Show simple item record

Following the messenger: Recent innovations in live cell single molecule fluorescence imaging

dc.contributor.authorSchmidt, Andreas
dc.contributor.authorGao, Guoming
dc.contributor.authorLittle, Saffron R.
dc.contributor.authorJalihal, Ameya P.
dc.contributor.authorWalter, Nils G.
dc.date.accessioned2020-07-02T20:33:37Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-07-02T20:33:37Z
dc.date.issued2020-07
dc.identifier.citationSchmidt, Andreas; Gao, Guoming; Little, Saffron R.; Jalihal, Ameya P.; Walter, Nils G. (2020). "Following the messenger: Recent innovations in live cell single molecule fluorescence imaging." Wiley Interdisciplinary Reviews: RNA 11(4): n/a-n/a.
dc.identifier.issn1757-7004
dc.identifier.issn1757-7012
dc.identifier.urihttps://hdl.handle.net/2027.42/155943
dc.description.abstractMessenger RNAs (mRNAs) convey genetic information from the DNA genome to proteins and thus lie at the heart of gene expression and regulation of all cellular activities. Live cell single molecule tracking tools enable the investigation of mRNA trafficking, translation and degradation within the complex environment of the cell and in real time. Over the last 5 years, nearly all tools within the mRNA tracking toolbox have been improved to achieve high‐quality multi‐color tracking in live cells. For example, the bacteriophage‐derived MS2‐MCP system has been improved to facilitate cloning and achieve better signal‐to‐noise ratio, while the newer PP7‐PCP system now allows for orthogonal tracking of a second mRNA or mRNA region. The coming of age of epitope‐tagging technologies, such as the SunTag, MoonTag and Frankenbody, enables monitoring the translation of single mRNA molecules. Furthermore, the portfolio of fluorogenic RNA aptamers has been expanded to improve cellular stability and achieve a higher fluorescence “turn‐on” signal upon fluorogen binding. Finally, microinjection‐based tools have been shown to be able to track multiple RNAs with only small fluorescent appendages and to track mRNAs together with their interacting partners. We systematically review and compare the advantages, disadvantages and demonstrated applications in discovering new RNA biology of this refined, expanding toolbox. Finally, we discuss developments expected in the near future based on the limitations of the current methods.This article is categorized under:RNA Export and Localization > RNA LocalizationRNA Structure and Dynamics > RNA Structure, Dynamics, and ChemistryRNA Interactions with Proteins and Other Molecules > RNA–Protein ComplexesTools for the intracellular visualization of mRNA metabolism and function.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherfluorogenic RNA aptamers
dc.subject.othersingle molecule microscopy
dc.subject.othermRNA trafficking and metabolism
dc.subject.othermicroinjection
dc.subject.othersingle‐particle tracking
dc.titleFollowing the messenger: Recent innovations in live cell single molecule fluorescence imaging
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155943/1/wrna1587_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155943/2/wrna1587.pdf
dc.identifier.doi10.1002/wrna.1587
dc.identifier.sourceWiley Interdisciplinary Reviews: RNA
dc.identifier.citedreferenceSokabe, M., & Fraser, C. ( 2018 ). Toward a kinetic understanding of eukaryotic translation. Cold Spring Harbor Perspectives in Biology, 11, a032706.
dc.identifier.citedreferenceSchütz, G. J., Schindler, H., & Schmidt, T. ( 1997 ). Single‐molecule microscopy on model membranes reveals anomalous diffusion. Biophysical Journal, 73 ( 2 ), 1073 – 1080.
dc.identifier.citedreferenceShankar, S., Pitchiaya, S., Malik, R., Kothari, V., Hosono, Y., Yocum, A. K., … Chinnaiyan, A. M. ( 2016 ). KRAS engages AGO2 to enhance cellular transformation. Cell Reports, 14 ( 6 ), 1448 – 1461.
