzo L, Jahanshahi M et al. Bilateral globus pallidus stimulation for severe Tourette’s syndrome: a double‐blind, randomised crossover trial. Lancet Neurol 2015; 14: 595 – 605. https://doi.org/10.1016/S1474-4422(15)00008-3.
dc.identifier.citedreferenceVerla T, Marky A, Farber H et al. Impact of advancing age on post‐operative complications of deep brain stimulation surgery for essential tremor. J Clin Neurosci 2015; 22: 872 – 876. https://doi.org/10.1016/j.jocn.2014.11.005.
dc.identifier.citedreferenceSalanova V, Witt T, Worth R et al. Long‐term efficacy and safety of thalamic stimulation for drug‐resistant partial epilepsy. Neurology 2015; 84: 1017 – 1025. https://doi.org/10.1212/WNL.0000000000001334.
dc.identifier.citedreferenceBergey GK, Morrell MJ, Mizrahi EM et al. Long‐term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology 2015; 84: 810 – 817. https://doi.org/10.1212/WNL.0000000000001280.
dc.identifier.citedreferencePatel DM, Walker HC, Brooks R, Omar N, Ditty B, Guthrie BL. Adverse events associated with deep brain stimulation for movement disorders: analysis of 510 consecutive cases. Neurosurgery 2015; 11: 190 – 199. https://doi.org/10.1227/NEU.0000000000000659.
dc.identifier.citedreferenceMalik WQ, Hochberg LR, Donoghue JP, Brown EN. Modulation depth estimation and variable selection in state‐space models for neural interfaces. IEEE Trans Biomed Eng 2015; 62: 570 – 581. https://doi.org/10.1109/TBME.2014.2360393.
dc.identifier.citedreferenceKeen JR, Przekop A, Olaya JE, Zouros A, Hsu FPK. Deep brain stimulation for the treatment of childhood dystonic cerebral palsy. J Neurosurg Pediatr 2014; 14: 585 – 593. https://doi.org/10.3171/2014.8.PEDS141.
dc.identifier.citedreferenceLee S‐W, Lee M‐K, Seo I, Kim H‐S, Kim J‐H, Kim Y‐S. A groove technique for securing an electrode connector on the cranial bone: case analysis of efficacy. J Korean Neurosurg Soc 2014; 56: 130 – 134. https://doi.org/10.3340/jkns.2014.56.2.130.
dc.identifier.citedreferenceSobstyl M, Kmieć T, Ząbek M, Szczałuba K, Mossakowski Z. Long‐term outcomes of bilateral pallidal stimulation for primary generalised dystonia. Clin Neurol Neurosurg 2014; 126: 82 – 87. https://doi.org/10.1016/j.clineuro.2014.08.027.
dc.identifier.citedreferenceChui J, Alimiri R, Parrent A, Craen RA. The effects of intraoperative sedation on surgical outcomes of deep brain stimulation surgery. Can J Neurol Sci 2018; 45: 168 – 175. https://doi.org/10.1017/cjn.2017.269.
dc.identifier.citedreferenceDeLong MR, Huang KT, Gallis J et al. Effect of advancing age on outcomes of deep brain stimulation for Parkinson disease. JAMA Neurol 2014; 71: 1290 – 1295. https://doi.org/10.1001/jamaneurol.2014.1272.
dc.identifier.citedreferenceVolkmann J, Mueller J, Deuschl G et al. Pallidal neurostimulation in patients with medication‐refractory cervical dystonia: a randomised, sham‐controlled trial. Lancet Neurol 2014; 13: 875 – 884. https://doi.org/10.1016/S1474-4422(14)70143-7.
dc.identifier.citedreferenceSachdev PS, Mohan A, Cannon E et al. Deep brain stimulation of the antero‐medial globus pallidus interna for Tourette syndrome. PLoS ONE 2014; 9: e104926. https://doi.org/10.1371/journal.pone.0104926.
dc.identifier.citedreferenceBjerknes S, Skogseid IM, Sæhle T, Dietrichs E, Toft M. Surgical site infections after deep brain stimulation surgery: frequency, characteristics and management in a 10‐year period. PLoS ONE 2014; 9: e105288. https://doi.org/10.1371/journal.pone.0105288.
dc.identifier.citedreferenceTolleson C, Stroh J, Ehrenfeld J, Neimat J, Konrad P, Phibbs F. The factors involved in deep brain stimulation infection: a large case series. Stereotact Funct Neurosurg 2014; 92: 227 – 233. https://doi.org/10.1159/000362934.
