Show simple item record

Emerging methods in therapeutics using multifunctional nanoparticles

dc.contributor.authorHabibi, Nahal
dc.contributor.authorQuevedo, Daniel F.
dc.contributor.authorGregory, Jason V.
dc.contributor.authorLahann, Joerg
dc.date.accessioned2020-07-02T20:33:59Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-07-02T20:33:59Z
dc.date.issued2020-07
dc.identifier.citationHabibi, Nahal; Quevedo, Daniel F.; Gregory, Jason V.; Lahann, Joerg (2020). "Emerging methods in therapeutics using multifunctional nanoparticles." Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 12(4): n/a-n/a.
dc.identifier.issn1939-5116
dc.identifier.issn1939-0041
dc.identifier.urihttps://hdl.handle.net/2027.42/155963
dc.description.abstractClinical translation of nanoparticle‐based drug delivery systems is hindered by an array of challenges including poor circulation time and limited targeting. Novel approaches including designing multifunctional particles, cell‐mediated delivery systems, and fabrications of protein‐based nanoparticles have gained attention to provide new perspectives to current drug delivery obstacles in the interdisciplinary field of nanomedicine. Collectively, these nanoparticle devices are currently being investigated for applications spanning from drug delivery and cancer therapy to medical imaging and immunotherapy. Here, we review the current state of the field, highlight opportunities, identify challenges, and present the future directions of the next generation of multifunctional nanoparticle drug delivery platforms.This article is categorized under:Biology‐Inspired Nanomaterials > Protein and Virus‐Based StructuresNanotechnology Approaches to Biology > Nanoscale Systems in BiologyNovel approaches in designing nanoparticles to overcome challenges faced by traditional nanoparticle‐based drug delivery systems.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherdrug delivery
dc.subject.othermultifunctional nanoparticles
dc.subject.othernanomedicine
dc.subject.otherprotein nanoparticles
dc.subject.othercellular hitchhiking
dc.subject.otherclinical trials
dc.subject.othercancer therapy
dc.subject.otherblood–brain barrier
dc.titleEmerging methods in therapeutics using multifunctional nanoparticles
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiomedical Engineering
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155963/1/wnan1625.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155963/2/wnan1625_am.pdf
dc.identifier.doi10.1002/wnan.1625
dc.identifier.sourceWiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology
dc.identifier.citedreferenceSi, J., Shao, S., Shen, Y., & Wang, K. ( 2016 ). Macrophages as active nanocarriers for targeted early and adjuvant cancer chemotherapy. Small, 12, 5108 – 5119. https://doi.org/10.1002/smll.201601282
dc.identifier.citedreferenceTian, L., Chen, Q., Yi, X., Wang, G., Chen, J., Ning, P., … Liu, Z. ( 2017 ). Radionuclide I‐131 labeled albumin‐paclitaxel nanoparticles for synergistic combined chemo‐radioisotope therapy of cancer. Theranostics, 7, 614 – 623. https://doi.org/10.7150/thno.17381
dc.identifier.citedreferenceZhao, Y. P., Ye, D. X., Wang, G. C., & Lu, T. M. ( 2002 ). Novel nano‐column and nano‐flower arrays by glancing angle deposition. Nano Letters, 2, 351 – 354. https://doi.org/10.1021/nl0157041
dc.identifier.citedreferenceTian, Y., Li, S., Song, J., Ji, T., Zhu, M., Anderson, G. J., … Nie, G. ( 2014 ). Biomaterials A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials, 35, 2383 – 2390. https://doi.org/10.1016/j.biomaterials.2013.11.083
dc.identifier.citedreferenceTomaiuolo, G. ( 2014 ). Biomechanical properties of red blood cells in health and disease towards microfluidics. Biomicrofluidics, 8, 051501. https://doi.org/10.1063/1.4895755
dc.identifier.citedreferenceTsoras, A. N., & Champion, J. A. ( 2018 ). Cross‐linked peptide nanoclusters for delivery of oncofetal antigen as a cancer vaccine. Bioconjugate Chemistry, 29, 776 – 785. https://doi.org/10.1021/acs.bioconjchem.8b00079
dc.identifier.citedreferenceTurley, C. B., Rupp, R. E., Johnson, C., Taylor, D. N., Wolfson, J., Tussey, L., … Shaw, A. ( 2011 ). Safety and immunogenicity of a recombinant M2e–flagellin influenza vaccine (STF2.4xM2e) in healthy adults. Vaccine, 29, 5145 – 5152. https://doi.org/10.1016/J.VACCINE.2011.05.041
dc.identifier.citedreferenceVan Dommelen, S. M., Vader, P., Lakhal, S., Kooijmans, S. A. A., Van Solinge, W. W., Wood, M. J. A., & Schiffelers, R. M. ( 2012 ). Microvesicles and exosomes: Opportunities for cell‐derived membrane vesicles in drug delivery. Journal of Controlled Release, 161, 635 – 644. https://doi.org/10.1016/j.jconrel.2011.11.021
dc.identifier.citedreferenceVaradharajan, D., Turgut, H., Lahann, J., Yabu, H., & Delaittre, G. ( 2018 ). Surface‐reactive patchy nanoparticles and nanodiscs prepared by tandem nanoprecipitation and internal phase separation. Advanced Functional Materials, 1800846, 1 – 11. https://doi.org/10.1002/adfm.201800846
dc.identifier.citedreferenceVentola, C. L. ( 2017 ). Progress in nanomedicine: Approved and investigational nanodrugs. P & T, 42, 742 – 755.
