Show simple item record

Two‐Year Observations of the Jupiter Polar Regions by JIRAM on Board Juno

dc.contributor.authorAdriani, A.
dc.contributor.authorBracco, A.
dc.contributor.authorGrassi, D.
dc.contributor.authorMoriconi, M. L.
dc.contributor.authorMura, A.
dc.contributor.authorOrton, G.
dc.contributor.authorAltieri, F.
dc.contributor.authorIngersoll, A.
dc.contributor.authorAtreya, S. K.
dc.contributor.authorLunine, J. I.
dc.contributor.authorMigliorini, A.
dc.contributor.authorNoschese, R.
dc.contributor.authorCicchetti, A.
dc.contributor.authorSordini, R.
dc.contributor.authorTosi, F.
dc.contributor.authorSindoni, G.
dc.contributor.authorPlainaki, C.
dc.contributor.authorDinelli, B. M.
dc.contributor.authorTurrini, D.
dc.contributor.authorFilacchione, G.
dc.contributor.authorPiccioni, G.
dc.contributor.authorBolton, S. J.
dc.date.accessioned2020-07-02T20:33:44Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-07-02T20:33:44Z
dc.date.issued2020-06
dc.identifier.citationAdriani, A.; Bracco, A.; Grassi, D.; Moriconi, M. L.; Mura, A.; Orton, G.; Altieri, F.; Ingersoll, A.; Atreya, S. K.; Lunine, J. I.; Migliorini, A.; Noschese, R.; Cicchetti, A.; Sordini, R.; Tosi, F.; Sindoni, G.; Plainaki, C.; Dinelli, B. M.; Turrini, D.; Filacchione, G.; Piccioni, G.; Bolton, S. J. (2020). "Two‐Year Observations of the Jupiter Polar Regions by JIRAM on Board Juno." Journal of Geophysical Research: Planets 125(6): n/a-n/a.
dc.identifier.issn2169-9097
dc.identifier.issn2169-9100
dc.identifier.urihttps://hdl.handle.net/2027.42/155949
dc.description.abstractWe observed the evolution of Jupiter’s polar cyclonic structures over two years between February 2017 and February 2019, using polar observations by the Jovian InfraRed Auroral Mapper, JIRAM, on the Juno mission. Images and spectra were collected by the instrument in the 5‐μm wavelength range. The images were used to monitor the development of the cyclonic and anticyclonic structures at latitudes higher than 80° both in the northern and the southern hemispheres. Spectroscopic measurements were then used to monitor the abundances of the minor atmospheric constituents water vapor, ammonia, phosphine, and germane in the polar regions, where the atmospheric optical depth is less than 1. Finally, we performed a comparative analysis with oceanic cyclones on Earth in an attempt to explain the spectral characteristics of the cyclonic structures we observe in Jupiter’s polar atmosphere.Plain Language SummaryThe Jovian InfraRed Auroral Mapper (JIRAM) is an instrument on‐board the Juno NASA spacecraft. It consists of an infrared camera, for mapping both Jupiter’s auroras and atmosphere, and a spectrometer. In February 2017, the complex cyclonic structures that characterize the Jupiter’s polar atmospheres were discovered. Here, we report the evolution of those cyclonic structures during the 2 years following the discovery. We use for this purpose infrared maps built by the JIRAM camera images collected at wavelengths around 5 μm. The cyclones have thick clouds that obstruct most of the view of the deeper atmosphere. However, some areas, near the cyclones, are only covered by thin clouds allowing the spectrometer to see deeper in the atmosphere. In those areas, the instrument was able to detect spectral signatures that permitted estimation of abundances of water vapor, ammonia, phosphine, and germane. Those gases are minor but significant constituents of the atmosphere. Finally, the dynamics of the Jupiter’s polar atmosphere are not well understood and are still under study. Here, to suggest possible mechanisms that governs the polar dynamics, we attempted a comparative analysis with some Earth oceanic cyclones that show similarities with the Jupiter ones.Key PointsThe Jupiter’s polar cyclonic structures did not change much in two years of observations from February 2017 to February 2019Abundances of some atmospheric minor constituents measured in the hottest spots of the polar regions, higher values registered in the southEarth oceanic cyclones analogies suggest a well‐mixed upper boundary layer on Jupiter’s Poles
dc.publisherWiley Periodicals, Inc.