dc.identifier.citedreferencede Quintana‐Schmidt C, Pascual‐Sedano B, Alvarez‐Holzapfel MJ et al. Complications related with implanted devices in patients with Parkinson’s disease treated with deep brain stimulation. A study of a series of 124 patients over a period of 16 years. Rev Neurol 2014; 59: 49 – 56.
dc.identifier.citedreferenceSolmaz B, Tatarli N, Ceylan D, Bayri Y, Ziyal MI, Şeker A. A sine‐wave‐shaped skin incision for inserting deep‐brain stimulators. Acta Neurochir 2014; 156: 1523 – 1525. https://doi.org/10.1007/s00701-014-2123-8.
dc.identifier.citedreferenceGocmen S, Celiker O, Topcu A, Panteli A, Acar G, Acar F. Reuse of internal pulse generator in cases of infection after deep brain stimulation surgery. Stereotact Funct Neurosurg 2014; 92: 140 – 144. https://doi.org/10.1159/000360585.
dc.identifier.citedreferenceCharles D, Konrad PE, Neimat JS et al. Subthalamic nucleus deep brain stimulation in early stage Parkinson’s disease. Parkinsonism Relat Disord 2014; 20: 731 – 737. https://doi.org/10.1016/j.parkreldis.2014.03.019.
dc.identifier.citedreferenceSeijo F, Alvarez de Eulate Beramendi S, Santamarta Liébana E et al. Surgical adverse events of deep brain stimulation in the subthalamic nucleus of patients with Parkinson’s disease. The learning curve and the pitfalls. Acta Neurochir 2014; 156: 1505 – 1512. https://doi.org/10.1007/s00701-014-2082-0.
dc.identifier.citedreferencePersson R, Earley A, Garlitski AC, Balk EM, Uhlig K. Adverse events following implantable cardioverter defibrillator implantation: a systematic review. J Interv Card Electrophysiol 2014; 40: 191 – 205. https://doi.org/10.1007/s10840-014-9913-z.
dc.identifier.citedreferenceWillett FR, Pandarinath C, Jarosiewicz B et al. Feedback control policies employed by people using intracortical brain‐computer interfaces. J Neural Eng 2017; 14: 016001. https://doi.org/10.1088/1741-2560/14/1/016001.
dc.identifier.citedreferenceAjiboye AB, Willett FR, Young DR et al. Restoration of reaching and grasping movements through brain‐controlled muscle stimulation in a person with tetraplegia: a proof‐of‐concept demonstration. Lancet 2017; 389: 1821 – 1830. https://doi.org/10.1016/S0140-6736(17)30601-3.
dc.identifier.citedreferenceAjiboye AB, Simeral JD, Donoghue JP, Hochberg LR, Kirsch RF. Prediction of imagined single‐joint movements in a person with high‐level tetraplegia. IEEE Trans Biomed Eng 2012; 59: 2755 – 2765. https://doi.org/10.1109/TBME.2012.2209882.
dc.identifier.citedreferenceChadwick EK, Blana D, Simeral JD et al. Continuous neuronal ensemble control of simulated arm reaching by a human with tetraplegia. J Neural Eng 2011; 8: 034003. https://doi.org/10.1088/1741-2560/8/3/034003.
dc.identifier.citedreferenceKim S‐P, Simeral JD, Hochberg LR, Donoghue JP, Friehs GM, Black MJ. Point‐and‐click cursor control with an intracortical neural interface system by humans with tetraplegia. IEEE Trans Neural Syst Rehabil Eng 2011; 19: 193 – 203. https://doi.org/10.1109/TNSRE.2011.2107750.
dc.identifier.citedreferenceEven‐Chen N, Stavisky SD, Pandarinath C et al. Feasibility of automatic error detect‐and‐undo system in human intracortical brain‐computer interfaces. IEEE Trans Biomed Eng 2018; 65: 1771 – 1784. https://doi.org/10.1109/TBME.2017.2776204.
dc.identifier.citedreferenceMasse NY, Jarosiewicz B, Simeral JD et al. Non‐causal spike filtering improves decoding of movement intention for intracortical BCIs. J Neurosci Methods 2014; 236: 58 – 67. https://doi.org/10.1016/j.jneumeth.2014.08.004.
dc.identifier.citedreferenceHochberg LR, Bacher D, Jarosiewicz B et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 2012; 485: 372 – 375. https://doi.org/10.1038/nature11076.
dc.identifier.citedreferenceAnnetta N, Friend J, Schimmoeller A et al. A high definition non‐invasive neuromuscular electrical stimulation system for cortical control of combinatorial rotary hand movements in a human with tetraplegia. IEEE Trans Biomed Eng 2018; 66: 1. https://doi.org/10.1109/TBME.2018.2864104.
