Show simple item record

High‐Purity Hybrid Structural Colors by Enhancing Optical Absorption of Organic Dyes in Resonant Cavity

dc.contributor.authorYang, Zhengmei
dc.contributor.authorJi, Chengang
dc.contributor.authorCui, Qingyu
dc.contributor.authorGuo, Lingjie Jay
dc.date.accessioned2020-07-02T20:34:12Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-07-02T20:34:12Z
dc.date.issued2020-06
dc.identifier.citationYang, Zhengmei; Ji, Chengang; Cui, Qingyu; Guo, Lingjie Jay (2020). "High‐Purity Hybrid Structural Colors by Enhancing Optical Absorption of Organic Dyes in Resonant Cavity." Advanced Optical Materials 8(12): n/a-n/a.
dc.identifier.issn2195-1071
dc.identifier.issn2195-1071
dc.identifier.urihttps://hdl.handle.net/2027.42/155972
dc.description.abstractThis work presents a novel approach of incorporating an ultrathin dye film into a classic dielectric‐absorber‐dielectric‐metal resonator configuration for generating high‐purity reflective structural colors. Utilizing a thin film of organic dye having the same color as the targeted reflection color as a part of the cavity layer in the structure, its absorption at complementary color wavelengths is significantly enhanced due to the strong cavity resonances, hence reflection at the unwanted wavelengths strongly suppressed, leading to the improved purity of the desired reflective color. This design principle can be applied to create essentially all colors, and is demonstrated by experiment to produce high‐purity blue and red colors. In addition, the fabricated device exhibits outstanding stability under UV exposure without additional protections compared to traditional organic pigments. The proposed method in this work largely simplifies the design process of high‐purity structural colors, which paves the way for more potential applications in various fields.A simple approach that incorporates an ultrathin dye film into a classic dielectric‐absorber‐dielectric‐metal multilayered structure is presented to produce high‐purity reflective colors. The enhanced optical absorptions of the colored dye layer as a result of the strong cavity resonances can effectively suppress the reflection within the unwanted wavelength range, thus significantly improving the purity of the desired reflective colors.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherresonant optical absorption
dc.subject.otherFabry–Pérot cavity
dc.subject.otherinterference effect
dc.subject.otherorganic dyes
dc.subject.otherreflective structural colors
dc.titleHigh‐Purity Hybrid Structural Colors by Enhancing Optical Absorption of Organic Dyes in Resonant Cavity
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155972/1/adom202000317.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155972/2/adom202000317_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155972/3/adom202000317-sup-0001-SuppMat.pdf
dc.identifier.doi10.1002/adom.202000317
dc.identifier.sourceAdvanced Optical Materials
dc.identifier.citedreferenceC. Y. Yang, K. N. Mao, W. D. Shen, B. Fang, X. Fang, X. Zhang, Y. G. Zhang, X. Liu, Appl. Phys. Lett. 2016, 109, 241104.
dc.identifier.citedreferenceJ. Ma, J. C. Wang, Z. D. Hu, Z. D. Zhang, L. Pan, A. Di Falco, AIP Adv. 2019, 9, 11.
dc.identifier.citedreferenceZ. Y. Li, S. Butun, K. Aydin, ACS Photonics 2015, 2, 183.
dc.identifier.citedreferenceK. T. Lee, S. Seo, J. Y. Lee, L. J. Guo, Adv. Mater. 2014, 26, 6324.
dc.identifier.citedreferenceM. A. Kats, F. Capasso, Laser Photonics Rev. 2016, 10, 735.
dc.identifier.citedreferenceC. S. Park, V. R. Shrestha, S. S. Lee, D. Y. Choi, Sci. Rep. 2016, 6, 25496.
dc.identifier.citedreferenceC. S. Park, V. R. Shrestha, S. S. Lee, E. S. Kim, D. Y. Choi, Sci. Rep. 2015, 5, 8467.
dc.identifier.citedreferenceK. T. Lee, S. Y. Han, H. J. Park, Adv. Opt. Mater. 2017, 5, 1700284.
