Show simple item record

Carboniferous plant physiology breaks the mold

dc.contributor.authorWilson, Jonathan P.
dc.contributor.authorWhite, Joseph D.
dc.contributor.authorMonta�ez, Isabel P.
dc.contributor.authorDiMichele, William A.
dc.contributor.authorMcElwain, Jennifer C.
dc.contributor.authorPoulsen, Christopher J.
dc.contributor.authorHren, Michael T.
dc.date.accessioned2020-07-02T20:34:10Z
dc.date.availableWITHHELD_14_MONTHS
dc.date.available2020-07-02T20:34:10Z
dc.date.issued2020-08
dc.identifier.citationWilson, Jonathan P.; White, Joseph D.; Monta�ez, Isabel P. ; DiMichele, William A.; McElwain, Jennifer C.; Poulsen, Christopher J.; Hren, Michael T. (2020). "Carboniferous plant physiology breaks the mold." New Phytologist 227(3): 667-679.
dc.identifier.issn0028-646X
dc.identifier.issn1469-8137
dc.identifier.urihttps://hdl.handle.net/2027.42/155970
dc.publisherAkademiai Kiado
dc.publisherWiley Periodicals, Inc.
dc.subject.othercarboniferous
dc.subject.otherpaleophysiology
dc.subject.otherplant hydraulics
dc.subject.othervegetation–climate feedbacks
dc.subject.otherpaleoclimate
dc.titleCarboniferous plant physiology breaks the mold
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155970/1/nph16460-sup-0001-SupInfo.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155970/2/nph16460_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155970/3/nph16460.pdf
dc.identifier.doi10.1111/nph.16460
dc.identifier.sourceNew Phytologist
dc.identifier.citedreferenceSterzel JT. 1918. Die organischen Reste des Kulms und Rotliegenden der Gegend von Chemnitz. Leipzig, Germany: Bei B. G. Teubner.
dc.identifier.citedreferenceStidd LLO, Stidd BM. 1976. Paracytic (Syndetocheilic) stomata in Carboniferous seed ferns. Science 193: 156 – 157.
dc.identifier.citedreferenceStull GW, DiMichele WA, Falcon‐Lang HJ, Nelson WJ, Elrick S. 2012. Palaeoecology of Macroneuropteris scheuchzeri, and its implications for resolving the paradox of ‘xeromorphic’ plants in Pennsylvanian wetlands. Palaeogeography, Palaeoclimatology, Palaeoecology 332: 162 – 176.
dc.identifier.citedreferenceTardieu F. 1993. Will increases in our understanding of soil–root relations and root signalling substantially alter water flux models? Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 341: 57 – 66.
dc.identifier.citedreferenceTaylor J. 1990. The bracken problem: a global perspective. AIAS Occasional Publication 40: 3 – 19.
dc.identifier.citedreferenceTaylor TN, Taylor EL, Krings M. 2009. Paleobotany: the biology and evolution of fossil plants. New York, NY, USA: Academic Press.
dc.identifier.citedreferenceThomas BA. 1966. The cuticle of the Lepidodendroid stem. New Phytologist 65: 296 – 303.
dc.identifier.citedreferenceThomas BA. 1967. The cuticle of two species of Bothrodendron [Lycopsida: Lepidodendrales]. Journal of Natural History 1: 53 – 60.
dc.identifier.citedreferenceThomas BA. 1968. The carboniferous fossil lycopod Ulodendron landsburgii (Kidston) comb. nov. Journal of Natural History 2: 425 – 428.
dc.identifier.citedreferenceThomas BA. 1970. Epidermal studies in the interpretation of Lepidodendron species. Paleontology 13: 145 – 173.
dc.identifier.citedreferenceThomas BA. 1977. Epidermal studies in the interpretation of Lepidoploios species. Paleontology 20: 273 – 293.
dc.identifier.citedreferenceTyree MT, Ewers FW. 1991. The hydraulic architecture of trees and other woody plants. New Phytologist 119: 345 – 360.
dc.identifier.citedreferenceVan den Honert TH. 1948. Water transport in plants as a catenary process. Discussions of the Faraday Society. 3: 146 – 153.