dc.identifier.citedreferenceTruccolo W, Hochberg LR, Donoghue JP. Collective dynamics in human and monkey sensorimotor cortex: predicting single neuron spikes. Nat Neurosci 2010; 13: 105 – 111. https://doi.org/10.1038/nn.2455.
dc.identifier.citedreferenceMilekovic T, Sarma AA, Bacher D et al. Stable long‐term BCI‐enabled communication in ALS and locked‐in syndrome using LFP signals. J Neurophysiol 2018; 120: 343 – 360. https://doi.org/10.1152/jn.00493.2017.
dc.identifier.citedreferenceJarosiewicz B, Sarma AA, Bacher D et al. Virtual typing by people with tetraplegia using a self‐calibrating intracortical brain‐computer interface. Sci Transl Med 2015; 7: 313ra179 – 313ra179. https://doi.org/10.1126/scitranslmed.aac7328.
dc.identifier.citedreferenceBrandman DM, Hosman T, Saab J et al. Rapid calibration of an intracortical brain–computer interface for people with tetraplegia. J Neural Eng 2018; 15: 026007. https://doi.org/10.1088/1741-2552/aa9ee7.
dc.identifier.citedreferenceBacher D, Jarosiewicz B, Masse NY et al. Neural point‐and‐click communication by a person with incomplete locked‐in syndrome. Neurorehabil Neural Repair 2015; 29: 462 – 471. https://doi.org/10.1177/1545968314554624.
dc.identifier.citedreferencePerge JA, Zhang S, Malik WQ et al. Reliability of directional information in unsorted spikes and local field potentials recorded in human motor cortex. J Neural Eng 2014; 11: 046007. https://doi.org/10.1088/1741-2560/11/4/046007.
dc.identifier.citedreferenceHomer ML, Perge JA, Black MJ, Harrison MT, Cash SS, Hochberg LR. Adaptive offset correction for intracortical brain‐computer interfaces. IEEE Trans Neural Syst Rehabil Eng 2014; 22: 239 – 248. https://doi.org/10.1109/TNSRE.2013.2287768.
dc.identifier.citedreferenceJarosiewicz B, Masse NY, Bacher D et al. Advantages of closed‐loop calibration in intracortical brain‐computer interfaces for people with tetraplegia. J Neural Eng 2013; 10: 046012. https://doi.org/10.1088/1741-2560/10/4/046012.
dc.identifier.citedreferenceShaikhouni A, Donoghue JP, Hochberg LR. Somatosensory responses in a human motor cortex. J Neurophysiol 2013; 109: 2192 – 2204. https://doi.org/10.1152/jn.00368.2012.
dc.identifier.citedreferencePerge JA, Homer ML, Malik WQ et al. Intra‐day signal instabilities affect decoding performance in an intracortical neural interface system. J Neural Eng 2013; 10: 036004. https://doi.org/10.1088/1741-2560/10/3/036004.
dc.identifier.citedreferenceColachis SC, Bockbrader MA, Zhang M et al. Dexterous control of seven functional hand movements using cortically‐controlled transcutaneous muscle stimulation in a person with tetraplegia. Front Neurosci 2018; 12: 208. https://doi.org/10.3389/fnins.2018.00208.
dc.identifier.citedreferenceSimeral JD, Kim S‐P, Black MJ, Donoghue JP, Hochberg LR. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array. J Neural Eng 2011; 8: 025027. https://doi.org/10.1088/1741-2560/8/2/025027.
dc.identifier.citedreferenceKim S‐P, Simeral JD, Hochberg LR, Donoghue JP, Black MJ. Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia. J Neural Eng 2008; 5: 455 – 476. https://doi.org/10.1088/1741-2560/5/4/010.
dc.identifier.citedreferencePandarinath C, Nuyujukian P, Blabe CH et al. High performance communication by people with paralysis using an intracortical brain‐computer interface. Elife 2017; 6: e18554. https://doi.org/10.7554/eLife.18554.
dc.identifier.citedreferenceGilja V, Pandarinath C, Blabe CH et al. Clinical translation of a high‐performance neural prosthesis. Nat Med 2015; 21: 1142 – 1145. https://doi.org/10.1038/nm.3953.
dc.identifier.citedreferenceAflalo T, Kellis S, Klaes C et al. Neurophysiology. Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science 2015; 348: 906 – 910. https://doi.org/10.1126/science.aaa5417.