dc.subject.otherJupiter
dc.subject.otherplanetary atmosphere
dc.subject.otherpolar regions
dc.subject.othercomposition
dc.subject.otherMesoscale dynamics
dc.titleTwo‐Year Observations of the Jupiter Polar Regions by JIRAM on Board Juno
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155949/1/jgre21379_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155949/2/jgre21379.pdf
dc.identifier.doi10.1029/2019JE006098
dc.identifier.sourceJournal of Geophysical Research: Planets
dc.identifier.citedreferenceIrwin, P. G. J., Weir, A. L., Smith, S. E., Taylor, F. W., Lambert, A. L., Calcutt, S. B., Cameron‐Smith, P. J., Carlson, R. W., Baines, K., Orton, G. S., Drossart, P., Encrenaz, T., & Roos‐Serote, M. ( 1998 ). Cloud structure and atmospheric composition of Jupiter retrieved from Galileo near infrared mapping spectrometer real‐time spectra. Journal of Geophysical Research, 103 ( E10 ), 23,001 – 23,021. https://doi.org/10.1029/98JE00948
dc.identifier.citedreferenceActon, C. H. ( 1996 ). Ancillary Data Services of NASA’s Navigation and Ancillary Information Facility. Planetary and Space Science, 44 ( 1 ), 65 – 70. https://doi.org/10.1016/0032-0633(95)00107-7
dc.identifier.citedreferenceAdriani, A., Filacchione, G., di Iorio, T., Turrini, D., Noschese, R., Cicchetti, A., Grassi, D., Mura, A., Sindoni, G., Zambelli, M., Piccioni, G., Capria, M. T., Tosi, F., Orosei, R., Dinelli, B. M., Moriconi, M. L., Roncon, E., Lunine, J. I., Becker, H. N., Bini, A., Barbis, A., Calamai, L., Pasqui, C., Nencioni, S., Rossi, M., Lastri, M., Formaro, R., & Olivieri, A. ( 2017 ). JIRAM, the Jovian infrared Auroral mapper. Space Science Reviews, 213 ( 1‐4 ), 393 – 446. https://doi.org/10.1007/s11214-014-0094-y
dc.identifier.citedreferenceAdriani, A., Moriconi, M. L., Mura, A., Tosi, F., Sindoni, G., Noschese, R., Cicchetti, A., & Filacchione, G. ( 2016 ). Juno’s earth flyby: The Jovian infrared Auroral mapper preliminary results. Astrophysics and Space Science, 361 ( 8 ), 272. https://doi.org/10.1007/s10509-016-2842-9
dc.identifier.citedreferenceAdriani, A., Mura, A., Orton, G., Hansen, C., Altieri, F., Moriconi, M. L., Rogers, J., Eichstädt, G., Momary, T., Ingersoll, A. P., Filacchione, G., Sindoni, G., Tabataba‐Vakili, F., Dinelli, B. M., Fabiano, F., Bolton, S. J., Connerney, J. E. P., Atreya, S. K., Lunine, J. I., Tosi, F., Migliorini, A., Grassi, D., Piccioni, G., Noschese, R., Cicchetti, A., Plainaki, C., Olivieri, A., O’Neill, M. E., Turrini, D., Stefani, S., Sordini, R., & Amoroso, M. ( 2018 ). Clusters of cyclones encircling Jupiter’s poles. Nature, 555 ( 7695 ), 216 – 219. https://doi.org/10.1038/nature25491
dc.identifier.citedreferenceBlumen, W. ( 1978 ). Uniform potential vorticity flow: Part I. Theory of wave interactions and two‐dimensional turbulence. Journal of Atmospheric Science, 35, 774 – 783.