dc.identifier.citedreferenceWatkins JE Jr, Holbrook NM, Zwieniecki MA. 2010. Hydraulic properties of fern sporophytes: consequences for ecological and evolutionary diversification. American Journal of Botany 97: 2007 – 2019.
dc.identifier.citedreferenceWatt AS. 1976. The ecological status of bracken. Botanical Journal of the Linnean Society 73: 217 – 239.
dc.identifier.citedreferenceWeatherley PE. 1976. Introduction: water movement through plants. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 273: 435 – 444.
dc.identifier.citedreferenceWhitehead D. 1998. Regulation of stomatal conductance and transpiration in forest canopies. Tree Physiology 18: 633 – 644.
dc.identifier.citedreferenceWilson JP. 2013. Modeling 400 million years of plant hydraulics. The Paleontological Society Papers 19: 175 – 194.
dc.identifier.citedreferenceWilson JP, Fischer WW. 2011. Geochemical support for a climbing habit within the Paleozoic seed fern genus Medullosa. International Journal of Plant Sciences 172: 586 – 598.
dc.identifier.citedreferenceWilson JP, Knoll AH. 2010. A physiologically explicit morphospace for tracheid‐based water transport in modern and extinct seed plants. Paleobiology 36: 335 – 355.
dc.identifier.citedreferenceWilson JP, Knoll AH, Holbrook NM, Marshall CR. 2008. Modeling fluid flow in Medullosa, an anatomically unusual Carboniferous seed plant. Paleobiology 34: 472 – 493.
dc.identifier.citedreferenceWilson JP, Montañez IP, White JD, DiMichele WA, McElwain JC, Poulsen CJ, Hren MT. 2017. Dynamic carboniferous tropical forests: new views of plant function and potential for physiological forcing of climate. New Phytologist 215: 1333 – 1353.
dc.identifier.citedreferenceWilson JP, White JD, DiMichele WA, Hren MT, Poulsen CJ, McElwain JC, Montañez IP. 2015. Reconstructing extinct plant water use for understanding vegetation–climate feedbacks: methods, synthesis, and a case study using the Paleozoic‐era medullosan seed ferns. The Paleontological Society Papers 21: 167 – 195.
dc.identifier.citedreferenceWnuk C, Pfefferkorn HW. 1984. The life habits and paleoecology of Middle Pennsylvanian medullosan pteridosperms based on an in situ assemblage from the Bernice Basin (Sullivan County, Pennsylvania, USA). Review of Palaeobotany and Palynology 41: 329 – 351.
dc.identifier.citedreferenceWright IJ, Falster DS, Pickup M, Westoby M. 2006. Cross‐species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics. Physiologia Plantarum 127: 445 – 456.
dc.identifier.citedreferenceYao Z‐Q, Liu L‐J, Mapes G, Rothwell GW. 2000. Leaf morphology and cuticular features of Sphenophyllum in the Gigantopteris flora from South China. Review of Palaeobotany and Palynology 110: 67 – 92.
dc.identifier.citedreferenceZodrow EL, Cleal CJ. 1993. The epidermal structure of the Carboniferous gymnosperm frond Reticulopteris. Palaeontology 36: 65 – 79.
dc.identifier.citedreferenceAndrews HN Jr. 1940. On the stellar anatomy of the pteridosperms with particular reference to the secondary wood. Annals of the Missouri Botanical Garden 27: 51 – 118.
dc.identifier.citedreferenceBatenburg LH. 1981. Vegetative anatomy and ecology of Sphenophyllum zwickaviense, S. emarginatum, and other “compression species” of Sphenophyllum. Review of Palaeobotany and Palynology 32: 275 – 313.
dc.identifier.citedreferenceBatenburg LH. 1982. “Compression species” and “petrifaction species” of Sphenophyllum compared. Review of Palaeobotany and Palynology 36: 335 – 359.
dc.identifier.citedreferenceBoyce CK, Brodribb TJ, Feild TS, Zwieniecki MA. 2009. Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proceedings of the Royal Society B: Biological Sciences 276: 1771 – 1776.
dc.identifier.citedreferenceBoycea CK, DiMicheleb WA. 2016. Arborescent lycopsid productivity and lifespan: constraining the possibilities. Review of Palaeobotany and Palynology 227: 97 – 110.
