Show simple item record

Impact of Cloud Longwave Scattering on Radiative Fluxes Associated With the Madden‐Julian Oscillation in the Indian Ocean and Maritime Continent

dc.contributor.authorRen, Tong
dc.contributor.authorYang, Ping
dc.contributor.authorSchumacher, Courtney
dc.contributor.authorHuang, Xianglei
dc.contributor.authorLin, Wuyin
dc.date.accessioned2020-07-02T20:33:38Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-07-02T20:33:38Z
dc.date.issued2020-07-16
dc.identifier.citationRen, Tong; Yang, Ping; Schumacher, Courtney; Huang, Xianglei; Lin, Wuyin (2020). "Impact of Cloud Longwave Scattering on Radiative Fluxes Associated With the Madden‐Julian Oscillation in the Indian Ocean and Maritime Continent." Journal of Geophysical Research: Atmospheres 125(13): n/a-n/a.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/155944
dc.description.abstractPrevious studies suggested that cloud longwave radiation contributes to the development and maintenance of the Madden‐Julian Oscillation (MJO) and model‐based convection is highly sensitive to the radiation scheme. However, currently used radiation schemes do not take cloud longwave scattering into account, resulting in an overestimation of the outgoing longwave radiation (OLR) and an underestimation of the downward longwave flux at the surface. We use combined active and passive satellite cloud property retrievals to quantify the one‐layer cloud OLR and heating rate (HR) biases introduced by neglecting cloud longwave scattering in the Indian Ocean and Maritime Continent in the context of MJO, with a focus on its phases 3, 5, and 6. The results show that the satellite‐detected one‐layer cloud area consists primarily of ice clouds, particularly during the boreal winter in the 4‐year study period. An increased ice cloud area fraction of one‐layer cloud groups is present up to 5 days before the onset of MJO events. If longwave scattering is neglected, the composite mean OLR overestimation over the one‐layer ice cloud area from 5 days before to 4 days after the MJO passage is approximately 3.5 to 5.0 W m−2. Neglecting longwave scattering also leads to a HR underestimation at cloud base and an overestimation at cloud top, making the base‐to‐top heating gradient less sharp at the cloud‐resolving scale.Key PointsDuration of one‐layer ice cloud coverage increases up to 5 days before the Madden‐Julian Oscillation (MJO) passageNeglecting longwave scattering leads to a 3.5 to 5.0 W m−2 overestimation of the outgoing longwave radiation (OLR)Neglecting longwave scattering leads to a less sharp heating gradient from cloud base to cloud top
dc.publisherJohn Wiley & Sons
dc.titleImpact of Cloud Longwave Scattering on Radiative Fluxes Associated With the Madden‐Julian Oscillation in the Indian Ocean and Maritime Continent
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155944/1/jgrd56305_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155944/2/jgrd56305.pdf
dc.identifier.doi10.1029/2020JD032591
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferenceSakaeda, N., Kiladis, G., & Dias, J. ( 2017 ). The diurnal cycle of tropical cloudiness and rainfall associated with the Madden‐Julian oscillation. Journal of Climate, 30 ( 11 ), 3999 – 4020. https://doi.org/10.1175/JCLI-D-16-0788.1
dc.identifier.citedreferenceTian, B., Waliser, D. E., Fetzer, E. J., Lambrigtsen, B. H., Yung, Y. L., & Wang, B. ( 2006 ). Vertical moist thermodynamic structure and spatial‐temporal evolution of the MJO in AIRS observations. Journal of the Atmospheric Sciences, 63 ( 10 ), 2462 – 2485. https://doi.org/10.1175/JAS3782.1
dc.identifier.citedreferenceTrier, S. B., & Sharman, R. D. ( 2016 ). Mechanisms influencing cirrus banding and aviation turbulence near a convectively enhanced upper‐level jet stream. Monthly Weather Review, 144 ( 8 ), 3003 – 3027. https://doi.org/10.1175/MWR-D-16-0094.1
dc.identifier.citedreferenceTsushima, Y., Ringer, M. A., Webb, M. J., & Williams, K. D. ( 2013 ). Quantitative evaluation of the seasonal variations in climate model cloud regimes. Climate Dynamics, 41 ( 9–10 ), 2679 – 2696. https://doi.org/10.1007/s00382-012-1609-4
dc.identifier.citedreferenceTung, W.‐E., Giannakis, D., & Majda, A. J. ( 2014 ). Symmetric and antisymmetric convection signals in the Madden‐Julian Oscillation. Part I: Basic modes in infrared brightness temperature. Journal of the Atmospheric Sciences, 71 ( 9 ), 3302 – 3326. https://doi.org/10.1175/JAS-D-13-0122.1
dc.identifier.citedreferenceUeyama, R., Jensen, E. J., Pfister, L., & Kim, J. E. ( 2015 ). Dynamical, convective, and microphysical control on wintertime distributions of water vapor and clouds in the tropical tropopause layer. Journal of Geophysical Research: Atmospheres, 120, 10,483 – 10,500. https://doi.org/10.1002/2015JD023318
dc.identifier.citedreferenceVignesh, P. P., Jiang, J. H., Kishore, P., Su, H., Smay, T., Brighton, N., & Velicogna, I. ( 2020 ). Assessment of CMIP6 cloud fraction and comparison with satellite observations. Earth and Space Science, 7, e2019EA000975. https://doi.org/10.1029/2019EA000975
dc.identifier.citedreferenceVincent, C. L., & Lane, T. P. ( 2016 ). Evolution of the diurnal precipitation cycle with the passage of a Madden‐Julian Oscillation event through the Maritime Continent. Monthly Weather Review, 144 ( 5 ), 1983 – 2005. https://doi.org/10.1175/MWR-D-15-0326.1
dc.identifier.citedreferenceVincent, C. L., & Lane, T. P. ( 2017 ). A 10‐year austral summer climatology of observed and modeled intraseasonal, mesoscale, and diurnal variations over the Maritime Continent. Journal of Climate, 30 ( 10 ), 3807 – 3828. https://doi.org/10.1175/JCLI-D-16-0688.1
dc.identifier.citedreferenceWang, H., & Su, W. ( 2013 ). Evaluating and understanding top of the atmosphere cloud radiative effects in Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) Coupled Model Intercomparison Project Phase 5 (CMIP5) models using satellite observations. Journal of Geophysical Research: Atmospheres, 118, 683 – 699. https://doi.org/10.1029/2012JD018619
dc.identifier.citedreferenceWheeler, M. C., & Hendon, H. H. ( 2004 ). An all‐season real‐time multivariate MJO index: Development of an index for monitoring and prediction. Monthly Weather Review, 132 ( 8 ), 1917 – 1932. https://doi.org/10.1175/1520-0493(2004)132%3C1917:AARMMI%3E2.0.CO;2
dc.identifier.citedreferenceWilber, A. C., Kratz, D. P., & Gupta, S. K. ( 1999 ). Surface emissivity maps for use in satellite retrievals of longwave radiation. Hampton, VA: NASA Langley Research Center.
