Show simple item record

Acute effects of vagus nerve stimulation parameters on gastric motility assessed with magnetic resonance imaging

dc.contributor.authorLu, Kun‐han
dc.contributor.authorCao, Jiayue
dc.contributor.authorPhillips, Robert
dc.contributor.authorPowley, Terry L.
dc.contributor.authorLiu, Zhongming
dc.date.accessioned2020-07-02T20:33:52Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-07-02T20:33:52Z
dc.date.issued2020-07
dc.identifier.citationLu, Kun‐han ; Cao, Jiayue; Phillips, Robert; Powley, Terry L.; Liu, Zhongming (2020). "Acute effects of vagus nerve stimulation parameters on gastric motility assessed with magnetic resonance imaging." Neurogastroenterology & Motility 32(7): n/a-n/a.
dc.identifier.issn1350-1925
dc.identifier.issn1365-2982
dc.identifier.urihttps://hdl.handle.net/2027.42/155957
dc.description.abstractBackgroundVagus nerve stimulation (VNS) is an emerging bioelectronic therapy for regulating food intake and controlling gastric motility. However, the effects of different VNS parameters and polarity on postprandial gastric motility remain incompletely characterized.MethodsIn anesthetized rats (N = 3), we applied monophasic electrical stimuli to the left cervical vagus and recorded compound nerve action potential (CNAP) as a measure of nerve response. We evaluated to what extent afferent or efferent pathway could be selectively activated by monophasic VNS. In a different group of rats (N = 13), we fed each rat a gadolinium- labeled meal and scanned the rat stomach with oral contrast- enhanced magnetic resonance imaging (MRI) while the rat was anesthetized. We evaluated the antral and pyloric motility as a function of pulse amplitude (0.13, 0.25, 0.5, 1 mA), width (0.13, 0.25, 0.5 ms), frequency (5, 10 Hz), and polarity of VNS.Key ResultsMonophasic VNS activated efferent and afferent pathways with about 67% and 82% selectivity, respectively. Primarily afferent VNS increased antral motility across a wide range of parameters. Primarily efferent VNS induced a significant decrease in antral motility as the stimulus intensity increased (R = - .93, P < .05 for 5 Hz, R = - .85, P < .05 for 10 Hz). The VNS with either polarity tended to promote pyloric motility to a greater extent given increasing stimulus intensity.Conclusions and InferencesMonophasic VNS biased toward the afferent pathway is potentially more effective for facilitating occlusive contractions than that biased toward the efferent pathway.We investigated a possible differential effect of primarily afferent versus efferent cervical VNS on gastric motility under a range of VNS parameters. Gastric MRI data revealed that primarily afferent VNS induced stronger antral contractions relative to primarily efferent VNS. These results could serve as an index for optimizing VNS parameters for promoting gastric motility. 
dc.publisherWiley Periodicals, Inc.
dc.subject.othervagus nerve stimulation
dc.subject.otherrat
dc.subject.othermagnetic resonance imaging
dc.subject.othergastric motility
dc.titleAcute effects of vagus nerve stimulation parameters on gastric motility assessed with magnetic resonance imaging
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialties
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155957/1/nmo13853_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155957/2/nmo13853.pdf
dc.identifier.doi10.1111/nmo.13853
dc.identifier.sourceNeurogastroenterology & Motility
dc.identifier.citedreferenceBerthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci Basic Clin. 2000; 85 ( 1- 3 ): 1 - 17.
dc.identifier.citedreferenceVeach HO. Studies on the innervation of smooth muscle. I. Vagus effects on the lower end of the esophagus, cardia and stomach of the cat, and the stomach and lung of the turtle in relation to Wedensky inhibition. Am J Physiol. 1925; 71 ( 2 ): 229 - 264.
dc.identifier.citedreferenceAihara Y, Nakamura H, Sato A, Relations AS. Between various fiber groups of vagal and spanchnic nerves and gastric motility in rats. Neurosci Lett. 1978; 10: 281 - 286.
dc.identifier.citedreferenceMartinson J, Muren A. Excitatory and inhibitory effects of vagus stimulation on gastric motility in the cat. Acta Physiol Scand. 1963; 57 ( 4 ): 309 - 316.
dc.identifier.citedreferenceWasilczuk KM, Qing KY, Irazoqui PP, et al. B fibers are the best predictors of cardiac activity during Vagus nerve stimulation. Bioelectron Med. 2018; 4 ( 1 ): 1 - 11.