dc.identifier.citedreferenceBoyce CK, Zwieniecki MA. 2019. The prospects for constraining productivity through time with the whole‐plant physiology of fossils. New Phytologist 233: 40 – 49.
dc.identifier.citedreferenceBrodersen C, Jansen S, Choat B, Rico C, Pittermann J. 2014. Cavitation resistance in seedless vascular plants: the structure and function of interconduit pit membranes. Plant Physiology 165: 895 – 904.
dc.identifier.citedreferenceBrodribb TJ, Feild TS. 2000. Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests. Plant, Cell & Environment 23: 1381 – 1388.
dc.identifier.citedreferenceBrodribb TJ, Holbrook NM, Gutiérrez MV. 2002. Hydraulic and photosynthetic co‐ordination in seasonally dry tropical forest trees. Plant, Cell & Environment 25: 1435 – 1444.
dc.identifier.citedreferenceCichan MA. 1986. Conductance in the wood of selected Carboniferous plants. Paleobiology 12: 302 – 310.
dc.identifier.citedreferenceCleal CJ, Shute CH. 1992. Epidermal features of some Carboniferous neuropteroid fronds. Review of Palaeobotany and Palynology 71: 191 – 206.
dc.identifier.citedreferenceCleal CJ, Zodrow EL. 1989. Epidermal structure of some medullosan Neuropteris foliage from the Middle and Upper Carboniferous of Canada and Germany. Palaeontology 32: 837 – 882.
dc.identifier.citedreferencede Boer HJ, Price CA, Wagner‐Cremer F, Dekker SC, Franks PJ, Veneklaas EJ. 2016. Optimal allocation of leaf epidermal area for gas exchange. New Phytologist 210: 1219 – 1228.
dc.identifier.citedreferenceDes Marais DL, Smith AR, Britton DM, Pryer KM. 2003. Phylogenetic relationships and evolution of extant horsetails, Equisetum, based on chloroplast DNA sequence data (rbcL and trnL‐F). International Journal of Plant Sciences 164: 737 – 751.
dc.identifier.citedreferenceFranks PJ, Beerling DJ. 2009. Maximum leaf conductance driven by CO 2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences, USA 106: 10343 – 10347.
dc.identifier.citedreferenceFranks PJ, Drake PL, Beerling DJ. 2009. Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus. Plant, Cell & Environment 32: 1737 – 1748.
dc.identifier.citedreferenceFranks PJ, Farquhar GD. 2007. The mechanical diversity of stomata and its significance in gas‐exchange control. Plant Physiology 143: 78 – 87.
dc.identifier.citedreferenceFranks PJ, Royer DL, Beerling DJ, Van de Water PK, Cantrill DJ, Barbour MM, Berry JA. 2014. New constraints on atmospheric CO 2 concentration for the Phanerozoic. Geophysical Research Letters 41: 4685 – 4694.
dc.identifier.citedreferenceGibson AC, Calkin HW, Nobel PS. 1984. Xylem anatomy, water flow, and hydraulic conductance in the fern Cyrtomium falcatum. American Journal of Botany 71: 564 – 574.
dc.identifier.citedreferenceGoddard D, Le Duc MG, Marrs RH, Mitchell RJ, Pakeman RJ, Paterson S. 2000. The ecology of bracken: its role in succession and implications for control. Annals of Botany 85 ( suppl_2 ): 3 – 15.
dc.identifier.citedreferenceGreguss P. 1968. Xylotomy of the living cycads. Budapest, Hungary: Akademiai Kiado.
dc.identifier.citedreferenceHetterscheid WLA, Batenburg LH. 1984. Sphenophyllum miravallis Vetter and Bowmanites cupulatus sp.n. from the “Illinger Flözzone” (“Heusweiler Schichten”, Lower Stephanian, Saar Basin, German Federal Republic). Review of Palaeobotany and Palynology 40: 263 – 293.
dc.identifier.citedreferenceHorton DE, Poulsen CJ, Pollard D. 2010. Influence of high‐latitude vegetation feedbacks on late Palaeozoic glacial cycles. Nature Geoscience 3: 572 – 577.
dc.identifier.citedreferenceHubbard RM, Ryan MG, Stiller V, Sperry JS. 2001. Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant, Cell & Environment 24: 113 – 121.