dc.identifier.citedreferenceWilliams, E., & Stanfill, S. ( 2002 ). The physical origin of the land‐ocean contrast in lightning activity. Comptes Rendus Physique, 3 ( 10 ), 1277 – 1292. https://doi.org/10.1016/s1631-0705(02)01407-x
dc.identifier.citedreferenceWing, A. A., Emanuel, K., Holloway, C. E., & Muller, C. ( 2017 ). Convective self‐aggregation in numerical simulations: A review. Surveys in Geophysics, 38 ( 6 ), 1173 – 1197. https://doi.org/10.1007/s10712-017-9408-4
dc.identifier.citedreferenceYang, P., Bi, L., Baum, B. A., Liou, K.‐N., Kattawar, G. W., Mishchenko, M. I., & Cole, B. ( 2013 ). Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μ m. Journal of the Atmospheric Sciences, 70 ( 1 ), 330 – 347. https://doi.org/10.1175/JAS-D-12-039.1
dc.identifier.citedreferenceZhang, B., Kramer, R. J., & Soden, B. J. ( 2019 ). Radiative feedbacks associated with the Madden‐Julian Oscillation. Journal of Climate, 32 ( 20 ), 7055 – 7065. https://doi.org/10.1175/JCLI-D-19-0144.1
dc.identifier.citedreferenceZhang, C. ( 2005 ). Madden‐Julian Oscillation. Reviews of Geophysics, 43, RG2003. https://doi.org/10.1029/2004RG000158
dc.identifier.citedreferenceZhang, C. ( 2013 ). Madden‐Julian Oscillation: Bridging weather and climate. Bulletin of the American Meteorological Society, 94 ( 12 ), 1849 – 1870. https://doi.org/10.1175/BAMS-D-12-00026.1
dc.identifier.citedreferenceZhang, C., & Dong, M. ( 2004 ). Seasonality in the Madden‐Julian Oscillation. Journal of Climate, 17 ( 16 ), 3169 – 3180. https://doi.org/10.1175/1520-0442(2004)017%3C3169:SITMO%3E2.0.CO;2
dc.identifier.citedreferenceZhang, C., & Ling, J. ( 2017 ). Barrier effect of the Indo‐Pacific Maritime Continent on the MJO: Perspectives from tracking MJO precipitation. Journal of Climate, 30 ( 9 ), 3439 – 3459. https://doi.org/10.1175/JCLI-D-16-0614.1
dc.identifier.citedreferenceAckerman, T. P., Liou, K.‐N., Valero, F. P., & Pfister, L. ( 1988 ). Heating rates in tropical anvils. Journal of the Atmospheric Sciences, 45 ( 10 ), 1606 – 1623. https://doi.org/10.1175/1520-0469(1988)045%3C1606:HRITA%3E2.0.CO;2
dc.identifier.citedreferenceAndersen, J. A., & Kuang, Z. ( 2012 ). Moist static energy budget of MJO‐like disturbances in the atmosphere of a zonally symmetric aquaplanet. Journal of Climate, 25 ( 8 ), 2782 – 2804. https://doi.org/10.1175/JCLI-D-11-00168.1
dc.identifier.citedreferenceArnold, N. P., & Randall, D. A. ( 2015 ). Global‐scale convective aggregation: Implications for the Madden‐Julian Oscillation. Journal of Advances in Modeling Earth Systems, 7, 1499 – 1518. https://doi.org/10.1002/2015MS000498
dc.identifier.citedreferenceBarahona, D., Molod, A., & Kalesse, H. ( 2017 ). Direct estimation of the global distribution of vertical velocity within cirrus clouds. Scientific Reports, 7 ( 1 ), 6840. https://doi.org/10.1038/s41598-017-07038-6
dc.identifier.citedreferenceBirch, C., Webster, S., Peatman, S., Parker, D., Matthews, A., Li, Y., & Hassim, M. ( 2016 ). Scale interactions between the MJO and the western Maritime Continent. Journal of Climate, 29 ( 7 ), 2471 – 2492. https://doi.org/10.1175/JCLI-D-15-0557.1
dc.identifier.citedreferenceBladé, I., & Hartmann, D. L. ( 1993 ). Tropical intraseasonal oscillations in a simple nonlinear model. Journal of the Atmospheric Sciences, 50 ( 17 ), 2922 – 2939. https://doi.org/10.1175/1520-0469(1993)050%3C2922:TIOIAS%3E2.0.CO;2
dc.identifier.citedreferenceBohren, C. F., & Huffman, D. R. ( 2008 ). Absorption and scattering of light by small particles. Weinheim, Germany: John Wiley & Sons.