dc.identifier.citedreferenceVilla, C. H., Anselmo, A. C., Mitragotri, S., & Muzykantov, V. ( 2016 ). Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Advanced Drug Delivery Reviews, 106, 88 – 103. https://doi.org/10.1016/j.addr.2016.02.007
dc.identifier.citedreferenceVilla, C. H., Cines, D. B., Siegel, D. L., & Muzykantov, V. ( 2017 ). Erythrocytes as carriers for drug delivery in blood transfusion and beyond. Transfusion Medicine Reviews, 31, 26 – 35. https://doi.org/10.1016/j.tmrv.2016.08.004
dc.identifier.citedreferenceVilla, C. H., Seghatchian, J., & Muzykantov, V. ( 2016 ). Transfusion and apheresis science drug delivery by erythrocytes: “Primum non nocere”. Transfusion and Apheresis Science, 55, 275 – 280. https://doi.org/10.1016/j.transci.2016.10.017
dc.identifier.citedreferenceVon Storp, B., Engel, A., Boeker, A., Ploeger, M., & Langer, K. ( 2012 ). Albumin nanoparticles with predictable size by desolvation procedure. Journal of Microencapsulation, 29, 138 – 146. https://doi.org/10.3109/02652048.2011.635218
dc.identifier.citedreferenceWang, Y., Zhang, Y., & Wang, B. ( 2013 ). Fabrication of core—Shell micro/nanoparticles for programmable dual drug release by emulsion electrospraying. Journal of Nanoparticle Research, 15, 1 – 12. https://doi.org/10.1007/s11051-013-1726-y
dc.identifier.citedreferenceWayteck, L., Dewitte, H., De Backer, L., Breckpot, K., Demeester, J., De Smedt, S. C., & Raemdonck, K. ( 2016 ). Hitchhiking nanoparticles: Reversible coupling of lipid‐based nanoparticles to cytotoxic T lymphocytes. Biomaterials, 77, 243 – 254. https://doi.org/10.1016/j.biomaterials.2015.11.016
dc.identifier.citedreferenceWeber, C., Coester, C., Kreuter, J., & Langer, K. ( 2000 ). Desolvation process and surface characterisation of protein nanoparticles. International Journal of Pharmaceutics, 194, 91 – 102. https://doi.org/10.1016/S0378-5173(99)00370-1
dc.identifier.citedreferenceWiley, D. T., Webster, P., Gale, A., & Davis, M. E. ( 2013 ). Transcytosis and brain uptake of transferrin‐containing nanoparticles by tuning avidity to transferrin receptor. Proceedings of the National Academy of Sciences, 110, 8662 – 8667. https://doi.org/10.1073/pnas.1307152110
dc.identifier.citedreferenceWu, Z., Li, T., Li, J., Gao, W., Xu, T., Christianson, C., … Wang, J. ( 2014 ). Turning erythrocytes into functional micromotors. ACS Nano, 8, 12041 – 12048. https://doi.org/10.1021/nn506200x
dc.identifier.citedreferenceYake, A. M., Snyder, C. E., & Velegol, D. ( 2007 ). Site‐specific functionalization on individual colloids: Size control, stability, and multilayers. Langmuir, 23, 9069 – 9075. https://doi.org/10.1021/la7011292
dc.identifier.citedreferenceYake, A. M., Zahr, A. S., Jerri, H. A., Pishko, M. V., & Velegol, D. ( 2007 ). Localized functionalization of individual colloidal carriers for cell targeting and imaging. Biomacromolecules, 8, 1958 – 1965. https://doi.org/10.1021/bm070071r
dc.identifier.citedreferenceYeates, T. O., Liu, Y., & Laniado, J. ( 2016 ). The design of symmetric protein nanomaterials comes of age in theory and practice. Current Opinion in Structural Biology, 39, 134 – 143. https://doi.org/10.1016/j.sbi.2016.07.003
dc.identifier.citedreferenceYuet, K. P., Hwang, D. K., Haghogooie, R., & Doyle, P. S. ( 2010 ). Multifunctional superparamagnetic Janus particles. Langmuir, 26, 4281 – 4287. https://doi.org/10.1021/la903348s
dc.identifier.citedreferenceZhang, J., Jin, J., & Zhao, H. ( 2009 ). Surface‐initiated free radical polymerization at the liquid‐liquid interface: A one‐step approach for the synthesis of amphiphilic janus silica particles. Langmuir, 25, 6431 – 6437. https://doi.org/10.1021/la9000279
dc.identifier.citedreferenceZhang, P., Sun, F., Liu, S., & Jiang, S. ( 2016 ). Anti‐PEG antibodies in the clinic: Current issues and beyond PEGylation. Journal of Controlled Release, 284, 183 – 193. https://doi.org/10.1016/j.jconrel.2016.06.040
dc.identifier.citedreferenceZhen, Z., Tang, W., Chen, H., Lin, X., Todd, T., Wang, G., … Xie, J. ( 2013 ). RGD‐modified apoferritin nanoparticles for efficient drug delivery to tumors. ACS Nano, 7, 4830 – 4837. https://doi.org/10.1021/nn305791q
dc.identifier.citedreferenceZou, H., Wang, Z., & Feng, M. ( 2015 ). Nanocarriers with tunable surface properties to unblock bottlenecks in systemic drug and gene delivery. Journal of Controlled Release, 214, 121 – 133. https://doi.org/10.1016/J.JCONREL.2015.07.014
dc.identifier.citedreferenceAgrahari, V., Agrahari, V., & Mitra, A. K. ( 2017 ). Next generation drug delivery: Circulatory cells‐mediated nanotherapeutic approaches. Expert Opinion on Drug Delivery, 14, 285 – 289. https://doi.org/10.1080/17425247.2017.1254614
dc.identifier.citedreferenceAlvarez‐Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., & Wood, M. J. A. ( 2011 ). Letters delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnology, 29, 341 – 345. https://doi.org/10.1038/nbt.1807
dc.identifier.citedreferenceAmani, S. B., Makkouk, R., & Sun, T. K. C. ( 2011 ). Photothermal treatment of glioma: An in vitro study of macrophage‐mediated delivery of gold nanoshells. Journal of Neuro‐Oncology, 104, 439 – 448. https://doi.org/10.1007/s11060-010-0511-3
dc.identifier.citedreferenceAnselmo, A. C., Gilbert, J. B., Kumar, S., Gupta, V., Cohen, R. E., Rubner, M. F., & Mitragotri, S. ( 2015 ). Monocyte‐mediated delivery of polymeric backpacks to in flamed tissues: A generalized strategy to deliver drugs to treat inflammation. Journal of Controlled Release, 199, 29 – 36. https://doi.org/10.1016/j.jconrel.2014.11.027
dc.identifier.citedreferenceAnselmo, A. C., Gupta, V., Zern, B. J., Pan, D., Zakrewsky, M., Muzykantov, V., & Mitragotri, S. ( 2013 ). Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells. ACS Nano, 7, 11129 – 11137. https://doi.org/10.1021/nn404853z
dc.identifier.citedreferenceAnselmo, A. C., Kumar, S., Gupta, V., Pearce, A. M., Ragusa, A., Muzykantov, V., & Mitragotri, S. ( 2015 ). Exploiting shape, cellular‐hitchhiking and antibodies to target nanoparticles to lung endothelium: Synergy between physical, chemical and biological approaches. Biomaterials, 68, 1 – 8. https://doi.org/10.1016/j.biomaterials.2015.07.043