dc.identifier.citedreferenceKlaes C, Kellis S, Aflalo T et al. Hand shape representations in the human posterior parietal cortex. J Neurosci 2015; 35: 15466 – 15476. https://doi.org/10.1523/JNEUROSCI.2747-15.2015.
dc.identifier.citedreferenceArmenta Salas M, Bashford L, Kellis S et al. Proprioceptive and cutaneous sensations in humans elicited by intracortical microstimulation. Elife 2018; 7: e32904. https://doi.org/10.7554/eLife.32904.
dc.identifier.citedreferenceZhang CY, Aflalo T, Revechkis B et al. Partially mixed selectivity in human posterior parietal association cortex. Neuron 2017; 95: 697.e4 – 708.e4. https://doi.org/10.1016/j.neuron.2017.06.040.
dc.identifier.citedreferenceRutishauser U, Aflalo T, Rosario ER, Pouratian N, Andersen RA. Single‐neuron representation of memory strength and recognition confidence in left human posterior parietal cortex. Neuron 2018; 97: 209 – 220.e3. https://doi.org/10.1016/j.neuron.2017.11.029.
dc.identifier.citedreferenceDowney JE, Schwed N, Chase SM, Schwartz AB, Collinger JL. Intracortical recording stability in human brain–computer interface users. J Neural Eng 2018; 15: 046016. https://doi.org/10.1088/1741-2552/aab7a0.
dc.identifier.citedreferenceFriedenberg DA, Schwemmer MA, Landgraf AJ et al. Neuroprosthetic‐enabled control of graded arm muscle contraction in a paralyzed human. Sci Rep 2017; 7: 8386. https://doi.org/10.1038/s41598-017-08120-9.
dc.identifier.citedreferenceYang Y, Dickey MW, Fiez J et al. Sensorimotor experience and verb‐category mapping in human sensory, motor and parietal neurons. Cortex 2017; 92: 304 – 319. https://doi.org/10.1016/j.cortex.2017.04.021.
dc.identifier.citedreferenceFlesher SN, Collinger JL, Foldes ST et al. Intracortical microstimulation of human somatosensory cortex. Sci Transl Med 2016; 8: 361ra141. https://doi.org/10.1126/scitranslmed.aaf8083.
dc.identifier.citedreferenceDowney JE, Weiss JM, Muelling K et al. Blending of brain‐machine interface and vision‐guided autonomous robotics improves neuroprosthetic arm performance during grasping. J Neuroeng Rehabil 2016; 13: 28. https://doi.org/10.1186/s12984-016-0134-9.
dc.identifier.citedreferenceDowney JE, Brane L, Gaunt RA, Tyler‐Kabara EC, Boninger ML, Collinger JL. Motor cortical activity changes during neuroprosthetic‐controlled object interaction. Sci Rep 2017; 7: 16947. https://doi.org/10.1038/s41598-017-17222-3.
dc.identifier.citedreferenceWodlinger B, Downey JE, Tyler‐Kabara EC, Schwartz AB, Boninger ML, Collinger JL. Ten‐dimensional anthropomorphic arm control in a human brain−machine interface: difficulties, solutions, and limitations. J Neural Eng 2015; 12: 016011. https://doi.org/10.1088/1741-2560/12/1/016011.
dc.identifier.citedreferenceCollinger JL, Wodlinger B, Downey JE et al. High‐performance neuroprosthetic control by an individual with tetraplegia. Lancet 2013; 381: 557 – 564. https://doi.org/10.1016/S0140-6736(12)61816-9.
dc.identifier.citedreferenceJitkritsadakul O, Bhidayasiri R, Kalia SK, Hodaie M, Lozano AM, Fasano A. Systematic review of hardware‐related complications of deep brain stimulation: do new indications pose an increased risk? Brain Stimul 2017; 10: 967 – 976. https://doi.org/10.1016/j.brs.2017.07.003.
dc.identifier.citedreferenceBouton CE, Shaikhouni A, Annetta NV et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature 2016; 533: 247 – 250. https://doi.org/10.1038/nature17435.
dc.identifier.citedreferencePandarinath C, O’Shea DJ, Collins J et al. Inferring single‐trial neural population dynamics using sequential auto‐encoders. Nat Methods 2018; 15: 805 – 815. https://doi.org/10.1038/s41592-018-0109-9.
dc.identifier.citedreferenceYoung D, Willett F, Memberg WD et al. Signal processing methods for reducing artifacts in microelectrode brain recordings caused by functional electrical stimulation. J Neural Eng 2018; 15: 026014. https://doi.org/10.1088/1741-2552/aa9ee8.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.