dc.identifier.citedreferenceSong, W., Filonov, G. S., Kim, H., Hirsch, M., Li, X., Moon, J. D., & Jaffrey, S. R. ( 2017 ). Imaging RNA polymerase III transcription using a photostable RNA‐fluorophore complex. Nature Chemical Biology, 13 ( 11 ), 1187 – 1194.
dc.identifier.citedreferenceStewart, M. P., Sharei, A., Ding, X., Sahay, G., Langer, R., & Jensen, K. F. ( 2016 ). In vitro and ex vivo strategies for intracellular delivery. Nature, 538 ( 7624 ), 183 – 192.
dc.identifier.citedreferenceStrack, R. L., Disney, M. D., & Jaffrey, S. R. ( 2013 ). A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat‐containing RNA. Nature Methods, 10 ( 12 ), 1219 – 1224.
dc.identifier.citedreferenceSunbul, M., & Jaschke, A. ( 2013 ). Contact‐mediated quenching for RNA imaging in bacteria with a fluorophore‐binding aptamer. Angewandte Chemie (International Ed. in English), 52 ( 50 ), 13401 – 13404.
dc.identifier.citedreferenceTanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S., & Vale, R. D. ( 2014 ). A protein‐tagging system for signal amplification in gene expression and fluorescence imaging. Cell, 159 ( 3 ), 635 – 646.
dc.identifier.citedreferenceTokunaga, M., Imamoto, N., & Sakata‐Sogawa, K. ( 2008 ). Highly inclined thin illumination enables clear single‐molecule imaging in cells. Nature Methods, 5 ( 2 ), 159 – 161.
dc.identifier.citedreferenceTourrière, H., Chebli, K., & Tazi, J. ( 2002 ). mRNA degradation machines in eukaryotic cells. Biochimie, 84 ( 8 ), 821 – 837.
dc.identifier.citedreferenceTutucci, E., Livingston, N. M., Singer, R. H., & Wu, B. ( 2018 ). Imaging mRNA in vivo, from birth to death. Annual Review of Biophysics, 47, 85 – 106.
dc.identifier.citedreferenceTutucci, E., Vera, M., Biswas, J., Garcia, J., Parker, R., & Singer, R. H. ( 2018 ). An improved MS2 system for accurate reporting of the mRNA life cycle. Nature Methods, 15 ( 1 ), 81 – 89.
dc.identifier.citedreferenceWang, C., Han, B., Zhou, R., & Zhuang, X. ( 2016 ). Real‐time imaging of translation on single mRNA transcripts in live cells. Cell, 165 ( 4 ), 990 – 1001.
dc.identifier.citedreferenceWarner, K. D., Chen, M. C., Song, W., Strack, R. L., Thorn, A., Jaffrey, S. R., & Ferré‐D’Amaré, A. R. ( 2014 ). Structural basis for activity of highly efficient RNA mimics of green fluorescent protein. Nature Structural & Molecular Biology, 21 ( 8 ), 658 – 663.
dc.identifier.citedreferenceWarner, K. D., Sjekloca, L., Song, W., Filonov, G. S., Jaffrey, S. R., & Ferre‐D’Amare, A. R. ( 2017 ). A homodimer interface without base pairs in an RNA mimic of red fluorescent protein. Nature Chemical Biology, 13 ( 11 ), 1195 – 1201.
dc.identifier.citedreferenceWilson, I. A., Niman, H. L., Houghten, R. A., Cherenson, A. R., Connolly, M. L., & Lerner, R. A. ( 1984 ). The structure of an antigenic determinant in a protein. Cell, 37 ( 3 ), 767 – 778.
dc.identifier.citedreferenceWu, B., Eliscovich, C., Yoon, Y. J., & Singer, R. H. ( 2016 ). Translation dynamics of single mRNAs in live cells and neurons. Science, 352 ( 6292 ), 1430 – 1435.
dc.identifier.citedreferenceWu, B., Miskolci, V., Sato, H., Tutucci, E., Kenworthy, C. A., Donnelly, S. K., … Hodgson, L. ( 2015 ). Synonymous modification results in high‐fidelity gene expression of repetitive protein and nucleotide sequences. Genes & Development, 29 ( 8 ), 876 – 886.