dc.identifier.citedreferenceAnselmo, A. C., & Mitragotri, S. ( 2014a ). Cell‐mediated delivery of nanoparticles: Taking advantage of circulatory cells to target nanoparticles. Journal of Controlled Release, 190, 531 – 541. https://doi.org/10.1016/j.jconrel.2014.03.050
dc.identifier.citedreferenceAnselmo, A. C., & Mitragotri, S. ( 2016 ). Nanoparticles in the clinic. Bioengineering & Translational Medicine, 1, 10 – 29. https://doi.org/10.1002/btm2.10003
dc.identifier.citedreferenceArai, R. ( 2018 ). Hierarchical design of artificial proteins and complexes toward synthetic structural biology. Biophysical Reviews, 10, 391 – 410. https://doi.org/10.1007/s12551-017-0376-1
dc.identifier.citedreferenceArmstrong, J. P. K., & Stevens, M. M. ( 2018 ). Strategic design of extracellular vesicle drug delivery systems. Advanced Drug Delivery Reviews, 130, 12 – 16. https://doi.org/10.1016/j.addr.2018.06.017
dc.identifier.citedreferenceArnold, F. H. ( 2018 ). Directed evolution: Bringing new chemistry to life. Angewandte Chemie, 57, 4143 – 4148. https://doi.org/10.1002/anie.201708408
dc.identifier.citedreferenceAyer, M., & Klok, H. ( 2017 ). Cell‐mediated delivery of synthetic nano‐ and microparticles. Journal of Controlled Release, 259, 92 – 104. https://doi.org/10.1016/j.jconrel.2017.01.048
dc.identifier.citedreferenceBatrakova, E. V., Gendelman, H. E., Kabanov, A. V., Batrakova, E. V., Gendelman, H. E., & Kabanov, A. V. ( 2011 ). Cell‐mediated drug delivery. Expert Opinion on Drug Delivery, 8, 415 – 433. https://doi.org/10.1517/17425247.2011.559457
dc.identifier.citedreferenceBatrakova, E. V., & Kim, M. S. ( 2015 ). Using exosomes, naturally‐equipped nanocarriers, for drug delivery. Journal of Controlled Release, 219, 396 – 405. https://doi.org/10.1016/j.jconrel.2015.07.030
dc.identifier.citedreferenceBatrakova, E. V., Li, S., Reynolds, A. D., Mosley, R. L., Bronich, T. K., Kabanov, A. V., & Gendelman, H. E. ( 2007 ). A macrophage—Nanozyme delivery system for Parkinson’s disease. Bioconjugate Chemistry, 18, 1498 – 1506. https://doi.org/10.1021/bc700184b
dc.identifier.citedreferenceBlanco, E., Shen, H., & Ferrari, M. ( 2015 ). Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnology, 33, 941 – 951. https://doi.org/10.1038/nbt.3330
dc.identifier.citedreferenceBobo, D., Robinson, K. J., Islam, J., Thurecht, K. J., & Corrie, S. R. ( 2016 ). Nanoparticle‐based medicines: A review of FDA‐approved materials and clinical trials to date. Pharmaceutical Research, 33, 2373 – 2387. https://doi.org/10.1007/s11095-016-1958-5
dc.identifier.citedreferenceBrenner, J. S., Pan, D. C., Myerson, J. W., Marcos‐Contreras, O. A., Villa, C. H., Patel, P., … Bhamidipati, K. ( 2018 ). Red blood cell‐hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nature Communications, 9, 1 – 14. https://doi.org/10.1038/s41467-018-05079-7
dc.identifier.citedreferenceCao, Y., Wang, B., Wang, Y., & Lou, D. ( 2014 ). Dual drug release from core–shell nanoparticles with distinct release profiles. Journal of Pharmaceutical Sciences, 103, 3205 – 3216. https://doi.org/10.1002/jps.24116
dc.identifier.citedreferenceCastro, N., Constantin, D., Davidson, P., & Abécassis, B. ( 2016 ). Solution self‐assembly of plasmonic Janus nanoparticles. Soft Matter, 12, 9666 – 9673. https://doi.org/10.1039/C6SM01632D
dc.identifier.citedreferenceCha, C., Oh, J., Kim, K., Qiu, Y., Joh, M., Shin, S. R., … Khademhosseini, A. ( 2014 ). Microfluidics‐assisted fabrication of gelatin‐silica core‐shell microgels for injectable tissue constructs. Biomacromolecules, 15, 283 – 290. https://doi.org/10.1021/bm401533y
dc.identifier.citedreferenceChambers, E., & Mitragotri, S. ( 2004 ). Prolonged circulation of large polymeric nanoparticles by non‐covalent adsorption on erythrocytes. Journal of Controlled Release, 100, 111 – 119. https://doi.org/10.1016/j.jconrel.2004.08.005
dc.identifier.citedreferenceChambers, E., & Mitragotri, S. ( 2007 ). Long circulating nanoparticles via adhesion on red blood cells: Mechanism and extended circulation. Experimental Biology and Medicine, 232, 958 – 966.
dc.identifier.citedreferenceChang, T. Z., Deng, L., Wang, B.‐Z., & Champion, J. A. ( 2018 ). H7 Hemagglutinin nanoparticles retain immunogenicity after >3 months of 25 degrees C storage. PLoS One, 13, e0202300. https://doi.org/10.1371/journal.pone.0202300
dc.identifier.citedreferenceChang, T. Z., Stadmiller, S. S., Staskevicius, E., & Champion, J. A. ( 2017 ). Effects of ovalbumin protein nanoparticle vaccine size and coating on dendritic cell processing. Biomaterials Science, 5, 223 – 233. https://doi.org/10.1039/c6bm00500d
dc.identifier.citedreferenceCheng, Z., Al, Z. A., Hui, J. Z., Muzykantov, V. R., & Tsourkas, A. ( 2012 ). Multifunctional nanoparticles: Cost versus benefits of adding targeting and imaging capabilities. Science, 338, 903 – 910. https://doi.org/10.1126/science.1226338
dc.identifier.citedreferenceChoi, J., Kim, H., Jin, E., Jung, J., Park, J., Chung, H. K., … Jeong, S. Y. ( 2012 ). Use of macrophages to deliver therapeutic and imaging contrast agents to tumors. Biomaterials, 33, 4195 – 4203. https://doi.org/10.1016/j.biomaterials.2012.02.022
dc.identifier.citedreferenceCorsten, M. F., & Shah, K. ( 2008 ). Therapeutic stem‐cells for cancer treatment: Hopes and hurdles in tactical warfare. The Lancet Oncology, 9, 376 – 384. https://doi.org/10.1016/S1470-2045(08)70099-8
dc.identifier.citedreferenceDeng, L., Mohan, T., Chang, T. Z., Gonzalez, G. X., Wang, Y., Kwon, Y. M., & Kang, S. M. ( 2018 ). Double‐layered protein nanoparticles induce broad protection against divergent influenza A viruses. Nature Communications, 9, 359. https://doi.org/10.1038/s41467-017-02725-4
dc.identifier.citedreferenceDeng, Z. J., Morton, S. W., Ben‐Akiva, E., Dreaden, E. C., Shopsowitz, K. E., & Hammond, P. T. ( 2013 ). Layer‐by‐layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple‐negative breast cancer treatment. ACS Nano, 7, 9571 – 9584. https://doi.org/10.1021/nn4047925
dc.identifier.citedreferenceDesai, N. ( 2007 ). Nab technology: A drug delivery platform utilising endothelial gp60 receptor‐based transport and tumour‐derived SPARC for targeting. Drug Delivery Report, 16, 37 – 41.
