Show simple item record

Relayed nuclear Overhauser enhancement sensitivity to membrane Cho phospholipids

dc.contributor.authorZu, Zhongliang
dc.contributor.authorLin, Eugene C.
dc.contributor.authorLouie, Elizabeth A.
dc.contributor.authorXu, Junzhong
dc.contributor.authorLi, Hua
dc.contributor.authorXie, Jingping
dc.contributor.authorLankford, Christopher L.
dc.contributor.authorChekmenev, Eduard Y.
dc.contributor.authorSwanson, Scott D.
dc.contributor.authorDoes, Mark D.
dc.contributor.authorGore, John C.
dc.contributor.authorGochberg, Daniel F.
dc.date.accessioned2020-07-02T20:33:51Z
dc.date.availableWITHHELD_16_MONTHS
dc.date.available2020-07-02T20:33:51Z
dc.date.issued2020-10
dc.identifier.citationZu, Zhongliang; Lin, Eugene C.; Louie, Elizabeth A.; Xu, Junzhong; Li, Hua; Xie, Jingping; Lankford, Christopher L.; Chekmenev, Eduard Y.; Swanson, Scott D.; Does, Mark D.; Gore, John C.; Gochberg, Daniel F. (2020). "Relayed nuclear Overhauser enhancement sensitivity to membrane Cho phospholipids." Magnetic Resonance in Medicine 84(4): 1961-1976.
dc.identifier.issn0740-3194
dc.identifier.issn1522-2594
dc.identifier.urihttps://hdl.handle.net/2027.42/155956
dc.publisherWiley Periodicals, Inc.
dc.publisherCRC Press
dc.subject.otherchemical exchange rotation transfer
dc.subject.otherchemical exchange saturation transfer
dc.subject.othermagnetization transfer
dc.subject.othernuclear Overhauser enhancement
dc.subject.otherphospholipids
dc.titleRelayed nuclear Overhauser enhancement sensitivity to membrane Cho phospholipids
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155956/1/mrm28258_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155956/2/mrm28258.pdf
dc.identifier.doi10.1002/mrm.28258
dc.identifier.sourceMagnetic Resonance in Medicine
dc.identifier.citedreferenceKorlach J, Schwille P, Webb WW, Feigenson GW. Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci USA. 1999; 96: 8461 – 8466.
dc.identifier.citedreferenceHuster D, Arnold K, Gawrisch K. Investigation of lipid organization in biological membranes by two‐dimensional nuclear Overhauser enhancement spectroscopy. J Phys Chem B. 1999; 103: 243 – 251.
dc.identifier.citedreferenceDelaat SW, Vandersaag PT, Shinitzky M. Microviscosity modulation during cell‐cycle of neuroblastoma‐cells. Proc Natl Acad Sci USA. 1977; 74: 4458 – 4461.
dc.identifier.citedreferenceSwanson SD. Protein mediated magnetic coupling between lactate and water protons. J Magn Reson. 1998; 135: 248 – 255.
dc.identifier.citedreferenceEstilaei MR, Matson GB, Meyerhoff DJ. Indirect imaging of ethanol via magnetization transfer at high and low magnetic fields. Magn Reson Med. 2003; 49: 755 – 759.
dc.identifier.citedreferenceAlmeida PFF, Vaz WLC, Thompson TE. Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. Biochemistry. 1992; 31: 6739 – 6747.
dc.identifier.citedreferenceFilippov A, Orädd G, Lindblom G. The effect of cholesterol on the lateral diffusion of phospholipids in oriented bilayers. Biophys J. 2003; 84: 3079 – 3086.
dc.identifier.citedreferenceFilippov A, Orädd G, Lindblom G. Influence of cholesterol and water content on phospholipid lateral diffusion in bilayers. Langmuir. 2003; 19: 6397 – 6400.
dc.identifier.citedreferenceOrädd G, Lindblom G. Lateral diffusion studied by pulsed field gradient NMR on oriented lipid membranes. Magn Reson Chem. 2004; 42: 123 – 131.
dc.identifier.citedreferenceFalck E, Patra M, Karttunen M, Hyvönen MT, Vattulainen I. Lessons of slicing membranes: interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers. Biophys J. 2004; 87: 1076 – 1091.
dc.identifier.citedreferenceCai KJ, Haris M, Singh A, et al. Magnetic resonance imaging of glutamate. Nat Med. 2012; 18: 302 – 306.