dc.identifier.citedreferenceJ. H. Han, D. Kim, T. W. Lee, Y. Jeon, H. S. Lee, K. C. Choi, ACS Photonics 2018, 5, 3322.
dc.identifier.citedreferenceC. G. Ji, C. Y. Yang, W. D. Shen, K. T. Lee, Y. G. Zhang, X. Liu, L. J. Guo, Nano Res. 2019, 12, 543.
dc.identifier.citedreferenceD. H. Kim, Y. J. Yoo, J. H. Ko, Y. J. Kim, Y. M. Song, Opt. Mater. Express 2019, 9, 3342.
dc.identifier.citedreferenceC. G. Ji, K. T. Lee, L. J. Guo, Opt. Lett. 2019, 44, 86.
dc.identifier.citedreferenceJ. Kim, H. Oh, M. Seo, M. Lee, ACS Photonics 2019, 6, 2342.
dc.identifier.citedreferenceS. D. Rezaei, J. Ho, A. Naderi, M. T. Yaraki, T. Wang, Z. G. Dong, S. Ramakrishna, J. K. W. Yang, Adv. Opt. Mater. 2019, 7, 1900735.
dc.identifier.citedreferenceA. Ghobadi, H. Hajian, M. C. Soydan, B. Butun, E. Ozbay, Sci. Rep. 2019, 9, 290.
dc.identifier.citedreferenceC. Y. Yang, W. D. Shen, Y. G. Zhang, K. Li, X. Fang, X. Zhang, X. Liu, Sci. Rep. 2015, 5, 9285.
dc.identifier.citedreferenceD. Banerjee, US 9658375 B2, 2017.
dc.identifier.citedreferenceZ. M. Yang, C. G. Ji, D. Liu, L. Guo, Adv. Opt. Mater. 2019, 7, 1900739.
dc.identifier.citedreferenceD. Liu, H. T. Yu, Z. Yang, Y. Y. Duan, Nano Res. 2016, 9, 2354.
dc.identifier.citedreferenceC. G. Ji, K. T. Lee, T. Xu, J. Zhou, H. J. Park, L. J. Guo, Adv. Opt. Mater. 2017, 5, 1700368.
dc.identifier.citedreferenceE. I. Haskal, Z. Shen, P. E. Burrows, S. R. Forrest, Phys. Rev. B 1995, 51, 4449.
dc.identifier.citedreferenceA. A. Tukhbatullin, G. L. Sharipov, A. R. Bagautdinova, RSC Adv. 2016, 6, 26531.
dc.identifier.citedreferenceJ. Cao, Z. Zhan, L. T. Hou, Y. B. Long, P. Y. Liu, W. J. Mai, Appl. Opt. 2012, 51, 5718.
dc.identifier.citedreferenceZ. M. Yang, Y. Q. Chen, Y. M. Zhou, Y. S. Wang, P. Dai, X. P. Zhu, H. G. Duan, Adv. Opt. Mater. 2017, 5, 1700029.
dc.identifier.citedreferenceK. Kumar, H. G. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, J. K. W. Yang, Nat. Nanotechnol. 2012, 7, 557.
dc.identifier.citedreferenceF. Cheng, J. Gao, T. S. Luk, X. D. Yang, Sci. Rep. 2015, 5, 11045.
dc.identifier.citedreferenceX. L. Zhu, W. Yan, U. Levy, N. A. Mortensen, A. Kristensen, Sci. Adv. 2017, 3, e1602487.
dc.identifier.citedreferenceC. G. Ji, Z. Zhang, T. Masuda, Y. Kudo, L. J. Guo, Nanoscale Horiz. 2019, 4, 874.
dc.identifier.citedreferenceK. T. Lee, J. Y. Lee, S. Y. Seo, L. J. Guo, Light: Sci. Appl. 2014, 3, e215.
dc.identifier.citedreferenceY. B. Qiu, L. Zhan, X. Hu, S. Y. Luo, Y. X. Xia, Displays 2011, 32, 308.
dc.identifier.citedreferenceJ. Hong, E. Chan, T. Chang, T. C. Fung, B. Hong, C. Kim, J. Ma, Y. L. Pan, R. Van Lier, S. G. Wang, B. Wen, L. X. Zhou, Optica 2015, 2, 589.