dc.identifier.citedreferenceDesai, N. P. ( 2014 ). Nanoparticle compositions of albumin and paclitaxel. U.S. Patent No. 13/794,705. Washington, DC: U.S. Patent and Trademark Office.
dc.identifier.citedreferenceDeshmane, S. L., Kremlev, S., Amini, S., & Sawaya, B. E. ( 2009 ). Monocyte chemoattractant protein‐1 (MCP‐1): An overview. Journal of Interferon and Cytokine Research, 29, 313 – 326. https://doi.org/10.1089/jir.2008.0027
dc.identifier.citedreferenceDevaraj, N. K., Keliher, E. J., Thurber, G. M., & Nahrendorf, M. ( 2009 ). 18F Labeled nanoparticles for in vivo PET‐CT imaging. Bioconjugate Chemistry, 20, 397 – 401. https://doi.org/10.1021/bc8004649.18
dc.identifier.citedreferenceDing, S., O’Banion, C. P., Welfare, J. G., & Lawrence, D. S. ( 2018 ). Cellular cyborgs: On the precipice of a drug delivery revolution. Cell Chemical Biology, 25, 648 – 658. https://doi.org/10.1016/j.chembiol.2018.03.003
dc.identifier.citedreferenceDoshi, N., Swiston, A. J., Gilbert, J. B., Alcaraz, M. L., Cohen, R. E., Rubner, M. F., & Mitragotri, S. ( 2011 ). Cell‐based drug delivery devices using phagocytosis‐resistant backpacks. Advanced Materials, 23, H105 – H109. https://doi.org/10.1002/adma.201004074
dc.identifier.citedreferenceDreis, S., Rothweiler, F., Michaelis, M., Cinatl, J., Kreuter, J., & Langer, K. ( 2007 ). Preparation, characterisation and maintenance of drug efficacy of doxorubicin‐loaded human serum albumin (HSA) nanoparticles. International Journal of Pharmaceutics, 341, 207 – 214. https://doi.org/10.1016/j.ijpharm.2007.03.036
dc.identifier.citedreferenceDuarte, A. R., Ünal, B., Mano, J. F., Reis, R. L., & Jensen, K. F. ( 2014 ). Microfluidic production of perfluorocarbon‐alginate core‐shell microparticles for ultrasound therapeutic applications. Langmuir, 30, 12391 – 12399. https://doi.org/10.1021/la502822v
dc.identifier.citedreferenceEcker, D. M., Jones, S. D., & Levine, H. L. ( 2015 ). The therapeutic monoclonal antibody market. MAbs, 7, 9 – 14. https://doi.org/10.4161/19420862.2015.989042
dc.identifier.citedreferenceEstrada, L. H., Chu, S., & Champion, J. A. ( 2014 ). Protein nanoparticles for intracellular delivery of therapeutic enzymes. Journal of Pharmaceutical Sciences, 103, 1863 – 1871. https://doi.org/10.1002/jps.23974
dc.identifier.citedreferenceEvans, M. A., Huang, P. J., Iwamoto, Y., Ibsen, K. N., Chan, E. M., Hitomi, Y., … Mitragotri, S. ( 2018 ). Macrophage‐mediated delivery of light activated nitric oxide prodrugs with spatial, temporal and concentration control. Chemical Science, 9, 3729 – 3741. https://doi.org/10.1039/c8sc00015h
dc.identifier.citedreferenceFathi, M., Donsi, F., & McClements, D. J. ( 2018 ). Protein‐based delivery Systems for the nanoencapsulation of food ingredients. Comprehensive Reviews in Food Science and Food Safety, 17, 920 – 936. https://doi.org/10.1111/1541-4337.12360
dc.identifier.citedreferenceFiers, W., De Filette, M., El Bakkouri, K., Schepens, B., Roose, K., Schotsaert, M., … Saelens, X. ( 2009 ). M2e‐based universal influenza A vaccine. Vaccine, 27, 6280 – 6283. https://doi.org/10.1016/J.VACCINE.2009.07.007
dc.identifier.citedreferenceFliervoet, L. A. L., & Mastrobattista, E. ( 2016 ). Drug delivery with living cells. Advanced Drug Delivery Reviews, 106, 63 – 72. https://doi.org/10.1016/j.addr.2016.04.021
dc.identifier.citedreferenceGaray, R. P., El‐Gewely, R., Armstrong, J. K., Garratty, G., & Richette, P. ( 2012 ). Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG‐conjugated agents. Expert Opinion on Drug Delivery, 9, 1319 – 1323. https://doi.org/10.1517/17425247.2012.720969
dc.identifier.citedreferenceGeiger, B. C., Wang, S., Padera, R. F., Grodzinsky, A. J., & Hammond, P. T. ( 2018 ). Cartilage‐penetrating nanocarriers improve delivery and efficacy of growth factor treatment of osteoarthritis. Science Translational Medicine, 10, 1 – 12. https://doi.org/10.1126/scitranslmed.aat8800
dc.identifier.citedreferenceGordon, S., & Taylor, P. R. ( 2005 ). Monocyte and macrophage heterogeneity. Nature Reviews. Immunology, 5, 953 – 964. https://doi.org/10.1038/nri1733
dc.identifier.citedreferenceGrivennikov, S. I., Greten, F. R., & Karin, M. ( 2010 ). Immunity, inflammation, and cancer. Cell, 140, 883 – 899. https://doi.org/10.1016/j.cell.2010.01.025
dc.identifier.citedreferenceGröschel, A. H., Walther, A., Löbling, T. I., Schacher, F. H., Schmalz, H., & Müller, A. H. E. ( 2013 ). Guided hierarchical co‐assembly of soft patchy nanoparticles. Nature, 503, 247 – 251. https://doi.org/10.1038/nature12610
dc.identifier.citedreferenceGuo, Y., Yuan, W., Yu, B., Kuai, R., Hu, W., Morin, E. E., … Chen, Y. E. ( 2018 ). Synthetic high‐density lipoprotein‐mediated targeted delivery of liver X receptors agonist promotes atherosclerosis regression. EBioMedicine, 28, 225 – 233. https://doi.org/10.1016/j.ebiom.2017.12.021
dc.identifier.citedreferenceHawkins, M. J., Soon‐Shiong, P., & Desai, N. ( 2008 ). Protein nanoparticles as drug carriers in clinical medicine. Advanced Drug Delivery Reviews, 60, 876 – 885. https://doi.org/10.1016/j.addr.2007.08.044