dc.identifier.citedreferenceWu, J., Zaccara, S., Khuperkar, D., Kim, H., Tanenbaum, M. E., & Jaffrey, S. R. ( 2019 ). Live imaging of mRNA using RNA‐stabilized fluorogenic proteins. Nature Methods, 16 ( 9 ), 862 – 865.
dc.identifier.citedreferenceXie, Y., & Ren, Y. ( 2019 ). Mechanisms of nuclear mRNA export: A structural perspective. Traffic, 20, 829 – 840.
dc.identifier.citedreferenceYan, X., Hoek, T. A., Vale, R. D., & Tanenbaum, M. E. ( 2016 ). Dynamics of translation of single mRNA molecules in vivo. Cell, 165 ( 4 ), 976 – 989.
dc.identifier.citedreferenceZhang, J., Fei, J., Leslie, B. J., Han, K. Y., Kuhlman, T. E., & Ha, T. ( 2015 ). Tandem spinach array for mRNA imaging in living bacterial cells. Scientific Reports, 5, 17295.
dc.identifier.citedreferenceZhang, X., Lee, S. W., Zhao, L., Xia, T., & Qin, P. Z. ( 2010 ). Conformational distributions at the N‐peptide/boxB RNA interface studied using site‐directed spin labeling. RNA, 16 ( 12 ), 2474 – 2483.
dc.identifier.citedreferenceZhao, N., Kamijo, K., Fox, P. D., Oda, H., Morisaki, T., Sato, Y., … Stasevich, T. J. ( 2019 ). A genetically encoded probe for imaging nascent and mature HA‐tagged proteins in vivo. Nature Communications, 10 ( 1 ), 2947.
dc.identifier.citedreferenceAndreev, D. E., O’Connor, P. B. F., Loughran, G., Dmitriev, S. E., Baranov, P. V., & Shatsky, I. N. ( 2016 ). Insights into the mechanisms of eukaryotic translation gained with ribosome profiling. Nucleic Acids Research, 45 ( 2 ), 513 – 526.
dc.identifier.citedreferenceArora, A., Sunbul, M., & Jaschke, A. ( 2015 ). Dual‐colour imaging of RNAs using quencher‐ and fluorophore‐binding aptamers. Nucleic Acids Research, 43 ( 21 ), e144.
dc.identifier.citedreferenceAutour, A., Jeng, S. C. Y., Cawte, A. D., Abdolahzadeh, A., Galli, A., Panchapakesan, S. S. S., … Unrau, P. J. ( 2018 ). Fluorogenic RNA Mango aptamers for imaging small non‐coding RNAs in mammalian cells. Nature Communications, 9 ( 1 ), 656.
dc.identifier.citedreferenceBabendure, J. R., Adams, S. R., & Tsien, R. Y. ( 2003 ). Aptamers switch on fluorescence of triphenylmethane dyes. Journal of the American Chemical Society, 125 ( 48 ), 14716 – 14717.
dc.identifier.citedreferenceBanaz, N., Mäkelä, J., & Uphoff, S. ( 2019 ). Choosing the right label for single‐molecule tracking in live bacteria: Side‐by‐side comparison of photoactivatable fluorescent protein and halo tag dyes. Journal of Physics D: Applied Physics, 52 ( 6 ), 064002.
dc.identifier.citedreferenceBen‐Yishay, R., & Shav‐Tal, Y. ( 2019 ). The dynamic lifecycle of mRNA in the nucleus. Current Opinion in Cell Biology, 58, 69 – 75.
dc.identifier.citedreferenceBertrand, E., Chartrand, P., Schaefer, M., Shenoy, S. M., Singer, R. H., & Long, R. M. ( 1998 ). Localization of ASH1 mRNA particles in living yeast. Molecular Cell, 2 ( 4 ), 437 – 445.