dc.identifier.citedreferenceBolton, S. J., Lunine, J., Stevenson, D., Connerney, J. E. P., Levin, S., Owen, T. C., Bagenal, F., Gautier, D., Ingersoll, A. P., Orton, G. S., Guillot, T., Hubbard, W., Bloxham, J., Coradini, A., Stephens, S. K., Mokashi, P., Thorne, R., & Thorpe, R. ( 2017 ). The Juno mission. Space Science Reviews, 213 ( 1‐4 ), 5 – 37. https://doi.org/10.1007/s11214-017-0429-6
dc.identifier.citedreferenceBracco, A., & McWilliams, J. C. ( 2010 ). Reynolds‐number dependency in homogeneous, stationary two‐dimensional turbulence. Journal of Fluid Mechanics, 646, 517 – 526. https://doi.org/10.1017/S0022112009993661
dc.identifier.citedreferenceBracco, A., von Hardenberg, J., Provenzale, A., Weiss, J., & McWilliams, J. C. ( 2004 ). Dispersion and mixing in quasigeostrophic turbulence. Physical Review Letters, 92 ( 8 ), 084501. https://doi.org/10.1103/PhysRevLett.92.084501
dc.identifier.citedreferenceCapet, X., Klein, P., Hua, B. L., Lapeyre, G., & McWilliams, J. C. ( 2008 ). Surface kinetic and potential energy transfer in SQG dynamics. Journal of Fluid Mechanics, 604, 165 – 174. https://doi.org/10.1017/S0022112008001110
dc.identifier.citedreferenceCharney, J. G. ( 1971 ). Geostrophic turbulence. Journal of Atmospheric Science, 28 ( 6 ), 1087 – 1095. https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2
dc.identifier.citedreferenceDrossart, P., Roos‐Serote, M., Encrenaz, T., Lellouch, E., Baines, K. H., Carlson, R. W., Kamp, L. W., Orton, G. S., Calcutt, S., Irwin, P., Taylor, F. W., & Weir, A. ( 1998 ). The solar reflected component in Jupiter’s 5‐μm spectra from NIMS/Galileo observations. Journal of Geophysical Research, 103 ( E10 ), 23,043 – 23,049. https://doi.org/10.1029/98JE01899
dc.identifier.citedreferenceGiles, R. S., Fletcher, L. N., & Irwin, P. G. J. ( 2015 ). Cloud structure and composition of Jupiter’s troposphere from 5‐m Cassini VIMS spectroscopy. Icarus, 257, 457 – 470. https://doi.org/10.1016/j.icarus.2015.05.030
dc.identifier.citedreferenceGiles, R. S., Fletcher, L. N., & Irwin, P. G. J. ( 2017 ). Latitudinal variability in Jupiter’s tropospheric disequilibrium species: GeH4, AsH3 and PH3. Icarus, 289, 254 – 269. https://doi.org/10.1016/j.icarus.2016.10.023
dc.identifier.citedreferenceGrassi, D., Adriani, A., Mura, A., Dinelli, B. M., Sindoni, G., Turrini, D., Filacchione, G., Migliorini, A., Moriconi, M. L., Tosi, F., Noschese, R., Cicchetti, A., Altieri, F., Fabiano, F., Piccioni, G., Stefani, S., Atreya, S., Lunine, J., Orton, G., Ingersoll, A., Bolton, S., Levin, S., Connerney, J., Olivieri, A., & Amoroso, M. ( 2017 ). Preliminary results on the composition of Jupiter’s troposphere in hot spot regions from the JIRAM/Juno instrument. Geophysical Research Letters, 44, 4615 – 4624. https://doi.org/10.1002/2017GL072841
dc.identifier.citedreferenceGrassi, D., Ignatiev, N. I., Sindoni, G., d’Aversa, E., Maestri, T., Adriani, A., Mura, A., Filacchione, G., Dinelli, B. M., Noschese, R., Cicchetti, A., Piccioni, G., Turrini, D., Tosi, F., Moriconi, M. L., Olivieri, A., Plainaki, C., Amoroso, M., Atreya, S. K., Orton, G. S., & Bolton, S. ( 2017 ). Analysis of IR‐bright regions of Jupiter in JIRAM‐Juno data: Methods and validation of algorithms. Journal of Quantitative Spectroscopy and Radiative Transfer, 202, 200 – 209. https://doi.org/10.1016/j.jqsrt.2017.08.008
dc.identifier.citedreferenceGula, J., Molemaker, M. J., & McWilliams, J. C. ( 2015 ). Gulf stream dynamics along the southeastern U.S. seaboard. Journal of Physical Oceanography, 45 ( 3 ), 690 – 715. https://doi.org/10.1175/JPO-D-14-0154.1
dc.identifier.citedreferenceHakim, G. J., Snyder, C., & Muraki, D. J. ( 2002 ). A new surface model for cyclone–anticyclone asymmetry. Journal of the Atmospheric Sciences, 59 ( 16 ), 2405 – 2420. https://doi.org/10.1175/1520-0469(2002)059<2405:ANSMFC>2.0.CO;2
dc.identifier.citedreferenceHansen, C. J., Caplinger, M. A., Ingersoll, A., Ravine, M. A., Jensen, E., Bolton, S., & Orton, G. ( 2014 ). Junocam: Juno’s outreach camera. Space Science Reviews, 213 ( 1‐4 ), 475 – 506. https://doi.org/10.1007/s11214-014-0079-x
dc.identifier.citedreferenceHarrington, J., Dowling, T. E., & Baron, R. L. ( 1996 ). Jupiter tropospheric thermal emission: II. Power Spectrum Analysis and Wave Search. Icarus, 124 ( 1 ), 32 – 44. https://doi.org/10.1006/icar.1996.0188
dc.identifier.citedreferenceHeld, I. M., Pierrehumbert, R. T., Garner, S. T., & Swanson, K. L. ( 1995 ). Surface quasi‐geostrophic dynamics. Journal of Fluid Mechanics, 282, 1 – 20. https://doi.org/10.1017/S0022112095000012
dc.identifier.citedreferenceLapeyre, G., & Klein, P. ( 2006 ). Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. Journal of Physical Oceanography, 36 ( 2 ), 165 – 176. https://doi.org/10.1175/JPO2840.1
dc.identifier.citedreferenceMcWilliams, J. C. ( 2016 ). Submesoscale currents in the ocean. Proceedings of the Royal Society A: Mathematical, Physical and Engineering, 472 ( 2189 ), 20160117. https://doi.org/10.1098/rspa.2016.0117
dc.identifier.citedreferenceNoschese, R. & Adriani, A. ( 2017a ). JNO‐J‐JIRAM‐2‐RDR‐V1.0, NASA Planetary Data System.