dc.identifier.citedreferenceHerrera Estrada, L. P., & Champion, J. A. ( 2015 ). Protein nanoparticles for therapeutic protein delivery. Biomaterials Science, 3, 787 – 799. https://doi.org/10.1039/C5BM00052A
dc.identifier.citedreferenceHong, L., Jiang, S., & Granick, S. ( 2006 ). Simple method to produce Janus colloidal particles in large quantity. Langmuir, 22, 9495 – 9499. https://doi.org/10.1021/la062716z
dc.identifier.citedreferenceHuang, B., Abraham, W. D., Zheng, Y., Bustamante López, S. C., Luo, S. S., & Irvine, D. J. ( 2015 ). Active targeting of chemotherapy to disseminated tumors using nanoparticle‐carrying T cells. Science Translational Medicine, 7, 291ra94. https://doi.org/10.1126/scitranslmed.aaa5447
dc.identifier.citedreferenceHuang, X., Zhang, F., Wang, H., Niu, G., Choi, K. Y., Swierczewska, M., … Choi, H. S. ( 2013 ). Mesenchymal stem cell‐based cell engineering with multifunctional mesoporous silica nanoparticles for tumor delivery. Biomaterials, 34, 1772 – 1778. https://doi.org/10.1016/j.biomaterials.2012.11.032
dc.identifier.citedreferenceHwang, S., & Lahann, J. ( 2012 ). Differentially degradable Janus particles for controlled release applications. Macromolecular Rapid Communications, 33, 1178 – 1183. https://doi.org/10.1002/marc.201200054
dc.identifier.citedreferenceHwang, S., Roh, K.‐H., Lim, D. W., Wang, G., Uher, C., & Lahann, J. ( 2010 ). Anisotropic hybrid particles based on electrohydrodynamic co‐jetting of nanoparticle suspensions. Physical Chemistry Chemical Physics, 12, 11894 – 11899. https://doi.org/10.1039/c0cp00264j
dc.identifier.citedreferenceIngato, D., Uk, J., Jun, S., & Jik, Y. ( 2016 ). Good things come in small packages: Overcoming challenges to harness extracellular vesicles for therapeutic delivery. Journal of Controlled Release, 241, 174 – 185. https://doi.org/10.1016/j.jconrel.2016.09.016
dc.identifier.citedreferenceJang, S. G., Choi, D. G., Heo, C. J., Lee, S. Y., & Yang, S. M. ( 2008 ). Nanoscopic ordered voids and metal caps by controlled trapping of colloidal particles at polymeric film surfaces. Advanced Materials, 20, 4862 – 4867. https://doi.org/10.1002/adma.200702851
dc.identifier.citedreferenceJiang, P., Yu, C., Yen, C., & Woo, C. W. ( 2015 ). Irradiation enhances the ability of monocytes as nanoparticle carrier for cancer therapy. PLoS One, 10, 1 – 15. https://doi.org/10.1371/journal.pone.0139043
dc.identifier.citedreferenceKaczmarczyk, S. J., Sitaraman, K., Young, H. A., Hughes, S. H., & Chatterjee, D. K. ( 2011 ). Protein delivery using engineered virus‐like particles. Proceedings of the National Academy of Sciences, 108, 16998 – 17003. https://doi.org/10.2139/ssrn.2955110
dc.identifier.citedreferenceKawakami, N., Kondo, H., Matsuzawa, Y., Hayasaka, K., Nasu, E., Sasahara, K., … Miyamoto, K. ( 2018 ). Design of hollow protein nanoparticles with modifiable interior and exterior surfaces. Angewandte Chemie, 57, 12400 – 12404. https://doi.org/10.1002/anie.201805565
dc.identifier.citedreferenceKinoshita, R., Ishima, Y., Chuang, V. T., Nakamura, H., Fang, J., Watanabe, H., … Maruyama, T. ( 2017 ). Improved anticancer effects of albumin‐bound paclitaxel nanoparticle via augmentation of EPR effect and albumin‐protein interactions using S‐nitrosated human serum albumin dimer. Biomaterials, 140, 162 – 169. https://doi.org/10.1016/j.biomaterials.2017.06.021
dc.identifier.citedreferenceKlyachko, N. L., Polak, R., Haney, M. J., Zhao, Y., Gomes Neto, R. J., Hill, M. C., … Batrakova, E. V. ( 2017 ). Macrophages with cellular backpacks for targeted drug delivery to the brain. Biomaterials, 140, 79 – 87. https://doi.org/10.1016/j.biomaterials.2017.06.017
dc.identifier.citedreferenceKuai, R., Subramanian, C., White, P. T., Timmermann, B. N., Moon, J. J., Cohen, M. S., & Schwendeman, A. ( 2017 ). Synthetic high‐density lipoprotein nanodisks for targeted withalongolide delivery to adrenocortical carcinoma. International Journal of Nanomedicine, 12, 6581 – 6594. https://doi.org/10.2147/IJN.S140591
dc.identifier.citedreferenceLanger, K., Anhorn, M. G., Steinhauser, I., Dreis, S., Celebi, D., Schrickel, N., … Vogel, V. ( 2008 ). Human serum albumin (HSA) nanoparticles: Reproducibility of preparation process and kinetics of enzymatic degradation. International Journal of Pharmaceutics, 347, 109 – 117. https://doi.org/10.1016/j.ijpharm.2007.06.028
dc.identifier.citedreferenceLewis, C., & Murdoch, C. ( 2005 ). Macrophage responses to hypoxia. The American Journal of Pathology, 167, 627 – 635. https://doi.org/10.1016/S0002-9440(10)62038-X
dc.identifier.citedreferenceLi, L., Guan, Y., Liu, H., Hao, N., Liu, T., … Ji, S. ( 2011 ). Silica Nanorattle‐doxorubicin‐anchored mesenchymal stem cells for tumor‐tropic therapy. ACS Nano, 5, 7462 – 7470. https://doi.org/10.1021/nn202399w