dc.identifier.citedreferenceBony, S., & Emanuel, K. A. ( 2005 ). On the role of moist processes in tropical intraseasonal variability: Cloud‐radiation and moisture‐convection feedbacks. Journal of the Atmospheric Sciences, 62 ( 8 ), 2770 – 2789. https://doi.org/10.1175/JAS3506.1
dc.identifier.citedreferenceBretherton, C. S., Blossey, P. N., & Khairoutdinov, M. ( 2005 ). An energy‐balance analysis of deep convective self‐aggregation above uniform SST. Journal of the Atmospheric Sciences, 62 ( 12 ), 4273 – 4292. https://doi.org/10.1175/jas3614.1
dc.identifier.citedreferenceChou, M.‐D., Lee, K.‐T., Tsay, S.‐C., & Fu, Q. ( 1999 ). Parameterization for cloud longwave scattering for use in atmospheric models. Journal of Climate, 12 ( 1 ), 159 – 169. https://doi.org/10.1175/1520-0442-12.1.159
dc.identifier.citedreferenceClough, S., Shephard, M., Mlawer, E., Delamere, J., Iacono, M., Cady‐Pereira, K., Boukabara, S., & Brown, P. D. ( 2005 ). Atmospheric radiative transfer modeling: A summary of the AER codes. Journal of Quantitative Spectroscopy and Radiative Transfer, 91 ( 2 ), 233 – 244. https://doi.org/10.1016/j.jqsrt.2004.05.058
dc.identifier.citedreferenceCosta, S., & Shine, K. ( 2006 ). An estimate of the global impact of multiple scattering by clouds on outgoing long‐wave radiation. Quarterly Journal of the Royal Meteorological Society, 132 ( 616 ), 885 – 895. https://doi.org/10.1256/qj.05.169
dc.identifier.citedreferenceCrueger, T., & Stevens, B. ( 2015 ). The effect of atmospheric radiative heating by clouds on the Madden‐Julian Oscillation. Journal of Advances in Modeling Earth Systems, 7, 854 – 864. https://doi.org/10.1002/2015MS000434
dc.identifier.citedreferenceDel Genio, A. D., & Chen, Y. ( 2015 ). Cloud‐radiative driving of the Madden‐Julian Oscillation as seen by the A‐Train. Journal of Geophysical Research: Atmospheres, 120, 5344 – 5356. https://doi.org/10.1002/2015JD023278
dc.identifier.citedreferenceDeng, M., Mace, G. G., & Wang, Z. ( 2016 ). Anvil productivities of tropical deep convective clusters and their regional differences. Journal of the Atmospheric Sciences, 73 ( 9 ), 3467 – 3487. https://doi.org/10.1175/JAS-D-15-0239.1
dc.identifier.citedreferenceDePasquale, A., Schumacher, C., & Rapp, A. ( 2014 ). Radar observations of MJO and Kelvin wave interactions during DYNAMO/CINDY2011/AMIE. Journal of Geophysical Research: Atmospheres, 119, 6347 – 6367. https://doi.org/10.1002/2013JD021031
dc.identifier.citedreferenceDinh, T., Podglajen, A., Hertzog, A., Legras, B., & Plougonven, R. ( 2016 ). Effect of gravity wave temperature fluctuations on homogeneous ice nucleation in the tropical tropopause layer. Atmospheric Chemistry and Physics, 16 ( 1 ), 35 – 46. https://doi.org/10.5194/acp-16-35-2016
dc.identifier.citedreferenceDinh, T. P., Durran, D., & Ackerman, T. ( 2010 ). Maintenance of tropical tropopause layer cirrus. Journal of Geophysical Research, 115, D02104. https://doi.org/10.1029/2009JD012735
dc.identifier.citedreferenceDowning, H. D., & Williams, D. ( 1975 ). Optical constants of water in the infrared. Journal of Geophysical Research, 80 ( 12 ), 1656 – 1661. https://doi.org/10.1029/JC080i012p01656
dc.identifier.citedreferenceFu, Q. ( 1996 ). An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. Journal of Climate, 9 ( 9 ), 2058 – 2082. https://doi.org/10.1175/1520-0442(1996)009%3C2058:AAPOTS%3E2.0.CO;2
dc.identifier.citedreferenceFu, Q., Liou, K., Cribb, M., Charlock, T., & Grossman, A. ( 1997 ). Multiple scattering parameterization in thermal infrared radiative transfer. Journal of the Atmospheric Sciences, 54 ( 24 ), 2799 – 2812. https://doi.org/10.1175/1520-0469(1997)054%3C2799:MSPITI%3E2.0.CO;2
dc.identifier.citedreferenceFujita, M., Yoneyama, K., Mori, S., Nasuno, T., & Satoh, M. ( 2011 ). Diurnal convection peaks over the eastern Indian Ocean off Sumatra during different MJO phases. Journal of the Meteorological Society of Japan Series II, 89, 317 – 330. https://doi.org/10.2151/jmsj.2011-A22
dc.identifier.citedreferenceGasparini, B., Blossey, P. N., Hartmann, D. L., Lin, G., & Fan, J. ( 2019 ). What drives the life cycle of tropical anvil clouds? Journal of Advances in Modeling Earth Systems, 11, 2586 – 2605. https://doi.org/10.1029/2019MS001736
dc.identifier.citedreferenceGottschalck, J., Roundy, P. E., Schreck, C. J. III, Vintzileos, A., & Zhang, C. ( 2013 ). Large‐scale atmospheric and oceanic conditions during the 2011–12 DYNAMO field campaign. Monthly Weather Review, 141 ( 12 ), 4173 – 4196. https://doi.org/10.1175/MWR-D-13-00022.1
dc.identifier.citedreferenceLappen, C. L., & Schumacher, C. ( 2014 ). The role of tilted heating in the evolution of the MJO. Journal of Geophysical Research: Atmospheres, 119, 2966 – 2989. https://doi.org/10.1002/2013JD020638
dc.identifier.citedreferenceGrabowski, W. W. ( 2003 ). MJO‐like coherent structures: Sensitivity simulations using the cloud‐resolving convection parameterization (CRCP). Journal of the Atmospheric Sciences, 60 ( 6 ), 847 – 864. https://doi.org/10.1175/1520-0469(2003)060%3C0847:MLCSSS%3E2.0.CO;2
dc.identifier.citedreferenceGrabowski, W. W., & Moncrieff, M. ( 2004 ). Moisture‐convection feedback in the tropics. Quarterly Journal of the Royal Meteorological Society, 130 ( 604 ), 3081 – 3104. https://doi.org/10.1256/qj.03.135