dc.identifier.citedreferenceNoschese, R. & Adriani A. ( 2017b ). JNO‐J‐JIRAM‐3‐EDR‐V1.0, NASA Planetary Data System.
dc.identifier.citedreferenceNovi, L., von Hardenberg, J., Hughes, D. W., Provenzale, A., & Spiegel, E. A. ( 2019 ). Rapidly rotating Rayleigh‐Bénard convection with a tilted axis. Physical Review, E99, 053116. https://doi.org/10.1103/PhysRevE.99.053116
dc.identifier.citedreferencePierrehumbert, R. T., Held, I. M., & Swanson, K. L. ( 1994 ). Spectra of local and nonlocal two‐dimensional turbulence. Chaos, Solitons & Fractals, 4 ( 6 ), 1111 – 1116. https://doi.org/10.1016/0960-0779(94)90140-6
dc.identifier.citedreferenceReinaud, J. N. ( 2019 ). Three‐dimensional quasi‐geostrophic vortex equilibria with m‐fold symmetry. Journal of Fluid Mechanics. 863, 32 – 59. https://doi.org/10.1017/jfm.2018.989
dc.identifier.citedreferenceSeiff, A., Kirk, D. B., Knight, T. C. D., Young, R. E., Mihalov, J. D., Young, L. A., Milos, F. S., Schubert, G., Blanchard, R. C., & Atkinson, D. ( 1998 ). Thermal structure of Jupiter’s atmosphere near the edge of a 5‐μm hot spot in the north equatorial belt. Journal of Geophysical Research, 103 ( E10 ), 22,857 – 22,889. https://doi.org/10.1029/98JE01766. Available as numerical data as GP‐J‐ASI‐3‐ENTRY‐V1.0, NASA Planetary Data System
dc.identifier.citedreferenceShchepetkin, A. F., & McWilliams, J. C. ( 2005 ). The regional oceanic modeling system: A split‐ explicit, free‐surface, topography‐following coordinate oceanic model. Ocean Model, 9 ( 4 ), 347 – 404. https://doi.org/10.1016/j.ocemod.2004.08.002
dc.identifier.citedreferenceSun, D., Ito, T., & Bracco, A. ( 2017 ). Oceanic uptake of oxygen during deep convection events through diffusive and bubble mediated gas exchange. Global Biogeochemical Cycles, 31, 1579 – 1591. https://doi.org/10.1002/2017GB005716
dc.identifier.citedreferenceTravis, L. D. ( 1978 ). Nature of atmospheric dynamics on Venus from power spectrum analysis of mariner 10 images. Journal of the Atmospheric Sciences, 35 ( 9 ), 1584 – 1595. https://doi.org/10.1175/1520-0469(1978)035<1584:NOTADO>2.0.CO;2
dc.identifier.citedreferenceZhong, Y., & Bracco, A. ( 2013 ). Submesoscale impacts on horizontal and vertical transport in the Gulf of Mexico. Journal of Geophysical Research: Oceans, 118, 5651 – 5668. https://doi.org/10.1002/jgrc.20402
dc.identifier.citedreferenceZhong, Y., Bracco, A., Tian, J., Dong, J., Zhao, W., & Zhang, Z. ( 2017 ). Observed and simulated vertical pump of an anticyclonic eddy in the. South China Sea. Scientific Report, 7 ( 1 ), 44011. https://doi.org/10.1038/srep44011
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.