dc.identifier.citedreferenceBoersma, S., Khuperkar, D., Verhagen, B. M. P., Sonneveld, S., Grimm, J. B., Lavis, L. D., & Tanenbaum, M. E. ( 2019 ). Multi‐color single‐molecule imaging uncovers extensive heterogeneity in mRNA decoding. Cell, 178 ( 2 ), 458 – 472.e419.
dc.identifier.citedreferenceBouhedda, F., Autour, A., & Ryckelynck, M. ( 2017 ). Light‐up RNA aptamers and their cognate fluorogens: From their development to their applications. International Journal of Molecular Sciences, 19 ( 1 ). https://doi.org/10.3390/ijms19010044.
dc.identifier.citedreferenceBraselmann, E., Wierzba, A. J., Polaski, J. T., Chromiński, M., Holmes, Z. E., Hung, S.‐T., … Palmer, A. E. ( 2018 ). A multicolor riboswitch‐based platform for imaging of RNA in live mammalian cells. Nature Chemical Biology, 14 ( 10 ), 964 – 971.
dc.identifier.citedreferenceBuxbaum, A. R., Haimovich, G., & Singer, R. H. ( 2015 ). In the right place at the right time: Visualizing and understanding mRNA localization. Nature Reviews. Molecular Cell Biology, 16 ( 2 ), 95 – 109.
dc.identifier.citedreferenceCalderon, C. P. ( 2016 ). Motion blur filtering: A statistical approach for extracting confinement forces and diffusivity from a single blurred trajectory. Physical Review E, 93 ( 5 ), 053303.
dc.identifier.citedreferenceChao, J. A., & Lionnet, T. ( 2018 ). Imaging the life and death of mRNAs in single cells. Cold Spring Harbor Perspectives in Biology, 10 ( 12 ). https://doi.org/10.1101/cshperspect.a032086.
dc.identifier.citedreferenceChen, X., Zhang, D., Su, N., Bao, B., Xie, X., Zuo, F., … Yang, Y. ( 2019 ). Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs. Nature Biotechnology, 37, 1287 – 1293.
dc.identifier.citedreferenceConyard, J., Kondo, M., Heisler, I. A., Jones, G., Baldridge, A., Tolbert, L. M., … Meech, S. R. ( 2011 ). Chemically modulating the photophysics of the GFP chromophore. The Journal of Physical Chemistry B, 115 ( 6 ), 1571 – 1577.
dc.identifier.citedreferenceCuster, T. C., & Walter, N. G. ( 2017 ). In vitro labeling strategies for in cellulo fluorescence microscopy of single ribonucleoprotein machines. Protein Science, 26 ( 7 ), 1363 – 1379.
dc.identifier.citedreferenceDaigle, N., & Ellenberg, J. ( 2007 ). LambdaN‐GFP: An RNA reporter system for live‐cell imaging. Nature Methods, 4 ( 8 ), 633 – 636.
dc.identifier.citedreferenceDolgosheina, E. V., Jeng, S. C. Y., Panchapakesan, S. S. S., Cojocaru, R., Chen, P. S. K., Wilson, P. D., … Unrau, P. J. ( 2014 ). RNA Mango aptamer‐fluorophore: A bright, high‐affinity complex for RNA labeling and tracking. ACS Chemical Biology, 9 ( 10 ), 2412 – 2420.
dc.identifier.citedreferenceDuwe, S., & Dedecker, P. ( 2019 ). Optimizing the fluorescent protein toolbox and its use. Current Opinion in Biotechnology, 58, 183 – 191.
dc.identifier.citedreferenceFemino, A. M., Fay, F. S., Fogarty, K., & Singer, R. H. ( 1998 ). Visualization of single RNA transcripts in situ. Science, 280 ( 5363 ), 585 – 590.
dc.identifier.citedreferenceFilonov, G. S., Moon, J. D., Svensen, N., & Jaffrey, S. R. ( 2014 ). Broccoli: Rapid selection of an RNA mimic of green fluorescent protein by fluorescence‐based selection and directed evolution. Journal of the American Chemical Society, 136 ( 46 ), 16299 – 16308.