dc.identifier.citedreferenceGrenfell, T. C., & Warren, S. G. ( 1999 ). Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation. Journal of Geophysical Research, 104 ( D24 ), 31,697 – 31,709. https://doi.org/10.1029/1999JD900496
dc.identifier.citedreferenceHaag, W., & Kärcher, B. ( 2004 ). The impact of aerosols and gravity waves on cirrus clouds at midlatitudes. Journal of Geophysical Research, 109, D12202. https://doi.org/10.1029/2004JD004579
dc.identifier.citedreferenceHagos, S. M., Zhang, C., Feng, Z., Burleyson, C. D., De Mott, C., Kerns, B., Benedict, J. J., & Martini, M. N. ( 2016 ). The impact of the diurnal cycle on the propagation of Madden‐Julian Oscillation convection across the Maritime Continent. Journal of Advances in Modeling Earth Systems, 8, 1552 – 1564. https://doi.org/10.1002/2016MS000725
dc.identifier.citedreferenceHale, G. M., & Querry, M. R. ( 1973 ). Optical constants of water in the 200‐nm to 200‐μm wavelength region. Applied Optics, 12 ( 3 ), 555 – 563. https://doi.org/10.1364/AO.12.000555
dc.identifier.citedreferenceHannah, W. M., & Maloney, E. D. ( 2011 ). The role of moisture‐convection feedbacks in simulating the Madden–Julian oscillation. Journal of Climate, 24 ( 11 ), 2754 – 2770. https://doi.org/10.1175/2011JCLI3803.1
dc.identifier.citedreferenceHannah, W. M., & Maloney, E. D. ( 2014 ). The moist static energy budget in NCAR CAM5 hindcasts during DYNAMO. Journal of Advances in Modeling Earth Systems, 6, 420 – 440. https://doi.org/10.1002/2013MS000272
dc.identifier.citedreferenceHartmann, D. L., & Berry, S. E. ( 2017 ). The balanced radiative effect of tropical anvil clouds. Journal of Geophysical Research: Atmospheres, 122, 5003 – 5020. https://doi.org/10.1002/2017JD026460
dc.identifier.citedreferenceHartmann, D. L., Gasparini, B., Berry, S. E., & Blossey, P. N. ( 2018 ). The life cycle and net radiative effect of tropical anvil clouds. Journal of Advances in Modeling Earth Systems, 10, 3012 – 3029. https://doi.org/10.1029/2018MS001484
dc.identifier.citedreferenceHe, Q., Li, C., Ma, J., Wang, H., Shi, G., Liang, Z., Luan, Q., Geng, F. H., & Zhou, X. W. ( 2013 ). The properties and formation of cirrus clouds over the Tibetan Plateau based on summertime lidar measurements. Journal of the Atmospheric Sciences, 70 ( 3 ), 901 – 915. https://doi.org/10.1175/JAS-D-12-0171.1
dc.identifier.citedreferenceHomeyer, C. R., McAuliffe, J. D., & Bedka, K. M. ( 2017 ). On the development of above‐anvil cirrus plumes in extratropical convection. Journal of the Atmospheric Sciences, 74 ( 5 ), 1617 – 1633. https://doi.org/10.1175/JAS-D-16-0269.1
dc.identifier.citedreferenceHu, Q., & Randall, D. A. ( 1994 ). Low‐frequency oscillations in radiative‐convective systems. Journal of the Atmospheric Sciences, 51 ( 8 ), 1089 – 1099. https://doi.org/10.1175/1520-0469(1994)051%3C1089:LFOIRC%3E2.0.CO;2
dc.identifier.citedreferenceHu, Q., & Randall, D. A. ( 1995 ). Low‐frequency oscillations in radiative‐convective systems. Part II: An idealized model. Journal of the Atmospheric Sciences, 52 ( 4 ), 478 – 490. https://doi.org/10.1175/1520-0469(1995)052%3C0478:LFOIRC%3E2.0.CO;2
dc.identifier.citedreferenceHuang, X., Chen, X., Zhou, D. K., & Liu, X. ( 2016 ). An observationally based global band‐by‐band surface emissivity dataset for climate and weather simulations. Journal of the Atmospheric Sciences, 73 ( 9 ), 3541 – 3555. https://doi.org/10.1175/JAS-D-15-0355.1
dc.identifier.citedreferenceIacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., & Collins, W. D. ( 2008 ). Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research, 113, D13103. https://doi.org/10.1029/2008JD009944
dc.identifier.citedreferenceIchikawa, H., & Yasunari, T. ( 2008 ). Intraseasonal variability in diurnal rainfall over New Guinea and the surrounding oceans during austral summer. Journal of Climate, 21 ( 12 ), 2852 – 2868. https://doi.org/10.1175/2007JCLI1784.1
dc.identifier.citedreferenceInoue, K., & Back, L. ( 2015 ). Column‐integrated moist static energy budget analysis on various time scales during TOGA COARE. Journal of the Atmospheric Sciences, 72 ( 5 ), 1856 – 1871. https://doi.org/10.1175/JAS-D-14-0249.1
dc.identifier.citedreferenceJensen, E., Lawson, P., Baker, B., Pilson, B., Mo, Q., Heymsfield, A., Bansemer, A., Bui, T. P., McGill, M., Hlavka, D., Heymsfield, G., Platnick, S., Arnold, G. T., & Tanelli, S. ( 2009 ). On the importance of small ice crystals in tropical anvil cirrus. Atmospheric Chemistry and Physics, 9 ( 15 ), 5519 – 5537. https://doi.org/10.5194/acp-9-5519-2009
dc.identifier.citedreferenceJensen, E., & Pfister, L. ( 2004 ). Transport and freeze‐drying in the tropical tropopause layer. Journal of Geophysical Research, 109, D02207. https://doi.org/10.1029/2003JD004022
dc.identifier.citedreferenceJensen, E. J., Ueyama, R., Pfister, L., Bui, T. V., Alexander, M. J., Podglajen, A., Hertzog, A., Woods, S., Lawson, R. P., Kim, J. E., & Schoeberl, M. R. ( 2016 ). High‐frequency gravity waves and homogeneous ice nucleation in tropical tropopause layer cirrus. Geophysical Research Letters, 43, 6629 – 6635. https://doi.org/10.1002/2016GL069426