dc.identifier.citedreferenceYau W‐M, Gawrisch K. Lateral lipid diffusion dominates NOESY cross‐relaxation in membranes. J Am Chem Soc. 2000; 122: 3971 – 3972.
dc.identifier.citedreferenceSułkowski WW, Pentak D, Nowak K, Sułkowska A. The influence of temperature, cholesterol content and pH on liposome stability. J Mol Struct. 2005; 744: 737 – 747.
dc.identifier.citedreferenceJacobs RE, Oldfield E. NMR of membranes. Prog NMR Spectrosc. 1980; 14: 113 – 136.
dc.identifier.citedreferenceVictort KG, Korb JP, Bryant RG. Translational dynamics of water at the phospholipid interface. J Phys Chem B. 2013; 117: 12475 – 12478.
dc.identifier.citedreferenceEdzes HT, Samulski ET. The measurement of cross‐relaxation effects in the proton NMR spin‐lattice relaxation of water in biological systems: hydrated collagen and muscle. J Magn Reson. 1978; 31: 207 – 229.
dc.identifier.citedreferenceYadav N, Yang X, Li YG, Li WB, Liu GS, van Zijl PC. Detection of dynamic substrate binding using MRI. In Proceedings of the 25th Annual Meeting of ISMRM, Honolulu, HI, 2017. p. 3575.
dc.identifier.citedreferenceHorch RA, Gore JC, Does MD. Origins of the ultrashort‐T‐2 H‐1 NMR signals in myelinated nerve: a direct measure of myelin content? Magn Reson Med. 2011; 66: 24 – 31.
dc.identifier.citedreferenceSherbet GV. Membrane fluidity and cancer metastasis. Exp Cell Biol. 1989; 57: 198 – 205.
dc.identifier.citedreferencePodo F. Tumour phospholipid metabolism. NMR Biomed. 1999; 12: 413 – 439.
dc.identifier.citedreferenceHendrich AB, Michalak K. Lipids as a target for drugs modulating multidrug resistance of cancer cells. Curr Drug Targets. 2003; 4: 23 – 30.
dc.identifier.citedreferenceZu ZL, Xu JZ, Li H, et al. Imaging amide proton transfer and nuclear Overhauser enhancement using chemical exchange rotation transfer (CERT). Magn Reson Med. 2014; 72: 471 – 476.
dc.identifier.citedreferenceZhang XY, Wang F, Jin T, et al. MR imaging of a novel NOE‐mediated magnetization transfer with water in rat brain at 9.4T. Magn Reson Med. 2017; 78: 588 – 597.
dc.identifier.citedreferenceXu JZ, Zaiss M, Zu ZL, et al. On the origins of chemical exchange saturation transfer (CEST) contrast in tumors at 9.4T. NMR Biomed. 2014; 27: 406 – 416.
dc.identifier.citedreferenceDoblas S, He T, Saunders D, et al. In vivo characterization of several rodent glioma models by 1H MRS. NMR Biomed. 2012; 25: 685 – 694.
dc.identifier.citedreferenceCheminthomas C, Esclassan J, Palevody C, Hollande E. Characterization of a specific signal from human pancreatic tumors heterotransplanted into nude‐mice: study by high‐resolution H‐1‐NMR and HPLC. Int J Pancreatol. 1993; 13: 175 – 185.
dc.identifier.citedreferenceMountford CE, Grossman G, Gatenby PA, Fox RM. High‐resolution proton nuclear magnetic‐resonance: application to the study of leukemic lymphocytes. Br J Cancer. 1980; 41: 1000 – 1003.
dc.identifier.citedreferenceMeml AH, Nichols JW. Techniques for studying phospholipid membranes. In: Kuo JF, ed. Phospholipids and Cellular Regulation. Vol. 1. Boca Raton, FL: CRC Press; 1985.
dc.identifier.citedreferenceLeibfritz D, Dreher W. Magnetization transfer MRS. NMR Biomed. 2001; 14: 65 – 76.
dc.identifier.citedreferenceZaiss M, Bachert P. Chemical exchange saturation transfer (CEST) and MR Z‐spectroscopy in vivo: a review of theoretical approaches and methods. Phys Med Biol. 2013; 58: R221 – R269.
dc.identifier.citedreferenceZaiss M, Xu JZ, Goerke S, et al. Inverse Z‐spectrum analysis for spillover‐, MT‐, and T‐1‐corrected steady‐state pulsed CEST‐MRI: application to pH‐weighted MRI of acute stroke. NMR Biomed. 2014; 27: 240 – 252.
