Show simple item record

Interspecific variation and elevated CO2 influence the relationship between plant chemical resistance and regrowth tolerance

dc.contributor.authorDecker, Leslie E.
dc.contributor.authorHunter, Mark D.
dc.date.accessioned2020-07-02T20:34:15Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-07-02T20:34:15Z
dc.date.issued2020-06
dc.identifier.citationDecker, Leslie E.; Hunter, Mark D. (2020). "Interspecific variation and elevated CO2 influence the relationship between plant chemical resistance and regrowth tolerance." Ecology and Evolution 10(12): 5416-5430.
dc.identifier.issn2045-7758
dc.identifier.issn2045-7758
dc.identifier.urihttps://hdl.handle.net/2027.42/155974
dc.description.abstractTo understand how comprehensive plant defense phenotypes will respond to global change, we investigated the legacy effects of elevated CO2 on the relationships between chemical resistance (constitutive and induced via mechanical damage) and regrowth tolerance in four milkweed species (Asclepias). We quantified potential resistance and tolerance trade‐offs at the physiological level following simulated mowing, which are relevant to milkweed ecology and conservation. We examined the legacy effects of elevated CO2 on four hypothesized trade‐offs between the following: (a) plant growth rate and constitutive chemical resistance (foliar cardenolide concentrations), (b) plant growth rate and mechanically induced chemical resistance, (c) constitutive resistance and regrowth tolerance, and (d) regrowth tolerance and mechanically induced resistance. We observed support for one trade‐off between plant regrowth tolerance and mechanically induced resistance traits that was, surprisingly, independent of CO2 exposure. Across milkweed species, mechanically induced resistance increased by 28% in those plants previously exposed to elevated CO2. In contrast, constitutive resistance and the diversity of mechanically induced chemical resistance traits declined in response to elevated CO2 in two out of four milkweed species. Finally, previous exposure to elevated CO2 uncoupled the positive relationship between plant growth rate and regrowth tolerance following damage. Our data highlight the complex and dynamic nature of plant defense phenotypes under environmental change and question the generality of physiologically based defense trade‐offs.To understand how comprehensive plant defense phenotypes will respond to global change, we investigated the legacy effects of elevated CO2 on the relationships between chemical resistance and regrowth tolerance in four milkweed species (Asclepias). We found interspecific variation among milkweed species influenced the relationship between mechanically induced chemical resistance and regrowth tolerance. Previous exposure to elevated CO2 increased mechanically induced resistance by 28% and uncoupled the positive relationship between plant growth rate and regrowth tolerance following damage.
dc.publisherSpringer Science & Business Media
dc.publisherWiley Periodicals, Inc.
dc.subject.otherglobal change ecology
dc.subject.otherplant‐herbivore interactions
dc.subject.otherresistance to herbivory
dc.subject.othercardenolides
dc.subject.otherAsclepias
dc.titleInterspecific variation and elevated CO2 influence the relationship between plant chemical resistance and regrowth tolerance
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155974/1/ece36284_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155974/2/ece36284.pdf
dc.identifier.doi10.1002/ece3.6284
dc.identifier.sourceEcology and Evolution
dc.identifier.citedreferenceStocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., … Midgley, P. M. (Eds.) ( 2013 ). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.1017/CBO9781107415324
dc.identifier.citedreferenceStrauss, S. Y., & Murch, P. ( 2004 ). Towards an understanding of the mechanisms of tolerance: Compensating for herbivore damage by enhancing a mutualism. Ecological Entomology, 29, 234 – 239. https://doi.org/10.1111/j.0307‐6946.2004.00587.x
dc.identifier.citedreferenceStrauss, S. Y., Rudgers, J. A., Lau, J. A., & Irwin, R. E. ( 2002 ). Direct and ecological costs of resistance to herbivory. Trends in Ecology & Evolution, 17 ( 6 ), 278 – 285. https://doi.org/10.1016/S0169‐5347(02)02483‐7
dc.identifier.citedreferenceStrauss, S. Y., Siemens, D. H., Decher, M. B., & Mitchell‐Olds, T. ( 1999 ). Ecological costs of plant resistance to herbivores in the currency of pollination. Evolution (N Y), 53, 1105 – 1113. https://doi.org/10.1111/j.1558‐5646.1999.tb04525.x
dc.identifier.citedreferenceTao, L., Ahmad, A., de Roode, J. C., & Hunter, M. D. ( 2016 ). Arbuscular mycorrhizal fungi affect plant tolerance and chemical defences to herbivory through different mechanisms. Journal of Ecology, 104, 561 – 571. https://doi.org/10.1111/1365‐2745.12535
dc.identifier.citedreferenceTao, L., Berns, A. R., & Hunter, M. D. ( 2014 ). Why does a good thing become too much? Interactions between foliar nutrients and toxins determine performance of an insect herbivore. Functional Ecology, 28, 190 – 196. https://doi.org/10.1111/1365‐2435.12163
dc.identifier.citedreferenceTao, L., & Hunter, M. D. ( 2012 ). Does anthropogenic nitrogen deposition induce phosphorus limitation in herbivorous insects? Global Change Biology, 18, 1843 – 1853. https://doi.org/10.1111/j.1365‐2486.2012.02645.x
dc.identifier.citedreferenceTucker, C., & Avila‐Sakar, G. ( 2010 ). Ontogenetic changes in tolerance to herbivory in Arabidopsis. Oecologia, 164, 1005 – 1015. https://doi.org/10.1007/s00442‐010‐1738‐6
dc.identifier.citedreferenceTuomi, J., Niemelä, P., Chapin, F. S., Bryant, J. P., & Sirén, S. ( 1998 ). Defensive responses of trees in relation to their carbon/nutrient balance. In Mechanisms of woody plant defenses against insects (pp. 57 – 72 ). New York, NY: Springer.