dc.identifier.citedreferenceKuo, C. P., Yang, P., Huang, X., Feldman, D., Flanner, M., Kuo, C., & Mlawer, E. J. ( 2017 ). Impact of multiple scattering on longwave radiative transfer involving clouds. Journal of Advances in Modeling Earth Systems, 9, 3082 – 3098. https://doi.org/10.1002/2017MS001117
dc.identifier.citedreferenceJiang, J. H., Su, H., Zhai, C., Perun, V. S., Del Genio, A., Nazarenko, L. S., Donner, L. J., Horowitz, L. W., Seman, C., Cole, J., Gettelman, A., Ringer, M. A., Rotstayn, L., Jeffrey, S., Wu, T., Brient, F., Dufresne, J., Kawai, H., Koshiro, T., Watanabe, M., LÉcuyer, T. S., Volodin, E. M., Iversen, T., Drange, H., Mesquita, M. D. S., Read, B., Waters, J. W., Tian, B., Teixeira, J., & Stephens, G. ( 2012 ). Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A‐Train” satellite observations. Journal of Geophysical Research, 117, D14105. https://doi.org/10.1029/2011JD017237
dc.identifier.citedreferenceJiang, X. ( 2017 ). Key processes for the eastward propagation of the Madden‐Julian Oscillation based on multimodel simulations. Journal of Geophysical Research: Atmospheres, 122, 755 – 770. https://doi.org/10.1002/2016JD025955
dc.identifier.citedreferenceJiang, X., Waliser, D. E., Olson, W. S., Tao, W.‐K., L’Ecuyer, T. S., Li, K.‐F., Yung, Y. L., Shige, S., Lang, S., & Takayabu, Y. N. ( 2011 ). Vertical diabatic heating structure of the MJO: Intercomparison between recent reanalyses and TRMM estimates. Monthly Weather Review, 139 ( 10 ), 3208 – 3223. https://doi.org/10.1175/2011MWR3636.1
dc.identifier.citedreferenceJiang, X., Waliser, D. E., Xavier, P. K., Petch, J., Klingaman, N. P., Woolnough, S. J., Guan, B., Bellon, G., Crueger, T., DeMott, C., Hannay, C., Lin, H., Hu, W., Kim, D., Lappen, C. L., Lu, M. M., Ma, H. Y., Miyakawa, T., Ridout, J. A., Schubert, S. D., Scinocca, J., Seo, K. H., Shindo, E., Song, X., Stan, C., Tseng, W. L., Wang, W., Wu, T., Wu, X., Wyser, K., Zhang, G. J., & Zhu, H. ( 2015 ). Vertical structure and physical processes of the Madden‐Julian Oscillation: Exploring key model physics in climate simulations. Journal of Geophysical Research: Atmospheres, 120, 4718 – 4748. https://doi.org/10.1002/2014JD022375
dc.identifier.citedreferenceJohnson, R. H., Ciesielski, P. E., Ruppert, J. H. Jr., & Katsumata, M. ( 2015 ). Sounding‐based thermodynamic budgets for DYNAMO. Journal of the Atmospheric Sciences, 72 ( 2 ), 598 – 622. https://doi.org/10.1175/JAS-D-14-0202.1
dc.identifier.citedreferenceJohnson, R. H., Rickenbach, T. M., Rutledge, S. A., Ciesielski, P. E., & Schubert, W. H. ( 1999 ). Trimodal characteristics of tropical convection. Journal of Climate, 12 ( 8 ), 2397 – 2418. https://doi.org/10.1175/1520-0442(1999)012%3C2397:TCOTC%3E2.0.CO;2
dc.identifier.citedreferenceJoseph, E., & Min, Q. ( 2003 ). Assessment of multiple scattering and horizontal inhomogeneity in IR radiative transfer calculations of observed thin cirrus clouds. Journal of Geophysical Research, 108 ( D13 ), 4380. https://doi.org/10.1029/2002JD002831
dc.identifier.citedreferenceKato, S., Miller, W. F., Sun‐Mack, S., Rose, F. G., Chen, Y., & Mlynczak, P. E. ( 2014 ). Variable descriptions of the A‐Train integrated CALIPSO. CloudSat, CERES, and MODIS merged product (CCCM or C3M), NEWS A‐Train variable descriptions.
dc.identifier.citedreferenceKato, S., Rose, F. G., Sun‐Mack, S., Miller, W. F., Chen, Y., Rutan, D. A., Stephens, G. L., Loeb, N. G., Minnis, P., Wielicki, B. A., Winker, D. M., Charlock, T. P., Stackhouse, P. W. Jr., Xu, K. M., & Collins, W. D. ( 2011 ). Improvements of top‐of‐atmosphere and surface irradiance computations with CALIPSO‐, CloudSat‐, and MODIS‐derived cloud and aerosol properties. Journal of Geophysical Research, 116, D19209. https://doi.org/10.1029/2011JD016050
dc.identifier.citedreferenceKato, S., Sun‐Mack, S., Miller, W. F., Rose, F. G., Chen, Y., Minnis, P., & Wielicki, B. A. ( 2010 ). Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles. Journal of Geophysical Research, 115, D00H28. https://doi.org/10.1029/2009JD012277
dc.identifier.citedreferenceKay, J., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J., Bates, S., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J.‐F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., & Vertenstein, M. ( 2015 ). The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bulletin of the American Meteorological Society, 96 ( 8 ), 1333 – 1349. https://doi.org/10.1175/BAMS-D-13-00255.1
dc.identifier.citedreferenceKemball‐Cook, S. R., & Weare, B. C. ( 2001 ). The onset of convection in the Madden‐Julian Oscillation. Journal of Climate, 14 ( 5 ), 780 – 793. https://doi.org/10.1175/1520-0442(2001)014%3C0780:TOOCIT%3E2.0.CO;2
dc.identifier.citedreferenceKhairoutdinov, M. F., & Emanuel, K. ( 2018 ). Intraseasonal variability in a cloud‐permitting near‐global equatorial aquaplanet model. Journal of the Atmospheric Sciences, 75 ( 12 ), 4337 – 4355. https://doi.org/10.1175/JAS-D-18-0152.1
dc.identifier.citedreferenceKim, D., Ahn, M.‐S., Kang, I.‐S., & Del Genio, A. D. ( 2015 ). Role of longwave cloud‐radiation feedback in the simulation of the Madden‐Julian oscillation. Journal of Climate, 28 ( 17 ), 6979 – 6994. https://doi.org/10.1175/JCLI-D-14-00767.1
dc.identifier.citedreferenceKim, D., Kug, J.‐S., & Sobel, A. H. ( 2014 ). Propagating versus nonpropagating Madden‐Julian Oscillation events. Journal of Climate, 27 ( 1 ), 111 – 125. https://doi.org/10.1175/JCLI-D-13-00084.1