dc.identifier.citedreferenceHannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. ‎Nat Rev Mol Cell Biol. 2008; 9: 139 – 150.
dc.identifier.citedreferencevan Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008; 9: 112 – 124.
dc.identifier.citedreferenceWymann MP, Schneiter R. Lipid signalling in disease. Nat Rev Mol Cell Biol. 2008; 9: 162 – 176.
dc.identifier.citedreferenceHorwitz AF, Horsley WJ, Klein MP. Magnetic‐resonance studies on membrane and model membrane systems—proton magnetic‐relaxation rates in sonicated lecithin dispersions. Proc Natl Acad Sci USA. 1972; 69: 590 – 593.
dc.identifier.citedreferenceMeneses P, Navarro JN, Glonek T. Algal phospholipids by 31P NMR: comparing isopropanol pretreatment with simple chloroform/methanol extraction. Int J Biochem. 1993; 25: 903 – 910.
dc.identifier.citedreferenceEstrada R, Stolowich N, Yappert MC. Influence of temperature on 31P NMR chemical shifts of phospholipids and their metabolites I. In chloroform‐methanol‐water. Anal Biochem. 2008; 380: 41 – 50.
dc.identifier.citedreferenceKomoroski RA, Pearce JM, Griffin WST, Mrak RE, Omori M, Karson CN. Phospholipid abnormalities in postmortem schizophrenic brains detected by P‐31 nuclear magnetic resonance spectroscopy: a preliminary study. Psychiatry Res Neuroimaging. 2001; 106: 171 – 180.
dc.identifier.citedreferenceSotirhos N, Herslof B, Kenne L. Quantitative analysis of phospholipids by P‐31 NMR. J Lipid Res. 1986; 27: 386 – 392.
dc.identifier.citedreferenceMerchant TE, Glonek T. P‐31 NMR of phospholipid glycerol phosphodiester residues. J Lipid Res. 1990; 31: 479 – 486.
dc.identifier.citedreferenceMeneses P, Glonek T. High‐resolution P‐31 NMR of extracted phospholipids. J Lipid Res. 1988; 29: 679 – 689.
dc.identifier.citedreferenceMetz KR, Dunphy LK. Absolute quantitation of tissue phospholipids using P‐31 NMR spectroscopy. J Lipid Res. 1996; 37: 2251 – 2265.
dc.identifier.citedreferenceWilhelm MJ, Ong HH, Wehrli SL, et al. Direct magnetic resonance detection of myelin and prospects for quantitative imaging of myelin density. Proc Natl Acad Sci USA. 2012; 109: 9605 – 9610.
dc.identifier.citedreferenceZhou JY, Payen JF, Wilson DA, Traystman RJ, van Zijl PCM. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med. 2003; 9: 1085 – 1090.
dc.identifier.citedreferenceZhou JY, Tryggestad E, Wen ZB, et al. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med. 2011; 17: 130 – 134.
dc.identifier.citedreferenceHaris M, Singh A, Cai KJ, et al. A technique for in vivo mapping of myocardial creatine kinase metabolism. Nat Med. 2014; 20: 209 – 214.
dc.identifier.citedreferenceHaris M, Cai KJ, Singh A, Hariharan H, Reddy R. In vivo mapping of brain myo‐inositol. Neuroimage. 2011; 54: 2079 – 2085.
dc.identifier.citedreferenceZu Z, Li H, Xie J, Xu J, Gore JC, Gochberg DF. MR imaging of membrane choline phospholipids. Poster Presentation at Chemical Exchange Saturation Transfer (CEST) 2014 Workshop, Colleretto Giacosa, Italy, 2014.
dc.identifier.citedreferenceChen JH, Sambol EB, DeCarolis P, et al. High‐resolution MAS NMR spectroscopy detection of the spin magnetization exchange by cross‐relaxation and chemical exchange in intact cell lines and human tissue specimens. Magn Reson Med. 2006; 55: 1246 – 1256.
dc.identifier.citedreferenceMori S, Abeygunawardana C, van Zijl PCM, Berg JM. Water exchange filter with improved sensitivity (WEX II) to study solvent‐exchangeable protons. Application to the consensus zinc finger peptide CP‐I. J Magn Reson. 1996; 110: 96 – 101.
dc.identifier.citedreferenceMori S, Abeygunawardana C, Berg JM, van Zijl PCM. NMR study of rapidly exchanging backbone amide protons in staphylococcal nuclease and the correlation with structural and dynamic properties. J Am Chem Soc. 1997; 119: 6844 – 6852.