dc.identifier.citedreferenceGeorge, L., Indig, F. E., Abdelmohsen, K., & Gorospe, M. ( 2018 ). Intracellular RNA‐tracking methods. Open Biology, 8 ( 10 ), 180104.
dc.identifier.citedreferenceGrate, D., & Wilson, C. ( 1999 ). Laser‐mediated, site‐specific inactivation of RNA transcripts. Proceedings of the National Academy of Sciences of the United States of America, 96 ( 11 ), 6131 – 6136.
dc.identifier.citedreferenceGuet, D., Burns, L. T., Maji, S., Boulanger, J., Hersen, P., Wente, S. R., … Dargemont, C. ( 2015 ). Combining spinach‐tagged RNA and gene localization to image gene expression in live yeast. Nature Communications, 6, 8882.
dc.identifier.citedreferenceGuo, J. U., & Bartel, D. P. ( 2016 ). RNA G‐quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science, 353 ( 6306 ), aaf5371.
dc.identifier.citedreferenceHalstead, J. M., Lionnet, T., Wilbertz, J. H., Wippich, F., Ephrussi, A., Singer, R. H., & Chao, J. A. ( 2015 ). Translation. An RNA biosensor for imaging the first round of translation from single cells to living animals. Science, 347 ( 6228 ), 1367 – 1671.
dc.identifier.citedreferenceHalstead, J. M., Wilbertz, J. H., Wippich, F., Lionnet, T., Ephrussi, A., & Chao, J. A. ( 2016 ). TRICK: A single‐molecule method for imaging the first round of translation in living cells and animals. In G. S. Filonov & S. R. Jaffrey (Eds.), Methods Enzymol (Vol. 572, pp. 123 – 157 ). Pittsburgh: Academic Press.
dc.identifier.citedreferenceHan, K. Y., Leslie, B. J., Fei, J., Zhang, J., & Ha, T. ( 2013 ). Understanding the photophysics of the spinach–DFHBI RNA aptamer–fluorogen complex to improve live‐cell RNA imaging. Journal of the American Chemical Society, 135 ( 50 ), 19033 – 19038.
dc.identifier.citedreferenceHinnebusch, A. G., & Lorsch, J. R. ( 2012 ). The mechanism of eukaryotic translation initiation: New insights and challenges. Cold Spring Harbor Perspectives in Biology, 4 ( 10 ), 1 – 25.
dc.identifier.citedreferenceHoek, T. A., Khuperkar, D., Lindeboom, R. G. H., Sonneveld, S., Verhagen, B. M. P., Boersma, S., … Tanenbaum, M. E. ( 2019 ). Single‐Molecule Imaging Uncovers Rules Governing Nonsense‐Mediated mRNA Decay. Molecular Cell, 75 ( 2 ), 324 – 339.e311.
dc.identifier.citedreferenceHorvathova, I., Voigt, F., Kotrys, A. V., Zhan, Y., Artus‐Revel, C. G., Eglinger, J., … Chao, J. A. ( 2017 ). The dynamics of mRNA turnover revealed by single‐molecule imaging in single cells. Molecular Cell, 68 ( 3 ), 615 – 625.e619.
dc.identifier.citedreferenceIlgu, M., Ray, J., Bendickson, L., Wang, T., Geraskin, I. M., Kraus, G. A., & Nilsen‐Hamilton, M. ( 2016 ). Light‐up and FRET aptamer reporters; evaluating their applications for imaging transcription in eukaryotic cells. Methods (San Diego, Calif.), 98, 26 – 33.
dc.identifier.citedreferenceIngolia, N. T. ( 2014 ). Ribosome profiling: New views of translation, from single codons to genome scale. Nature Reviews Genetics, 15, 205 – 213.
dc.identifier.citedreferenceIngolia, N. T., Brar, G. A., Stern‐Ginossar, N., Harris, M. S., Talhouarne, G. J. S., Jackson, S. E., … Weissman, J. S. ( 2014 ). Ribosome profiling reveals pervasive translation outside of annotated protein‐coding genes. Cell Reports, 8 ( 5 ), 1365 – 1379.