dc.identifier.citedreferenceKim, D., Sobel, A. H., & Kang, I. S. ( 2011 ). A mechanism denial study on the Madden‐Julian Oscillation. Journal of Advances in Modeling Earth Systems, 3, M12007. https://doi.org/10.1029/2011MS000081
dc.identifier.citedreferenceKim, J. E., Alexander, M. J., Bui, T. P., Dean‐Day, J. M., Lawson, R. P., Woods, S., Hlavka, D., Pfister, L., & Jensen, E. J. ( 2016 ). Ubiquitous influence of waves on tropical high cirrus clouds. Geophysical Research Letters, 43, 5895 – 5901. https://doi.org/10.1002/2016GL069293
dc.identifier.citedreferenceKuang, Z. ( 2011 ). The wavelength dependence of the gross moist stability and the scale selection in the instability of column‐integrated moist static energy. Journal of the Atmospheric Sciences, 68 ( 1 ), 61 – 74. https://doi.org/10.1175/2010JAS3591.1
dc.identifier.citedreferenceLappen, C.‐L., & Schumacher, C. ( 2012 ). Heating in the tropical atmosphere: What level of detail is critical for accurate MJO simulations in GCMs? Climate Dynamics, 39 ( 9–10 ), 2547 – 2568. https://doi.org/10.1007/s00382-012-1327-y
dc.identifier.citedreferenceLee, M. I., Kang, I. S., Kim, J. K., & Mapes, B. E. ( 2001 ). Influence of cloud‐radiation interaction on simulating tropical intraseasonal oscillation with an atmospheric general circulation model. Journal of Geophysical Research, 106 ( D13 ), 14,219 – 14,233. https://doi.org/10.1029/2001JD900143
dc.identifier.citedreferenceLi, W., Schumacher, C., & McFarlane, S. A. ( 2013 ). Radiative heating of the ISCCP upper level cloud regimes and its impact on the large‐scale tropical circulation. Journal of Geophysical Research: Atmospheres, 118, 592 – 604. https://doi.org/10.1002/jgrd.50114
dc.identifier.citedreferenceLin, J., Mapes, B., Zhang, M., & Newman, M. ( 2004 ). Stratiform precipitation, vertical heating profiles, and the Madden‐Julian oscillation. Journal of the Atmospheric Sciences, 61 ( 3 ), 296 – 309. https://doi.org/10.1175/1520-0469(2004)061%3C0296:SPVHPA%3E2.0.CO;2
dc.identifier.citedreferenceLin, J.‐L., & Mapes, B. E. ( 2004 ). Radiation budget of the tropical intraseasonal oscillation. Journal of the Atmospheric Sciences, 61 ( 16 ), 2050 – 2062. https://doi.org/10.1175/1520-0469(2004)061%3C2050:RBOTTI%3E2.0.CO;2
dc.identifier.citedreferenceLiu, C., Yang, P., Minnis, P., Loeb, N., Kato, S., Heymsfield, A., & Schmitt, C. ( 2014 ). A two‐habit model for the microphysical and optical properties of ice clouds. Atmospheric Chemistry and Physics, 14 ( 24 ), 13,719 – 13,737. https://doi.org/10.5194/acp-14-13719-2014
dc.identifier.citedreferenceLiu, C. T., Zipser, E. J., & Nesbitt, S. W. ( 2007 ). Global distribution of tropical deep convection: Different perspectives from TRMM infrared and radar data. Journal of Climate, 20 ( 3 ), 489 – 503. https://doi.org/10.1175/jcli4023.1
dc.identifier.citedreferenceLiu, P., Zhang, Q., Zhang, C., Zhu, Y., Khairoutdinov, M., Kim, H.‐M., Schumacher, C., & Zhang, M. ( 2016 ). A revised real‐time multivariate MJO index. Monthly Weather Review, 144 ( 2 ), 627 – 642. https://doi.org/10.1175/MWR-D-15-0237.1
dc.identifier.citedreferenceLoeb, N. G., Yang, P., Rose, F. G., Hong, G., Sun‐Mack, S., Minnis, P., Kato, S., Ham, S. H., Smith, W. L. Jr., Hioki, S., & Tang, G. ( 2018 ). Impact of ice cloud microphysics on satellite cloud retrievals and broadband flux radiative transfer model calculations. Journal of Climate, 31 ( 5 ), 1851 – 1864. https://doi.org/10.1175/JCLI-D-17-0426.1
dc.identifier.citedreferenceLuo, Z., & Rossow, W. B. ( 2004 ). Characterizing tropical cirrus life cycle, evolution, and interaction with upper‐tropospheric water vapor using Lagrangian trajectory analysis of satellite observations. Journal of Climate, 17 ( 23 ), 4541 – 4563. https://doi.org/10.1175/3222.1
dc.identifier.citedreferenceMa, D., & Kuang, Z. ( 2011 ). Modulation of radiative heating by the Madden‐Julian Oscillation and convectively coupled Kelvin waves as observed by CloudSat. Geophysical Research Letters, 38, L21813. https://doi.org/10.1029/2011GL049734
dc.identifier.citedreferenceMadden, R. A., & Julian, P. R. ( 1971 ). Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. Journal of the Atmospheric Sciences, 28 ( 5 ), 702 – 708. https://doi.org/10.1175/1520-0469(1971)028%3C0702:DOADOI%3E2.0.CO;2
dc.identifier.citedreferenceMadden, R. A., & Julian, P. R. ( 1972 ). Description of global‐scale circulation cells in the tropics with a 40–50 day period. Journal of the Atmospheric Sciences, 29 ( 6 ), 1109 – 1123. https://doi.org/10.1175/1520-0469(1972)029%3C1109:DOGSCC%3E2.0.CO;2
dc.identifier.citedreferenceMajda, A. J., & Yang, Q. ( 2016 ). A multiscale model for the intraseasonal impact of the diurnal cycle over the Maritime Continent on the Madden‐Julian oscillation. Journal of the Atmospheric Sciences, 73 ( 2 ), 579 – 604. https://doi.org/10.1175/JAS-D-15-0158.1
dc.identifier.citedreferenceMaloney, E. D. ( 2009 ). The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. Journal of Climate, 22 ( 3 ), 711 – 729. https://doi.org/10.1175/2008JCLI2542.1
dc.identifier.citedreferenceMaloney, E. D., & Hartmann, D. L. ( 1998 ). Frictional moisture convergence in a composite life cycle of the Madden‐Julian oscillation. Journal of Climate, 11 ( 9 ), 2387 – 2403. https://doi.org/10.1175/1520-0442(1998)011%3C2387:FMCIAC%3E2.0.CO;2