dc.identifier.citedreferenceZhou J, Wilson DA, Sun PZ, Klaus JA, van Zijl PCM. Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments. Magn Reson Med. 2004; 51: 945 – 952.
dc.identifier.citedreferencevan Zijl PCM, Zhou J, Mori N, Payen JF, Wilson D, Mori S. Mechanism of magnetization transfer during on‐resonance water saturation. A new approach to detect mobile proteins, peptides, and lipids. Magn Reson Med. 2003; 49: 440 – 449.
dc.identifier.citedreferenceChen JH, Sambol EB, Kennealey PT, et al. Water suppression without signal loss in HR‐MAS H‐1 NMR of cells and tissues. J Magn Reson. 2004; 171: 143 – 150.
dc.identifier.citedreferenceAvni R, Mangoubi O, Bhattacharyya R, Degani H, Frydman L. Magnetization transfer magic‐angle‐spinning z‐spectroscopy of excised tissues. J Magn Reson. 2009; 199: 1 – 9.
dc.identifier.citedreferenceZhou JY, van Zijl PCM. Chemical exchange saturation transfer imaging and spectroscopy. Prog NMR Spectrosc. 2006; 48: 109 – 136.
dc.identifier.citedreferenceZaiss M, Bachert P. Exchange‐dependent relaxation in the rotating frame for slow and intermediate exchange: modeling off‐resonant spin‐lock and chemical exchange saturation transfer. NMR Biomed. 2013; 26: 507 – 518.
dc.identifier.citedreferenceZu ZL, Janve VA, Xu JZ, Does MD, Gore JC, Gochberg DF. A new method for detecting exchanging amide protons using chemical exchange rotation transfer. Magn Reson Med. 2013; 69: 637 – 647.
dc.identifier.citedreferenceZu ZL, Li K, Janve VA, Does MD, Gochberg DF. Optimizing pulsed‐chemical exchange saturation transfer imaging sequences. Magn Reson Med. 2011; 66: 1100 – 1108.
dc.identifier.citedreferenceZu ZL, Janve VA, Li K, Does MD, Gore JC, Gochberg DF. Multi‐angle ratiometric approach to measure chemical exchange in amide proton transfer imaging. Magn Reson Med. 2012; 68: 711 – 719.
dc.identifier.citedreferenceSun PZ, Wang EF, Cheung JS, Zhang XA, Benner T, Sorensen AG. Simulation and optimization of pulsed radio frequency irradiation scheme for chemical exchange saturation transfer (CEST) MRI‐demonstration of pH‐weighted pulsed‐amide proton CEST MRI in an animal model of acute cerebral ischemia. Magn Reson Med. 2011; 66: 1042 – 1048.
dc.identifier.citedreferenceLi K, Zu ZL, Xu JZ, et al. Optimized inversion recovery sequences for quantitative T(1) and magnetization transfer imaging. Magn Reson Med. 2010; 64: 491 – 500.
dc.identifier.citedreferenceSled JG, Pike GB. Quantitative interpretation of magnetization transfer in spoiled gradient echo MRI sequences. J Magn Reson. 2000; 145: 24 – 36.
dc.identifier.citedreferenceTozer D, Ramani A, Barker GJ, Davies GR, Miller DH, Tofts PS. Quantitative magnetization transfer mapping of bound protons in multiple sclerosis. Magn Reson Med. 2003; 50: 83 – 91.
dc.identifier.citedreferenceMorrison C, Stanisz G, Henkelman RM. Modeling magnetization‐transfer for biological‐like systems using a semisolid pool with a super‐lorentzian lineshape and dipolar reservoir. J Magn Reson B. 1995; 108: 103 – 113.
dc.identifier.citedreferenceMorrison C, Henkelman RM. A model for magnetization‐transfer in tissues. Magn Reson Med. 1995; 33: 475 – 482.
dc.identifier.citedreferenceDesmond KL, Moosvi F, Stanisz GJ. Mapping of amide, amine, and aliphatic peaks in the CEST spectra of murine xenografts at 7T. Magn Reson Med. 2014; 71: 1841 – 1853.
dc.identifier.citedreferenceUlrich EL, Akutsu H, Doreleijers JF, et al. BioMagResBank. Nucleic Acids Res. 2008; 36 (suppl 1): D402 – D408.
dc.identifier.citedreferenceHuster D, Gawrisch K. NOESY NMR crosspeaks between lipid headgroups and hydrocarbon chains: spin diffusion or molecular disorder? J Am Chem Soc. 1999; 121: 1992 – 1993.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.