dc.identifier.citedreferenceH. Liu, H. Yang, Y. R. Li, B. X. Song, Y. F. Wang, Z. R. Liu, L. Peng, H. Lim, J. Yoon, W. Wu, Adv. Opt. Mater. 2019, 7, 1801639.
dc.identifier.citedreferenceS. Koyama, Y. Inaba, M. Kasano, T. Murata, IEEE Trans. Electron Devices 2008, 55, 754.
dc.identifier.citedreferenceJ. G. Park, S. H. Kim, S. Magkiriadou, T. M. Choi, Y. S. Kim, V. N. Manoharan, Angew. Chem., Int. Ed. 2014, 53, 2899.
dc.identifier.citedreferenceK. T. Lee, C. G. Ji, D. Banerjee, L. J. Guo, Laser Photonics Rev. 2015, 9, 354.
dc.identifier.citedreferenceS. D. Rezaei, R. J. H. Ng, Z. G. Dong, J. F. Ho, E. H. H. Koay, S. Ramakrishna, J. K. W. Yang, ACS Nano 2019, 13, 3580.
dc.identifier.citedreferenceA. S. Roberts, A. Pors, O. Albrektsen, S. I. Bozhevolnyi, Nano Lett. 2014, 14, 783.
dc.identifier.citedreferenceH. Wang, X. L. Wang, C. Yan, H. Zhao, J. W. Zhang, C. Santschi, O. J. F. Martin, ACS Nano 2017, 11, 4419.
dc.identifier.citedreferenceZ. B. Li, A. W. Clark, J. M. Cooper, ACS Nano 2016, 10, 492.
dc.identifier.citedreferenceY. K. R. Wu, A. E. Hollowell, C. Zhang, L. J. Guo, Sci. Rep. 2013, 3, 1194.
dc.identifier.citedreferenceA. F. Kaplan, T. Xu, L. J. Guo, Appl. Phys. Lett. 2011, 99, 143111.
dc.identifier.citedreferenceX. M. Goh, R. J. H. Ng, S. H. Wang, S. J. Tan, J. K. W. Yang, ACS Photonics 2016, 3, 1000.
dc.identifier.citedreferenceY. Nagasaki, M. Suzuki, I. Hotta, J. Takahara, ACS Photonics 2018, 5, 1460.
dc.identifier.citedreferenceS. Sun, Z. X. Zhou, C. Zhang, Y. S. Gao, Z. H. Duan, S. M. Xiao, Q. H. Song, ACS Nano 2017, 11, 4445.
dc.identifier.citedreferenceT. Wood, M. Naffouti, J. Berthelot, T. David, J. B. Claude, L. Metayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bonod, M. Abbarchi, ACS Photonics 2017, 4, 873.
dc.identifier.citedreferenceM. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, N. J. Halas, Nano Lett. 2017, 17, 6034.
dc.identifier.citedreferenceY. X. Zhang, Q. Zhang, X. Ouyang, D. Y. Lei, A. P. Zhang, H. Y. Tam, ACS Nano 2018, 12, 9913.
dc.identifier.citedreferenceK. Xiong, D. Tordera, G. Emilsson, O. Olsson, U. Linderhed, M. P. Jonsson, A. B. Dahlin, Nano Lett. 2017, 17, 7033.
dc.identifier.citedreferenceL. Shao, X. L. Zhuo, J. F. Wang, Adv. Mater. 2018, 30, 1704338.
dc.identifier.citedreferenceA. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, Nano Lett. 2012, 12, 3749.
dc.identifier.citedreferenceC. G. Ji, S. Acharya, K. Yamada, S. Maldonado, L. J. Guo, ACS Appl. Mater. Interfaces 2019, 11, 29065.
dc.identifier.citedreferenceZ. M. Yang, Y. M. Zhou, Y. Q. Chen, Y. S. Wang, P. Dai, Z. G. Zhang, H. G. Duan, Adv. Opt. Mater. 2016, 4, 1196.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.