dc.identifier.citedreferenceMaloney, E. D., & Sobel, A. H. ( 2004 ). Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. Journal of Climate, 17 ( 22 ), 4368 – 4386. https://doi.org/10.1175/JCLI-3212.1
dc.identifier.citedreferenceMaloney, E. D., Sobel, A. H., & Hannah, W. M. ( 2010 ). Intraseasonal variability in an aquaplanet general circulation model. Journal of Advances in Modeling Earth Systems, 2, 5. https://doi.org/10.3894/JAMES.2010.2.5
dc.identifier.citedreferenceMassie, S., Gettelman, A., Randel, W., & Baumgardner, D. ( 2002 ). Distribution of tropical cirrus in relation to convection. Journal of Geophysical Research, 107 ( D21 ), 4591. https://doi.org/10.1029/2001JD001293
dc.identifier.citedreferenceMasunaga, H. ( 2007 ). Seasonality and regionality of the Madden‐Julian oscillation, Kelvin wave, and equatorial Rossby wave. Journal of the Atmospheric Sciences, 64 ( 12 ), 4400 – 4416. https://doi.org/10.1175/2007JAS2179.1
dc.identifier.citedreferenceMasunaga, H., & Bony, S. ( 2018 ). Radiative invigoration of tropical convection by preceding cirrus clouds. Journal of the Atmospheric Sciences, 75 ( 4 ), 1327 – 1342. https://doi.org/10.1175/JAS-D-17-0355.1
dc.identifier.citedreferenceSchmitt, C. G., & Heymsfield, A. J. ( 2014 ). Observational quantification of the separation of simple and complex atmospheric ice particles. Geophysical Research Letters, 41, 1301 – 1307. https://doi.org/10.1002/2013GL058781
dc.identifier.citedreferenceMinnis, P., Sun‐Mack, S., Young, D. F., Heck, P. W., Garber, D. P., Chen, Y., Spangenberg, D. A., Arduini, R. F., Trepte, Q. Z., Smith, W. L., Ayers, J. K., Gibson, S. C., Miller, W. F., Hong, G., Chakrapani, V., Takano, Y., Liou, K. N., Xie, Y., & Yang, P. ( 2011 ). CERES Edition‐2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Transactions on Geoscience and Remote Sensing, 49 ( 11 ), 4374 – 4400. https://doi.org/10.1109/TGRS.2011.2144601
dc.identifier.citedreferenceMlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. ( 1997 ). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave. Journal of Geophysical Research, 102 ( D14 ), 16,663 – 16,682. https://doi.org/10.1029/97JD00237
dc.identifier.citedreferenceMyhre, G., Shindell, D., & Pongratz, J. ( 2014 ). Anthropogenic and natural radiative forcing. In T. F. Stocker, et al. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 659 – 740 ). Cambridge, U. K., and New York: Cambridge Univ. Press. https://doi.org/10.1017/CBO9781107415324.018
dc.identifier.citedreferenceNeelin, J. D., & Held, I. M. ( 1987 ). Modeling tropical convergence based on the moist static energy budget. Monthly Weather Review, 115 ( 1 ), 3 – 12. https://doi.org/10.1175/1520-0493(1987)115%3C0003:MTCBOT%3E2.0.CO;2
dc.identifier.citedreferenceOh, J.‐H., Kim, K.‐Y., & Lim, G.‐H. ( 2012 ). Impact of MJO on the diurnal cycle of rainfall over the western Maritime Continent in the austral summer. Climate Dynamics, 38 ( 5–6 ), 1167 – 1180. https://doi.org/10.1007/s00382-011-1237-4
dc.identifier.citedreferencePalmer, K. F., & Williams, D. ( 1974 ). Optical properties of water in the near infrared. JOSA, 64 ( 8 ), 1107 – 1110. https://doi.org/10.1364/JOSA.64.001107
dc.identifier.citedreferencePeatman, S. C., Matthews, A. J., & Stevens, D. P. ( 2014 ). Propagation of the Madden‐Julian Oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation. Quarterly Journal of the Royal Meteorological Society, 140 ( 680 ), 814 – 825. https://doi.org/10.1002/qj.2161
dc.identifier.citedreferencePlatnick, S., Meyer, K. G., King, M. D., Wind, G., Amarasinghe, N., Marchant, B., Arnold, G. T., Zhang, Z., Hubanks, P. A., Holz, R. E., Yang, P., Ridgway, W. L., & Riedi, J. ( 2017 ). The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Transactions on Geoscience and Remote Sensing, 55 ( 1 ), 502 – 525. https://doi.org/10.1109/TGRS.2016.2610522
dc.identifier.citedreferencePowers, J. G., Klemp, J. B., Skamarock, W. C., Davis, C. A., Dudhia, J., Gill, D. O., Coen, J. L., Gochis, D. J., Ahmadov, R., Peckham, S. E., Grell, G. A., Michalakes, J., Trahan, S., Benjamin, S. G., Alexander, C. R., Dimego, G. J., Wang, W., Schwartz, C. S., Romine, G. S., Liu, Z., Snyder, C., Chen, F., Barlage, M. J., Yu, W., & Duda, M. G. ( 2017 ). The Weather Research and Forecasting model: Overview, system efforts, and future directions. Bulletin of the American Meteorological Society, 98 ( 8 ), 1717 – 1737. https://doi.org/10.1175/BAMS-D-15-00308.1
dc.identifier.citedreferencePrasad, A. A., Sherwood, S. C., Reeder, M. J., & Lane, T. P. ( 2019 ). Rapidly evolving cirrus clouds modulated by convectively generated gravity waves. Journal of Geophysical Research: Atmospheres, 124, 7327 – 7338. https://doi.org/10.1029/2019JD030538
dc.identifier.citedreferenceRauniyar, S. P., & Walsh, K. J. ( 2011 ). Scale interaction of the diurnal cycle of rainfall over the Maritime Continent and Australia: Influence of the MJO. Journal of Climate, 24 ( 2 ), 325 – 348. https://doi.org/10.1175/2010JCLI3673.1
dc.identifier.citedreferenceRaymond, D. J. ( 2001 ). A new model of the Madden‐Julian oscillation. Journal of the Atmospheric Sciences, 58 ( 18 ), 2807 – 2819. https://doi.org/10.1175/1520-0469(2001)058%3C2807:ANMOTM%3E2.0.CO;2