dc.identifier.citedreferenceHübers M, Bomfleur B, Kerp H. 2011. Dispersed lycopsid cuticles from the Mississippian of Chemnitz (Saxony, Germany), and their implications for the affinity of the putative earliest conifer and for lycopsid palaeoecology. Review of Palaeobotany and Palynology 167: 10 – 15.
dc.identifier.citedreferenceKrings M, Kerp H. 1997. Cuticles of Lescuropteris genuina from the Stephanian (Upper Carboniferous) of Central France: evidence for a climbing growth habit. Botanical Journal of the Linnean Society 123: 73 – 89.
dc.identifier.citedreferenceKrings M, Kerp H. 1999. Morphology, growth habit, and ecology of Blanzyopteris praedentata (Gothan) nov. comb., a climbing neuropteroid seed fern from the Stephanian of Central France. International Journal of Plant Sciences 160: 603 – 619.
dc.identifier.citedreferenceKrings M, Kerp H. 2006. Neuropteris attenuata, a narrow‐stemmed, leaning or lianescent seed fern from the Upper Pennsylvanian of Lower Saxony, Germany. Flora 201: 233 – 239.
dc.identifier.citedreferenceLandsberg J, Waring R, Ryan M. 2017. Water relations in tree physiology: where to from here? Tree Physiology. 37: 18 – 32.
dc.identifier.citedreferenceLaveine J‐P. 1986. The size of the frond in the genus Alethopteris Sternberg (Pteridospermopsida, Carboniferous). Geobios 19: 49 – 59.
dc.identifier.citedreferenceLaveine JP, Dufour F. 2013. The bifurcate" outer‐inner" semi‐pinnate frond of the Permo‐Pennsylvanian seed‐fern Neurodontopteris auriculata, type species of the genus Neurodontopteris. Palaeontographica Abteilung B 289: 75 – 177.
dc.identifier.citedreferenceLehnebach R, Beyer R, Letort V, Heuret P. 2018. The pipe model theory half a century on: a review. Annals of Botany 121: 773 – 795.
dc.identifier.citedreferenceLevy‐Tacher IS, Vleut I, Román‐Dañobeytia F, Aronson J. 2015. Natural regeneration after long‐term bracken fern control with balsa ( Ochroma pyramidale ) in the Neotropics. Forests 6: 2163 – 2177.
dc.identifier.citedreferenceLin YS, Medlyn BE, Duursma RA, Prentice IC, Wang H, Baig S, Eamus D, de Dios VR, Mitchell P, Ellsworth DS et al. 2015. Optimal stomatal behaviour around the world. Nature Climate Change 5: 459 – 464.
dc.identifier.citedreferenceLovelock CE, Ball MC, Choat B, Engelbrecht BMJ, Holbrook NM, Feller IC. 2006. Linking physiological processes with mangrove forest structure: phosphorus deficiency limits canopy development, hydraulic conductivity and photosynthetic carbon gain in dwarf Rhizophora mangle. Plant, Cell & Environment 29: 793 – 802.
dc.identifier.citedreferenceManzoni S, Vico G, Porporato A, Katul G. 2013. Biological constraints on water transport in the soil–plant–atmosphere system. Advances in Water Resources 51: 292 – 304.
dc.identifier.citedreferenceMcElwain JC, Montañez IP, White JD, Wilson J, Yiotis H, Lawson T. 2016b. Was atmospheric CO 2 capped at 1000 ppm over the past 300 million years? Palaeogeography, Palaeoclimatology. Palaeoecology. 441: 653 – 658.
dc.identifier.citedreferenceMcElwain JC, Yiotis C, Lawson T. 2016a. Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution. New Phytologist 209: 94 – 103.
dc.identifier.citedreferenceMontañez IP, McElwain JC, Poulsen CJ, White JD, DiMichele WA, Wilson JA, Griggs G, Hren M. 2016. Climate, p CO 2 and terrestrial carbon cycle linkages during late Palaeozoic glacial‐interglacial cycles. Nature Geoscience 9: 824 – 828.
dc.identifier.citedreferenceMurray M, Soh WK, Yiotis C, Batke S, Parnell A, Spicer RA, Lawson T, Caballero R, Wright IJ, Purcell C et al. 2019. Convergence in maximum stomatal conductance of C 3 woody angiosperms in natural ecosystems across bioclimatic zones. Frontiers in Plant Science 10: 558.