dc.identifier.citedreferenceIsaacoff, B. P., Li, Y., Lee, S. A., & Biteen, J. S. ( 2019 ). SMALL‐LABS: Measuring single‐molecule intensity and position in obscuring backgrounds. Biophysical Journal, 116 ( 6 ), 975 – 982.
dc.identifier.citedreferenceJalihal, A. P., Lund, P. E., & Walter, N. G. ( 2019 ). Coming together: RNAs and proteins assemble under the single‐molecule fluorescence microscope. Cold Spring Harbor Perspectives in Biology, 11 ( 4 ), 1 – 20.
dc.identifier.citedreferenceKamiyama, D., Sekine, S., Barsi‐Rhyne, B., Hu, J., Chen, B., Gilbert, L. A., … Huang, B. ( 2016 ). Versatile protein tagging in cells with split fluorescent protein. Nature Communications, 7, 11046.
dc.identifier.citedreferenceKarslake, J. D., Donarski, E. D., Shelby, S. A., Demey, L. M., DiRita, V. J., Veatch, S. L., & Biteen, J. S. ( 2019 ). SMAUG: Analyzing single‐molecule tracks with nonparametric Bayesian statistics. bioRxiv 578567.
dc.identifier.citedreferenceKatz, N., Cohen, R., Solomon, O., Kaufmann, B., Atar, O., Yakhini, Z., … Amit, R. ( 2018 ). An in vivo binding assay for RNA‐binding proteins based on repression of a reporter gene. ACS Synthetic Biology, 7 ( 12 ), 2765 – 2774.
dc.identifier.citedreferenceKearse, M. G., & Wilusz, J. E. ( 2017 ). Non‐AUG translation: A new start for protein synthesis in eukaryotes. Genes & Development, 31 ( 17 ), 1717 – 1731.
dc.identifier.citedreferenceKieft, J. S., Rabe, J. L., & Chapman, E. G. ( 2015 ). New hypotheses derived from the structure of a flaviviral Xrn1‐resistant RNA: Conservation, folding, and host adaptation. RNA Biology, 12 ( 11 ), 1169 – 1177.
dc.identifier.citedreferenceKraus, G. A., Jeon, I., Nilsen‐Hamilton, M., Awad, A. M., Banerjee, J., & Parvin, B. ( 2008 ). Fluorinated analogs of malachite green: Synthesis and toxicity. Molecules (Basel, Switzerland), 13 ( 4 ), 986 – 994.
dc.identifier.citedreferenceLacerda, R., Menezes, J., & Romão, L. ( 2017 ). More than just scanning: The importance of cap‐independent mRNA translation initiation for cellular stress response and cancer. Cellular and Molecular Life Sciences, 74 ( 9 ), 1659 – 1680.
dc.identifier.citedreferenceLim, F., & Peabody, D. S. ( 2002 ). RNA recognition site of PP7 coat protein. Nucleic Acids Research, 30 ( 19 ), 4138 – 4144.
dc.identifier.citedreferenceLiss, V., Barlag, B., Nietschke, M., & Hensel, M. ( 2015 ). Self‐labelling enzymes as universal tags for fluorescence microscopy, super‐resolution microscopy and electron microscopy. Scientific Reports, 5, 17740.
dc.identifier.citedreferenceLyon, K., Aguilera, L. U., Morisaki, T., Munsky, B., & Stasevich, T. J. ( 2019 ). Live‐cell single RNA imaging reveals bursts of translational frameshifting. Molecular Cell, 75 ( 1 ), 172 – 183.e9.
dc.identifier.citedreferenceLyon, K., & Stasevich, T. J. ( 2017 ). Imaging translational and post‐translational gene regulatory dynamics in living cells with antibody‐based probes. Trends in Genetics, 33 ( 5 ), 322 – 335.