dc.identifier.citedreferenceLiang, B. Y., Jordahl, J. H., Ding, H., Deng, X., & Lahann, J. ( 2015 ). Uniform coating of microparticles using CVD polymerization. Chemical Vapor Deposition, 21, 288 – 293. https://doi.org/10.1002/cvde.201507197
dc.identifier.citedreferenceLiu, Y., Chen, Z., Liu, C., Yu, D., Lu, Z., & Zhang, N. ( 2011 ). Gadolinium‐loaded polymeric nanoparticles modified with anti‐VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer. Biomaterials, 32, 5167 – 5176. https://doi.org/10.1016/j.biomaterials.2011.03.077
dc.identifier.citedreferenceLiu, Y., Huang, B., Zhu, J., Feng, K., Yuan, Y., & Liu, C. ( 2018 ). Dual‐generation dendritic mesoporous silica nanoparticles for co‐delivery and kinetically sequential drug release. RSC Advances, 8, 40598 – 40610. https://doi.org/10.1039/c8ra07849a
dc.identifier.citedreferenceLopez, V., Rocio Villegas, M., Rodriguez, V., Villaverde, G., Lozano, D., Baeza, A., & Vallet‐Regí, M. ( 2017 ). Janus mesoporous silica nanoparticles for dual targeting of tumor cells and mitochondria. Applied Materials & Interfaces, 9, 26697 – 26706. https://doi.org/10.1021/acsami.7b06906
dc.identifier.citedreferenceMadsen, S. J., Christie, C., Hong, S. J., Trinidad, A., Peng, Q., Uzal, F. A., & Hirschberg, H. ( 2015 ). Nanoparticle‐loaded macrophage‐mediated photothermal therapy: Potential for glioma treatment. Lasers in Medical Science, 30, 1357 – 1365. https://doi.org/10.1007/s10103-015-1742-5
dc.identifier.citedreferenceMimeault, M., Hauke, R., & Batra, S. K. ( 2007 ). Stem cells: A revolution in therapeutics—Recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clinical Pharmacology and Therapeutics, 82, 252 – 264. https://doi.org/10.1038/sj.clpt.6100301
dc.identifier.citedreferenceMisra, A. C., Bhaskar, S., Clay, N., & Lahann, J. ( 2012 ). Multicompartmental particles for combined imaging and siRNA delivery. Advanced Materials, 24, 3850 – 3856. https://doi.org/10.1002/adma.201200372
dc.identifier.citedreferenceMolino, N. M., & Wang, S. W. ( 2014 ). Caged protein nanoparticles for drug delivery. Current Opinion in Biotechnology, 28, 75 – 82. https://doi.org/10.1016/j.copbio.2013.12.007
dc.identifier.citedreferenceMooney, R., Roma, L., Zhao, D., Van Haute, D., Garcia, E., Kim, S. U., … Berlin, J. M. ( 2014 ). Neural stem cell‐mediated intratumoral delivery of gold nanorods improves photothermal therapy. ACS Nano, 8, 12450 – 12460. https://doi.org/10.1021/nn505147w
dc.identifier.citedreferenceMooney, R., Weng, Y., Garcia, E., Bhojane, S., Smith‐Powell, L., Kim, S. U., … Berlin, J. M. ( 2014 ). Conjugation of pH‐responsive nanoparticles to neural stem cells improves intratumoral therapy. Journal of Controlled Release, 191, 82 – 89. https://doi.org/10.1016/j.jconrel.2014.06.015
dc.identifier.citedreferenceMoore, T. L., Hauser, D., Gruber, T., Rothen‐Rutishauser, B., Lattuada, M., Petri‐Fink, A., & Lyck, R. ( 2017 ). Cellular shuttles: Monocytes/macrophages exhibit transendothelial transport of nanoparticles under physiological flow. ACS Applied Materials & Interfaces, 9, 18501 – 18511. https://doi.org/10.1021/acsami.7b03479
dc.identifier.citedreferenceMorton, S. W., Lee, M. J., Deng, Z. J., Dreaden, E. C., Siouve, E., Shopsowitz, K. E., … Hammond, P. T. ( 2014 ). A nanoparticle‐based combination chemotherapy delivery system for enhanced tumor killing by dynamic rewiring of signaling pathways. Science Signaling, 7, ra44. https://doi.org/10.1126/scisignal.2005261
dc.identifier.citedreferenceMurdoch, C., Giannoudis, A., & Lewis, C. E. ( 2004 ). Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood, 104, 2224 – 2234. https://doi.org/10.1182/blood-2004-03-1109
dc.identifier.citedreferenceMuzykantov, V. R. ( 2010 ). Drug delivery by red blood cells: Vascular carriers designed by mother nature. Expert Opinion on Drug Delivery, 7, 403 – 427. https://doi.org/10.1517/17425241003610633
dc.identifier.citedreferenceNahire, R., Haldar, M. K., Paul, S., Mergoum, A., Ambre, A. H., Katti, K. S., … Mallik, S. ( 2013 ). Polymer coated echogenic lipid nanoparticles with dual release triggers. Biomacromolecules, 14, 841 – 853. https://doi.org/10.1021/bm301894z.Polymer
dc.identifier.citedreferenceNie, Z., Li, W., Seo, M., Xu, S., & Kumacheva, E. ( 2006 ). Janus and ternary particles generated by microfluidic synthesis: Design, synthesis, and self‐assembly. Journal of the American Chemical Society, 128, 9408 – 9412. https://doi.org/10.1021/ja060882n
dc.identifier.citedreferenceNikravan, G., Haddadi‐Asl, V., & Salami‐kalajahi, M. ( 2018 ). Synthesis of dual temperature—And pH‐responsive yolk‐shell nanoparticles by conventional etching and new deswelling approaches: DOX release behavior. Colloids and Surfaces B: Biointerfaces, 165, 1 – 8. https://doi.org/10.1016/j.colsurfb.2018.02.010
dc.identifier.citedreferenceNourshargh, S., & Alon, R. ( 2014 ). Leukocyte migration into inflamed tissues. Immunity, 41, 694 – 707. https://doi.org/10.1016/j.immuni.2014.10.008