dc.identifier.citedreferenceGabella G, Pease HL. Number of axons in the abdominal vagus of the rat. Brain Res. 1973; 58 ( 2 ): 465 - 469.
dc.identifier.citedreferenceBockx I, Verdrengh K, Vander Elst I, et al. High- frequency vagus nerve stimulation improves portal hypertension in cirrhotic rats. Gut. 2012; 61 ( 4 ): 604 - 612.
dc.identifier.citedreferenceBaccari MC, Calamai F, Staderini G. The influence of the vagally induced rebound contractions on the non- adrenergic, non- cholinergic (NANC) inhibitory motility of the rabbit stomach and the role of prostaglandins. J Auton Nerv Syst. 1992; 37 ( 2 ): 125 - 135.
dc.identifier.citedreferenceMalbert CH, Mathis C, Laplace JP. Vagal control of pyloric resistance. Am J Physiol Liver Physiol. 1995; 269 ( 4 ): G558 - G569.
dc.identifier.citedreferenceAllescher H- D, Daniel EE, Dent J, Fox JET, Kostolanska F. Extrinsic and intrinsic neural control of pyloric. J Physiol. 1988; 401: 17 - 38.
dc.identifier.citedreferencePowley TL, Hudson CN, Mcadams JL, Baronowsky EA, Phillips RJ. Vagal intramuscular arrays: the specialized mechanoreceptor arbors that innervate the smooth muscle layers of the stomach examined in the rat. J Comp Neurol. 2016; 524 ( 4 ): 713 - 737.
dc.identifier.citedreferencePowley TL, Baronowsky EA, Gilbert JM, et al. Vagal afferent innervation of the lower esophageal sphincter. Auton Neurosci Basic Clin. 2013; 177 ( 2 ): 129 - 142.
dc.identifier.citedreferenceTravagli RA, Hermann GE, Browning KN, Rogers RC. Brainstem circuits regulating gastric function. Annu Rev Physiol. 2006; 68 ( 1 ): 279 - 305.
dc.identifier.citedreferenceAndrews PLR, Grundy D, Scratcherd T. Reflex excitation of antral motility induced by gastric distension in the ferret. J Physiol. 1980; 298: 79 - 84.
dc.identifier.citedreferenceIshiguchi T, Nakajima M, Sone H, Tada H, Kumagai AK, Takahashi T. Gastric distension- induced pyloric relaxation: central nervous system regulation and effects of acute hyperglycaemia in the rat. J Physiol. 2004; 533 ( 3 ): 801 - 813.
dc.identifier.citedreferenceShafik A. Effect of duodenal distension on the pyloric sphincter and antrum and the gastric corpus: duodenopyloric reflex. World J Surg. 1998; 22 ( 10 ): 1061 - 1064.
dc.identifier.citedreferenceTreacy PJ, Jamieson GG, Dent J. The effect of duodenal distension upon antro- pyloric motility and liquid gastric emptying in pigs. ANZ J Surg. 2008; 66 ( 1 ): 37 - 40.
dc.identifier.citedreferenceDeloof S, Bennis M, Rousseau JP. Inhibition of antral and pyloric electrical activity by vagal afferent stimulation in the rabbit. J Auton Nerv Syst. 1987; 19 ( 1 ): 13 - 20.
dc.identifier.citedreferenceDeloof S, Croix D, Tramu G. The role of vasoactive intestinal polypeptide in the inhibition of antral and pyloric electrical activity in rabbits. J Auton Nerv Syst. 1988; 22 ( 2 ): 167 - 173.
dc.identifier.citedreferenceLu H, Zou Q, Gu H, Raichle ME, Stein EA, Yang Y. Rat brains also have a default mode network. Proc Natl Acad Sci. 2012; 109 ( 10 ): 3979 - 3984.
dc.identifier.citedreferenceGertler R, Brown HC, Mitchell DH, Silvius EN. Dexmedetomidine: a novel sedative- analgesic agent. Baylor Univ Med Center Proc. 1999; 75246: 13 - 21.
dc.identifier.citedreferenceAiliani AC, Neuberger T, Brasseur JG, et al. Quantifying the effects of inactin vs Isoflurane anesthesia on gastrointestinal motility in rats using dynamic magnetic resonance imaging and spatio- temporal maps. Neurogastroenterol Motil. 2014; 26 ( 10 ): 1477 - 1486.