dc.identifier.citedreferenceNiklas KJ. 1985. The evolution of tracheid diameter in early vascular plants and its implications on the hydraulic conductance of the primary xylem strand. Evolution 39: 1110 – 1122.
dc.identifier.citedreferenceOestry‐Stidd LL. 1979. Anatomically preserved Neuropteris rarinervis from American coal balls. Journal of Paleontology 53: 37 – 43.
dc.identifier.citedreferencePage C. 1986. The strategies of bracken as a permanent ecological opportunist. In: Smith T, Taylor JA, eds. Bracken, ecology, land use, and control technology. The Proceedings of the International Conference Bracken ’85. Carnforth, UK: Parthenon Publishing, 17 3– 18 1.
dc.identifier.citedreferencePant DD, Mehra B. 1963. On the epidermal structure of Sphenophyllum speciosum (Royle) Zeiller. Palaeontographica Abteilung B 112: 51 – 57.
dc.identifier.citedreferencePfefferkorn H, Gillespie WH, Resnick DA, Scheihing MH. 1984. Reconstruction and architecture of medullosan pteridosperms (Pennsylvanian). The Mosasaur 2: 1 – 8.
dc.identifier.citedreferencePhilip JR. 1966. Plant water relations: some physical aspects. Annual Review of Plant Physiology 17: 245 – 268.
dc.identifier.citedreferencePittermann J. 2010. The evolution of water transport in plants: an integrated approach. Geobiology 8: 112 – 139.
dc.identifier.citedreferencePittermann J, Brodersen C, Watkins JE Jr. 2013. The physiological resilience of fern sporophytes and gametophytes: advances in water relations offer new insights into an old lineage. Frontiers in Plant Science 4: 285.
dc.identifier.citedreferencePittermann J, Limm E, Rico C, Christman MA. 2011. Structure–function constraints of tracheid‐based xylem: a comparison of conifers and ferns. New Phytologist 192: 449 – 461.
dc.identifier.citedreferencePittermann J, Wilson JP, Brodribb T. 2016. Water transport, the role in plant diversification of. In: Kliman RM, ed. Encyclopedia of evolutionary biology. Oxford, UK: Academic Press, 358 – 366.
dc.identifier.citedreferencePšenička J. 2005. Taxonomy of Pennsylvanian‐Permian ferns from coal basins in the Czech Republic and Canada. Partially published PhD thesis, Faculty of Science, Charles University, Prague, Czech Republic.
dc.identifier.citedreferencePšenička J, Bek J. 2003. Cuticles and spores of Senftenbergia plumosa (Artis) Bek and Pšenička from the Carboniferous of Pilsen Basin, Bohemian Massif. Review of Palaeobotany and Palynology 125: 299 – 312.
dc.identifier.citedreferencePšenička J, Bek J, Zodrow EL, Cleal CJ, Hemsley AR. 2003. A new late Westphalian fossil marattialean fern from Nova Scotia. Botanical Journal of the Linnean Society 142: 199 – 212.
dc.identifier.citedreferencePšenička J, Zodrow EL, Mastalerz M, Bek J. 2005. Functional groups of fossil marattialeans: chemotaxonomic implications for Pennsylvanian tree ferns and pteridophylls. International Journal of Coal Geology 61: 259 – 280.
dc.identifier.citedreferenceRaymond A, Wehner M, Costanza SH. 2014. Permineralized Alethopteris ambigua (Lesquereux) White: a medullosan with relatively long‐lived leaves, adapted for sunny habitats in mires and floodplains. Review of Palaeobotany and Palynology 200: 82 – 96.
dc.identifier.citedreferenceReihman MA, Schabilion JT. 1976. Cuticles of two species of Alethopteris. American Journal of Botany 63: 1039 – 1046.
dc.identifier.citedreferenceRockwell FE, Holbrook NM. 2017. Leaf hydraulic architecture and stomatal conductance: a functional perspective. Plant Physiology 174: 1996 – 2007.
dc.identifier.citedreferenceRodriguez‐Dominguez CM, Carins Murphy MR, Lucani C, Brodribb TJ. 2018. Mapping xylem failure in disparate organs of whole plants reveals extreme resistance in olive roots. New Phytologist 218: 1025 – 1035.