dc.identifier.citedreferencePalanikumar, L., Jeena, M. T., Kim, K., Oh, J. Y., Kim, C., Park, M. H., & Ryu, J. H. ( 2017 ). Spatiotemporally and sequentially‐controlled drug release from polymer gatekeeper—Hollow silica nanoparticles. Scientific Reports, 7, 1 – 11. https://doi.org/10.1038/srep46540
dc.identifier.citedreferencePan, D., Vargas‐Morales, O., Zern, B., Anselmo, A. C., Gupta, V., Zakrewsky, M., … Muzykantov, V. ( 2016 ). The effect of polymeric nanoparticles on biocompatibility of carrier red blood cells. PLoS One, 11, 1 – 17. https://doi.org/10.1371/journal.pone.0152074
dc.identifier.citedreferencePan, D. C., Myerson, J. W., Brenner, J. S., Patel, P. N., Anselmo, A. C., Mitragotri, S., & Muzykantov, V. ( 2018 ). Nanoparticle properties modulate their attachment and effect on carrier red blood cells. Scientific Reports, 8, 1 – 12. https://doi.org/10.1038/s41598-018-19897-8
dc.identifier.citedreferencePang, L., Zhang, C., Qin, J., Han, L., Li, R., Hong, C., … Wang, J. ( 2017 ). A novel strategy to achieve effective drug delivery: Exploit cells as carrier combined with nanoparticles. Drug Delivery, 24, 83 – 91. https://doi.org/10.1080/10717544.2016.1230903
dc.identifier.citedreferencePaunov, B. V. N., & Cayre, O. J. ( 2004 ). Supraparticles and “Janus” particles fabricated by replication of particle monolayers at liquid surfaces using a gel trapping technique. Advanced Materials, 16, 788 – 791. https://doi.org/10.1002/adma.200306476
dc.identifier.citedreferencePawar, A. B., & Kretzschmar, I. ( 2009 ). Multifunctional patchy particles by glancing angle deposition. Langmuir, 25, 9057 – 9063. https://doi.org/10.1021/la900809b
dc.identifier.citedreferencePeer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. ( 2007 ). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2, 751 – 760. https://doi.org/10.1038/nnano.2007.387
dc.identifier.citedreferencePetit, L., Manaud, J. P., Mingotaud, C., Ravaine, S., & Duguet, E. ( 2001 ). Sub‐micrometer silica spheres dissymmetrically decorated with gold nanoclusters. Materials Letters, 51, 478 – 484. https://doi.org/10.1016/S0167-577X(01)00338-X
dc.identifier.citedreferenceRahmani, S., Ross, A. M., Park, T. H., Durmaz, H., Dishman, A. F., Prieskorn, D. M., … Lahann, J. ( 2016 ). Dual release carriers for Cochlear delivery. Advanced Healthcare Materials, 5, 94 – 100. https://doi.org/10.1002/adhm.201500141
dc.identifier.citedreferenceRahmani, S., Saha, S., Durmaz, H., Donini, A., Misra, A. C., Yoon, J., & Lahann, J. ( 2014 ). Chemically orthogonal three‐patch microparticles. Angewandte Chemie, 53, 2332 – 2338. https://doi.org/10.1002/anie.201310727
dc.identifier.citedreferenceRahmani, S., Villa, C. H., Dishman, A. F., Grabowski, M. E., Pan, D. C., Durmaz, H., … Lahann, J. ( 2015 ). Long‐circulating Janus nanoparticles made by electrohydrodynamic co‐jetting for systemic drug delivery applications. Journal of Drug Targeting, 23, 750 – 758. https://doi.org/10.3109/1061186X.2015.1076428
dc.identifier.citedreferenceReddy, T. L., Rao, K., Reddy, S. G., Reddy, B. V. S., Yadav, J. S., Bhadra, U., & Bhadra, M. P. ( 2016 ). Simultaneous delivery of paclitaxel and Bcl‐2 siRNA via pH‐sensitive liposomal nanocarrier for the synergistic treatment of melanoma. Scientific Reports, 6, 1 – 12. https://doi.org/10.1038/srep35223
dc.identifier.citedreferenceRestifo, N. P., Dudley, M. E., & Rosenberg, S. A. ( 2012 ). Adoptive immunotherapy for cancer: Harnessing the T cell response. Nature Reviews. Immunology, 12, 269 – 281. https://doi.org/10.1038/nri3191
dc.identifier.citedreferenceReynolds, C. H., Annan, N., Beshah, K., Huber, J. H., Shaber, S. H., Lenkinski, R. E., & Wortman, J. A. ( 2000 ). Gadolinium‐loaded nanoparticles: New contrast agents for magnetic resonance imaging. Journal of the American Chemical Society, 122, 8940 – 8945. https://doi.org/10.1021/ja001426g
dc.identifier.citedreferenceRoger, M., Clavreul, A., Venier‐Julienne, M. C., Passirani, C., Sindji, L., Schiller, P., … Menei, P. ( 2010 ). Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors. Biomaterials, 31, 8393 – 8401. https://doi.org/10.1016/j.biomaterials.2010.07.048
dc.identifier.citedreferenceRoh, K., Martin, D. C., & Lahann, J. ( 2005 ). Biphasic Janus particles with nanoscale anisotropy. Nature Materials, 4, 759 – 763. https://doi.org/10.1038/nmat1486
dc.identifier.citedreferenceRoh, K. H., Martin, D. C., & Lahann, J. ( 2006 ). Triphasic nanocolloids. Journal of the American Chemical Society, 128, 6796 – 6797. https://doi.org/10.1021/ja060836n
dc.identifier.citedreferenceRuttala, H. B., & Ko, Y. T. ( 2015a ). Liposome encapsulated albumin‐paclitaxel nanoparticle for enhanced antitumor efficacy. Pharmaceutical Research, 32, 1002 – 1016. https://doi.org/10.1007/s11095-014-1512-2
dc.identifier.citedreferenceRuttala, H. B., & Ko, Y. T. ( 2015b ). Liposomal co‐delivery of curcumin and albumin/paclitaxel nanoparticle for enhanced synergistic antitumor efficacy. Colloids and Surfaces B: Biointerfaces, 128, 419 – 426. https://doi.org/10.1016/J.COLSURFB.2015.02.040