dc.identifier.citedreferenceMichelini, F., Pitchiaya, S., Vitelli, V., Sharma, S., Gioia, U., Pessina, F., … d’Adda di Fagagna, F. ( 2017 ). Damage‐induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double‐strand breaks. Nature Cell Biology, 19, 1400.
dc.identifier.citedreferenceMonnier, N., Barry, Z., Park, H. Y., Su, K. C., Katz, Z., English, B. P., … Bathe, M. ( 2015 ). Inferring transient particle transport dynamics in live cells. Nature Methods, 12 ( 9 ), 838 – 840.
dc.identifier.citedreferenceMorisaki, T., Lyon, K., DeLuca, K. F., DeLuca, J. G., English, B. P., Zhang, Z., … Stasevich, T. J. ( 2016 ). Real‐time quantification of single RNA translation dynamics in living cells. Science, 352 ( 6292 ), 1425 – 1429.
dc.identifier.citedreferencePaige, J. S., Wu, K. Y., & Jaffrey, S. R. ( 2011 ). RNA mimics of green fluorescent protein. Science, 333 ( 6042 ), 642 – 646.
dc.identifier.citedreferencePanchapakesan, S. S. S., Ferguson, M. L., Hayden, E. J., Chen, X., Hoskins, A. A., & Unrau, P. J. ( 2017 ). Ribonucleoprotein purification and characterization using RNA Mango. RNA, 23 ( 10 ), 1592 – 1599.
dc.identifier.citedreferencePark, H. Y., Buxbaum, A. R., & Singer, R. H. ( 2010 ). Single mRNA tracking in live cells. Methods in Enzymology, 472, 387 – 406.
dc.identifier.citedreferencePichon, X., Bastide, A., Safieddine, A., Chouaib, R., Samacoits, A., Basyuk, E., … Bertrand, E. ( 2016 ). Visualization of single endogenous polysomes reveals the dynamics of translation in live human cells. Journal of Cell Biology, 214 ( 6 ), 769 – 781.
dc.identifier.citedreferencePitchiaya, S., Androsavich, J. R., & Walter, N. G. ( 2012 ). Intracellular single molecule microscopy reveals two kinetically distinct pathways for microRNA assembly. EMBO Reports, 13 ( 8 ), 709 – 715.
dc.identifier.citedreferencePitchiaya, S., Heinicke, L. A., Custer, T. C., & Walter, N. G. ( 2014 ). Single molecule fluorescence approaches shed light on intracellular RNAs. Chemical Reviews, 114 ( 6 ), 3224 – 3265.
dc.identifier.citedreferencePitchiaya, S., Heinicke, L. A., Park, J. I., Cameron, E. L., & Walter, N. G. ( 2017 ). Resolving subcellular miRNA trafficking and turnover at single‐molecule resolution. Cell Reports, 19 ( 3 ), 630 – 642.
dc.identifier.citedreferencePitchiaya, S., Krishnan, V., Custer, T. C., & Walter, N. G. ( 2013 ). Dissecting non‐coding RNA mechanisms in cellulo by single‐molecule high‐resolution localization and counting. Methods (San Diego, Calif.), 63 ( 2 ), 188 – 199.
dc.identifier.citedreferencePitchiaya, S., Mourao, M. D. A., Jalihal, A. P., Xiao, L., Jiang, X., Chinnaiyan, A. M., … Walter, N. G. ( 2019 ). Dynamic recruitment of single RNAs to processing bodies depends on RNA functionality. Molecular Cell, 74 ( 3 ), 521 – 533.e6.
dc.identifier.citedreferenceRusso, J., & Wilusz, J. ( 2017 ). Trick or TREAT: A scary‐good new approach for single‐molecule mRNA decay analysis. Molecular Cell, 68 ( 3 ), 476 – 477.
dc.identifier.citedreferenceSaurabh, S., Perez, A. M., Comerci, C. J., Shapiro, L., & Moerner, W. E. ( 2016 ). Super‐resolution imaging of live bacteria cells using a genetically directed, highly photostable fluoromodule. Journal of the American Chemical Society, 138 ( 33 ), 10398 – 10401.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.