dc.identifier.citedreferenceTorjman MC, Joseph JI, Munsick C, Morishita M, Grunwald Z. Effects of Isoflurane on gastrointestinal motility after brief exposure in rats. Int J Pharm. 2005; 294 ( 1- 2 ): 65 - 71.
dc.identifier.citedreferenceBrowning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol. 2014; 4 ( 4 ): 1339 - 1368.
dc.identifier.citedreferenceTravagli RA, Anselmi L. Vagal neurocircuitry and its influence on gastric motility. Nat Rev Gastroenterol Hepatol. 2016; 13 ( 7 ): 389 - 401.
dc.identifier.citedreferenceBerthoud HR, Carlson NR, Powley TL. Topography of efferent vagal innervation of the rat gastrointestinal tract. Am J Physiol Integr Comp Physiol. 1991; 260 ( 1 ): R200 - R207.
dc.identifier.citedreferencePowley TL, Phillips RJ. Morphology and topography of vagal afferents innervating the GI tract. Am J Physiol Liver Physiol. 2002; 283 ( 6 ): G1217 - G1225.
dc.identifier.citedreferenceHorn CC, Ardell JL, Fisher LE. Electroceutical targeting of the autonomic nervous system. Physiology. 2019; 34 ( 2 ): 150 - 162.
dc.identifier.citedreferenceStakenborg N, Wolthuis AM, Gomez- Pinilla PJ, et al. Abdominal vagus nerve stimulation as a new therapeutic approach to prevent postoperative ileus. Neurogastroenterol Motil. 2017; 29 ( 9 ): 1 - 11.
dc.identifier.citedreferenceFrøkjær JB, Bergmann S, Brock C, et al. Modulation of vagal tone enhances gastroduodenal motility and reduces somatic pain sensitivity. Neurogastroenterol Motil. 2016; 28 ( 4 ): 592 - 598.
dc.identifier.citedreferencePrechtl JC, Powley TL. The fiber composition of the abdominal vagus of the rat. Anat Embryol (Berl). 1990; 181 ( 2 ): 101 - 115.
dc.identifier.citedreferenceBerthoud HR, Powley TL. Vagal afferent innervation of the rat fundic stomach: morphological characterization of the gastric tension receptor. J Comp Neurol. 1992; 319 ( 2 ): 261 - 276.
dc.identifier.citedreferenceMartinson J. The effect of graded stimulation of efferent vagal nerve fibres on gastric motility. Acta Physiol Scand. 1964; 62 ( 3 ): 256 - 262.
dc.identifier.citedreferenceJansson G, Martinson J. Some quantitative considerations on vagally induced relaxation of the gastric smooth muscle in the cat. Acta Physiol Scand. 1965; 63 ( 3 ): 351 - 357.
dc.identifier.citedreferenceAndrews PL, Scratcherd T. The gastric motility patterns induced by direct and reflex excitation of the vagus nerves in the anaesthetized ferret. J Physiol. 1980; 302 ( 1 ): 363 - 378.
dc.identifier.citedreferenceBerthoud HR, Hennig G, Campbell M, Volaufova J, Costa M. Video- based spatio- temporal maps for analysis of gastric motility in vitro: effects of vagal stimulation in guinea- pigs. Neurogastroenterol Motil. 2002; 14 ( 6 ): 677 - 688.
dc.identifier.citedreferenceBrindley GS, Craggs MD. A technique for anodally blocking large nerve fibres through chronically implanted electrodes. J Neurol Neurosurg Psychiatry. 1980; 43 ( 12 ): 1083 - 1090.
dc.identifier.citedreferenceLu K- H, Cao J, Oleson S, Powley TL, Liu Z. Contrast enhanced magnetic resonance imaging of gastric emptying and motility in rats. IEEE Trans Biomed Eng. 2017; 64 ( 11 ): 1 - 1.
dc.identifier.citedreferenceLu K- H, Cao J, Oleson S, et al. Vagus nerve stimulation promotes gastric emptying by increasing pyloric opening measured with magnetic resonance imaging. Neurogastroenterol Motil. 2018; 30 ( 10 ): e13380.
dc.identifier.citedreferenceGrundy D, Scratcherd T. Effect of stimulation of the vagus nerve in bursts on gastric acid secretion and motility in the anaesthetized ferret. J Physiol. 1982; 333: 451 - 461.
dc.identifier.citedreferenceTakahashi T, Owyang C. Vagal control of nitric oxide and vasoactive intestinal polypeptide release in the regulation of gastric relaxation in rat. J Physiol. 1995; 484 ( 2 ): 481 - 492.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.