dc.identifier.citedreferenceRen, T., Yang, P., Tang, G., Huang, X., & Mlawer, E. ( 2020 ). Improved δ‐Eddington approximation for optically thin clouds. Journal of Quantitative Spectroscopy and Radiative Transfer, 240, 106,694. https://doi.org/10.1016/j.jqsrt.2019.106694
dc.identifier.citedreferenceRossow, W. B., & Schiffer, R. A. ( 1991 ). ISCCP cloud data products. Bulletin of the American Meteorological Society, 72 ( 1 ), 2 – 20. https://doi.org/10.1175/1520-0477(1991)072%3C0002:ICDP%3E2.0.CO;2
dc.identifier.citedreferenceRuppert, J. H. Jr., & Johnson, R. H. ( 2015 ). Diurnally modulated cumulus moistening in the preonset stage of the Madden‐Julian oscillation during DYNAMO. Journal of the Atmospheric Sciences, 72 ( 4 ), 1622 – 1647. https://doi.org/10.1175/JAS-D-14-0218.1
dc.identifier.citedreferenceSalby, M. L., & Hendon, H. H. ( 1994 ). Intraseasonal behavior of clouds, temperature, and motion in the tropics. Journal of the Atmospheric Sciences, 51 ( 15 ), 2207 – 2224. https://doi.org/10.1175/1520-0469(1994)051%3C2207:IBOCTA%3E2.0.CO;2
dc.identifier.citedreferenceSassen, K., Wang, Z., & Liu, D. ( 2009 ). Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and CloudSat. Journal of Geophysical Research, 114, D00H06. https://doi.org/10.1029/2009JD011916
dc.identifier.citedreferenceSchmidt, G. A., Ruedy, R., Hansen, J. E., Aleinov, I., Bell, N., Bauer, M., Bauer, S., Cairns, B., Canuto, V., Cheng, Y., del Genio, A., Faluvegi, G., Friend, A. D., Hall, T. M., Hu, Y., Kelley, M., Kiang, N. Y., Koch, D., Lacis, A. A., Lerner, J., Lo, K. K., Miller, R. L., Nazarenko, L., Oinas, V., Perlwitz, J., Perlwitz, J., Rind, D., Romanou, A., Russell, G. L., Sato, M., Shindell, D. T., Stone, P. H., Sun, S., Tausnev, N., Thresher, D., & Yao, M. S. ( 2006 ). Present‐day atmospheric simulations using GISS ModelE: Comparison to in situ, satellite, and reanalysis data. Journal of Climate, 19 ( 2 ), 153 – 192. https://doi.org/10.1175/JCLI3612.1
dc.identifier.citedreferenceSchoeberl, M. R., Jensen, E. J., & Woods, S. ( 2015 ). Gravity waves amplify upper tropospheric dehydration by clouds. Earth and Space Science, 2, 485 – 500. https://doi.org/10.1002/2015EA000127
dc.identifier.citedreferenceSkamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.‐Y., Wang, W., & Powers, J. G. ( 2008 ). A description of the advanced research WRF Version 3. NCAR Technical Note NCAR/TN–475+STR (pp. 1 ‐ 96 ).
dc.identifier.citedreferenceSlingo, A., & Slingo, J. ( 1988 ). The response of a general circulation model to cloud longwave radiative forcing. I: Introduction and initial experiments. Quarterly Journal of the Royal Meteorological Society, 114 ( 482 ), 1027 – 1062. https://doi.org/10.1002/qj.49711448209
dc.identifier.citedreferenceSobel, A., Wang, S., & Kim, D. ( 2014 ). Moist static energy budget of the MJO during DYNAMO. Journal of the Atmospheric Sciences, 71 ( 11 ), 4276 – 4291. https://doi.org/10.1175/JAS-D-14-0052.1
dc.identifier.citedreferenceSobel, A. H., & Gildor, H. ( 2003 ). A simple time‐dependent model of SST hot spots. Journal of Climate, 16 ( 23 ), 3978 – 3992. https://doi.org/10.1175/1520-0442(2003)016%3C3978:ASTMOS%3E2.0.CO;2
dc.identifier.citedreferenceStan, C., Straus, D. M., Frederiksen, J. S., Lin, H., Maloney, E. D., & Schumacher, C. ( 2017 ). Review of tropical‐extratropical teleconnections on intraseasonal time scales. Reviews of Geophysics, 55, 902 – 937. https://doi.org/10.1002/2016RG000538
dc.identifier.citedreferenceStephens, G. L. ( 1978 ). Radiation profiles in extended water clouds. II: Parameterization schemes. Journal of the Atmospheric Sciences, 35, 2123 – 2132. https://doi.org/10.1175/1520-0469(1978)035%3C2123:RPIEWC%3E2.0.CO;2
dc.identifier.citedreferenceStephens, G. L., Gabriel, P. M., & Partain, P. T. ( 2001 ). Parameterization of atmospheric radiative transfer. Part I: Validity of simple models. Journal of the Atmospheric Sciences, 58 ( 22 ), 3391 – 3409. https://doi.org/10.1175/1520-0469(2001)058%3C3391:POARTP%3E2.0.CO;2
dc.identifier.citedreferenceSu, H., Jiang, J. H., Zhai, C., Perun, V. S., Shen, J. T., Del Genio, A., Nazarenko, L., Donner, L., Horowitz, L. W., Seman, C. J., Morcrette, C. J., Petch, J. C., Ringer, M. A., Cole, J. N. S., von Salzen, K., dos Santos Mesquita, M., Iversen, T., Kristjánsson, J. E., Gettelman, A., Rotstayn, L. D., Jeffrey, S., Dufresne, J.‐L., Watanabe, M., Kawai, H., Koshiro, T., Wu, T., Volodin, E. M., L’Ecuyer, T., Teixeira, J., & Stephens, G. L. ( 2013 ). Diagnosis of regime‐dependent cloud simulation errors in CMIP5 models using “A‐Train” satellite observations and reanalysis data. Journal of Geophysical Research: Atmospheres, 118, 2762 – 2780. https://doi.org/10.1029/2012JD018575
dc.identifier.citedreferenceSui, C., & Lau, K. ( 1992 ). Multiscale phenomena in the tropical atmosphere over the western Pacific. Monthly Weather Review, 120 ( 3 ), 407 – 430. https://doi.org/10.1175/1520-0493(1992)120%3C0407:MPITTA%3E2.0.CO;2
dc.identifier.citedreferenceTang, G., Yang, P., Kattawar, G. W., Huang, X., Mlawer, E. J., Baum, B. A., & King, M. D. ( 2018 ). Improvement of the simulation of cloud longwave scattering in broadband radiative transfer models. Journal of the Atmospheric Sciences, 75 ( 7 ), 2217 – 2233. https://doi.org/10.1175/JAS-D-18-0014.1
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.