dc.identifier.citedreferenceRuttala, H. B., Ramasamy, T., Shin, B. S., Choi, H. G., Yong, C. S., & Kim, J. O. ( 2017 ). Layer‐by‐layer assembly of hierarchical nanoarchitectures to enhance the systemic performance of nanoparticle albumin‐bound paclitaxel. International Journal of Pharmaceutics, 519, 11 – 21. https://doi.org/10.1016/j.ijpharm.2017.01.011
dc.identifier.citedreferenceSahdev, P., Ochyl, L. J., & Moon, J. J. ( 2014 ). Biomaterials for nanoparticle vaccine delivery systems. Pharmaceutical Research, 31, 2563 – 2582. https://doi.org/10.1007/s11095-014-1419-y
dc.identifier.citedreferenceShao, S., Shen, X., & Guo, M. ( 2018 ). Zinc‐loaded whey protein nanoparticles prepared by enzymatic cross‐linking and desolvation. International Journal of Food Science and Technology, 53, 2205 – 2211. https://doi.org/10.1111/ijfs.13809
dc.identifier.citedreferenceShepard, K. B., Christie, D. A., Sosa, C. L., Arnold, C. B., & Priestley, R. D. ( 2015 ). Patchy Janus particles with tunable roughness and composition via vapor‐assisted deposition of macromolecules. Applied Physics Letters, 106, 093104. https://doi.org/10.1063/1.4913913
dc.identifier.citedreferenceShimoda, A., Sawada, S., Kano, A., Maruyama, A., Winnik, M., & Akiyoshi, K. ( 2012 ). Dual crosslinked hydrogel nanoparticles by nanogel bottom‐up method for sustained‐release delivery. Colloids and Surfaces B: Biointerfaces, 99, 38 – 44. https://doi.org/10.1016/j.colsurfb.2011.09.025
dc.identifier.citedreferenceSingh, B., & Mitragotri, S. ( 2019 ). Harnessing cells to deliver nanoparticle drugs to treat cancer. Biotechnology Advances. https://doi.org/10.1016/j.biotechadv.2019.01.006
dc.identifier.citedreferenceSingla, A. K., Garg, A., & Aggarwal, D. ( 2002 ). Paclitaxel and its formulations. International Journal of Pharmaceutics, 235, 179 – 192. https://doi.org/10.1016/S0378-5173(01)00986-3
dc.identifier.citedreferenceSong, J., Wu, B., Zhou, Z., Zhu, G., Liu, Y., Yang, Z., … Duan, H. ( 2017 ). Double‐layered plasmonic–magnetic vesicles by self‐assembly of Janus amphiphilic gold–iron(II,III) oxide nanoparticles. Angewandte Chemie, 56, 8110 – 8114. https://doi.org/10.1002/anie.201702572
dc.identifier.citedreferenceSparreboom, A., Scripture, C. D., Trieu, V., Williams, P., De, T., Yang, A., … Desai, N. ( 2005 ). Comparative preclinical and clinical pharmacokinetics of a cremophor‐free, nanoparticle albumin‐bound paclitaxel (ABI‐007) and paclitaxel formulated in cremophor (Taxol). Clinical Cancer Research, 11, 4136 – 4143. https://doi.org/10.1158/1078-0432.CCR-04-2291
dc.identifier.citedreferenceStephan, M. T., Moon, J. J., Um, S. H., Bersthteyn, A., & Irvine, D. J. ( 2010 ). Therapeutic cell engineering with surface‐conjugated synthetic nanoparticles. Nature Medicine, 16, 1035 – 1041. https://doi.org/10.1038/nm.2198
dc.identifier.citedreferenceStrozyk, M. S., De Aberasturi, D. J., Gregory, J. V., Brust, M., Lahann, J., & Liz‐Marzán, L. M. ( 2017 ). Spatial analysis of metal—PLGA hybrid microstructures using 3D SERS imaging. Advanced Functional Materials, 1701626, 1 – 7. https://doi.org/10.1002/adfm.201701626
dc.identifier.citedreferenceSun, D., Zhuang, X., Xiang, X., Liu, Y., Zhang, S., Liu, C., … Zhang, H. G. ( 2010 ). A novel nanoparticle drug delivery system: The anti‐inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Molecular Therapy, 18, 1606 – 1614. https://doi.org/10.1038/mt.2010.105
dc.identifier.citedreferenceSwiston, A. J., Cheng, C., Um, S. H., Irvine, D. J., Cohen, R. E., & Rubner, M. F. ( 2008 ). Surface functionalization of living cells with multilayer patches. Nano Letters, 8, 4446 – 4453. https://doi.org/10.1021/nl802404h
dc.identifier.citedreferenceSwiston, A. J., Gilbert, J. B., Irvine, D. J., Cohen, R. E., & Rubner, M. F. ( 2010 ). Freely suspended cellular “backpacks” lead to cell aggregate self‐assembly. Biomacromolecules, 11, 1826 – 1832. https://doi.org/10.1021/bm100305h
dc.identifier.citedreferenceTakahara, Y. K., Ikeda, S., Ishino, S., Tachi, K., Ikeue, K., Sakata, T., … Ohtani, B. ( 2005 ). Asymmetrically modified silica particles: A simple particulate surfactant for stabilization of oil droplets in water. Journal of the American Chemical Society, 127, 6271 – 6275. https://doi.org/10.1021/ja043581r
dc.identifier.citedreferenceTan, S., Wu, T., Zhang, D., & Zhang, Z. ( 2015 ). Cell or cell membrane‐based drug delivery systems. Theranostics, 5, 16 – 21. https://doi.org/10.7150/thno.11852
dc.identifier.citedreferenceTan, Y. L., & Ho, H. K. ( 2018 ). Navigating albumin‐based nanoparticles through various drug delivery routes. Drug Discovery Today, 23, 1108 – 1114. https://doi.org/10.1016/j.drudis.2018.01.051
dc.identifier.citedreferenceThao, L. Q., Lee, C., Kim, B., Lee, S., Kim, T. H., Kim, J. O., … Youn, Y. S. ( 2017 ). Doxorubicin and paclitaxel co‐bound lactosylated albumin nanoparticles having targetability to hepatocellular carcinoma. Colloids and Surfaces B: Biointerfaces, 152, 183 – 191. https://doi.org/10.1016/j.colsurfb.2017.01.017
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.