dc.identifier.citedreferenceSack L, Cowan PD, Jaikumar N, Holbrook NM. 2003. The ‘hydrology’ of leaves: co‐ordination of structure and function in temperate woody species. Plant, Cell & Environment 26: 1343 – 1356.
dc.identifier.citedreferenceSack L, Holbrook NM. 2006. Leaf hydraulics. Annual Review of Plant Biology 57: 361 – 381.
dc.identifier.citedreferenceSack L, Tyree MT. 2005. Leaf hydraulics and its implications in plant structure and function. In: Holbrook NM, Zweiniecki MA, eds. Vascular transport in plants. Oxford, UK: Elsevier/Academic Press, 93 – 114.
dc.identifier.citedreferenceSack L, Tyree MT, Holbrook NM. 2005. Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. New Phytologist 167: 403 – 413.
dc.identifier.citedreferenceSantiago LS, Goldstein G, Meinzer FC, Fisher JB, Machado K, Woodruff D, Jones T. 2004. Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia 140: 543 – 550.
dc.identifier.citedreferenceScoffoni C, Chatelet DS, Pasquet‐Kok J, Rawls M, Donoghue MJ, Edwards EJ, Sack L. 2016. Hydraulic basis for the evolution of photosynthetic productivity. Nature Plants 2: 16072.
dc.identifier.citedreferenceScoffoni C, Sack L, PrometheusWiki contributors. 2013. Quantifying leaf vein traits. [WWW document] URL http://prometheuswiki.org/tiki‐index.php?page=Quantifying+leaf+vein+traits [accessed 25 June 2019].
dc.identifier.citedreferenceScott AC, Chaloner WG. 1983. The earliest fossil conifer from the Westphalian B of Yorkshire. Proceedings of the Royal Society of London. Series B: Biological Sciences 220: 163 – 182.
dc.identifier.citedreferenceScott DH. 1898. On the structure and affinities of fossil plants from the Palaeozoic rocks. III. on Medullosa anglica, a new representative of the Cycadofilices. Proceedings of the Royal Society of London. Series B: Biological Sciences 64: 249 – 253.
dc.identifier.citedreferenceShute CH, Cleal CJ. 2002. Ecology and growth habit of Laveineopteris: a Gymnosperm from the Late Carboniferous tropical rain forests. Palaeontology 45: 943 – 972.
dc.identifier.citedreferenceŠimůnek Z. 2007. New classification of the genus Cordaites from the Carboniferous and Permian of the Bohemian Massif based on micromorphology of its cuticle. Acta Musei Nationalis Pragae, Series B Historia Naturalis 62: 97 – 210.
dc.identifier.citedreferenceŠimůnek Z, Bureš J. 2015. Dispersed cuticles and conducting tissue of Sphenophyllum BRONGNIART from the Westphalian D of Kalinovo, Donets Basin, Ukraine. Geologia Croatica 68: 1 – 9.
dc.identifier.citedreferenceŠimůnek Z, Florjan S. 2013. The Pennsylvanian cordaitalean dispersed cuticles from the Upper Silesian Basin (Poland). Review of Palaeobotany and Palynology 197: 26 – 49.
dc.identifier.citedreferenceŠimůnek Z, Opluštiland S, Drábková J. 2009. Cordaites borassifolius (Sternberg) Unger (Cordaitales) from the Radnice Basin (Bolsovian, Czech Republic). Bulletin of Geosciences 84: 301 – 336.
dc.identifier.citedreferenceSperry JS. 2000. Hydraulic constraints on plant gas exchange. Agricultural and Forest Meteorology 104: 13 – 23.
dc.identifier.citedreferenceSperry JS, Alder NN, Eastlack SE. 1993. The effect of reduced hydraulic conductance on stomatal conductance and xylem cavitation. Journal of Experimental Botany 44: 1075 – 1082.
dc.identifier.citedreferenceSperry JS, Hacke UG, Oren R, Comstock JP. 2002. Water deficits and hydraulic limits to leaf water supply. Plant, Cell & Environment 25: 251 – 263.
dc.identifier.citedreferenceStewart W, Delevoryas T. 1952. Bases for determining relationships among the Medullosaceae. American Journal of Botany 39: 505 – 516.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.