dc.identifier.citedreferencevan der Meijden, E., Wijn, M., & Verkaar, H. J. ( 1988 ). Defence and regrowth, alternative plant strategies in the struggle against herbivores. Oikos, 51, 355. https://doi.org/10.2307/3565318
dc.identifier.citedreferenceVannette, R. L., & Hunter, M. D. ( 2011 ). Genetic variation in expression of defense phenotype may mediate evolutionary adaptation of Asclepias syriaca to elevated CO 2. Glob Chang Biol, 17, 1277 – 1288. https://doi.org/10.1111/j.1365‐2486.2010.02316.x
dc.identifier.citedreferenceWilliams, M. M., Walsh, D. B., & Boydston, R. A. ( 2004 ). Integrating arthropod herbivory and reduced herbicide use for weed management. Weed Science, 52, 1018 – 1025. https://doi.org/10.1614/WS‐04‐034R
dc.identifier.citedreferenceWilsey, B. J. ( 2001 ). Effects of Elevated CO2 on the Response of Phleum pratense and Poa pratensis to Aboveground Defoliation and Root‐Feeding Nematodes. International Journal of Plant Sciences, 162, 1275 – 1282. https://doi.org/10.1086/323702
dc.identifier.citedreferenceWise, M. J., & Abrahamson, W. G. ( 2007 ). Effects of resource availability on tolerance of herbivory: A review and assessment of three opposing models. The American Naturalist, 169, 443 – 454. https://doi.org/10.1086/512044
dc.identifier.citedreferenceWoodson, R. E. ( 1954 ). The North American species of Asclepias L. Annals of the Missouri Botanical Garden, 41, 1 – 211. https://doi.org/10.2307/2394652
dc.identifier.citedreferenceZalucki, M. P., Brower, L. P., & Alonso‐M, A. ( 2001 ). Detrimental effects of latex and cardiac glycosides on survival and growth of first‐instar monarch butterfly larvae Danaus plexippus feeding on the sandhill milkweed Asclepias humistrata. Ecological Entomology, 26, 212 – 224. https://doi.org/10.1046/j.1365‐2311.2001.00313.x
dc.identifier.citedreferenceZas, R., Moreira, X., & Sampedro, L. ( 2011 ). Tolerance and induced resistance in a native and an exotic pine species: Relevant traits for invasion ecology. Journal of Ecology, 99, 1316 – 1326. https://doi.org/10.1111/j.1365‐2745.2011.01872.x
dc.identifier.citedreferenceZavala, J. A., Gog, L., & Giacometti, R. ( 2017 ). Anthropogenic increase in carbon dioxide modifies plant – insect interactions. The Annals of Applied Biology, 170, 68 – 77. https://doi.org/10.1111/aab.12319
dc.identifier.citedreferenceZavala, J. A., Nabity, P. D., & DeLucia, E. H. ( 2013 ). An emerging understanding of mechanisms governing insect herbivory under elevated CO 2. Annual Review of Entomology, 58, 79 – 97. https://doi.org/10.1146/annurev‐ento‐120811‐153544
dc.identifier.citedreferenceZehnder, C. B., & Hunter, M. D. ( 2009 ). More is not necessarily better: The impact of limiting and excessive nutrients on herbivore population growth rates. Ecological Entomology, 34, 535 – 543. https://doi.org/10.1111/j.1365‐2311.2009.01101.x
dc.identifier.citedreferenceZipkin, E. F., Ries, L., Reeves, R., Regetz, J., & Oberhauser, K. S. ( 2012 ). Tracking climate impacts on the migratory monarch butterfly. Glob Chang Biol, 18, 3039 – 3049. https://doi.org/10.1111/j.1365‐2486.2012.02751.x
dc.identifier.citedreferenceZüst, T., & Agrawal, A. A. ( 2017 ). Trade‐offs between plant growth and defense against insect herbivory: An emerging mechanistic synthesis. Annual Review of Plant Biology, 68, 513 – 534. https://doi.org/10.1146/annurev‐arplant‐042916‐040856
dc.identifier.citedreferenceZüst, T., Rasmann, S., & Agrawal, A. A. ( 2015 ). Growth‐defense tradeoffs for two major anti‐herbivore traits of the common milkweed Asclepias syriaca. Oikos, 124, 1404 – 1415. https://doi.org/10.1111/oik.02075
dc.identifier.citedreferenceDecker, L. E., Soule, A. J., de Roode, J. C., & Hunter, M. D. ( 2019 ). Phytochemical changes in milkweed induced by elevated CO 2 alter wing morphology but not toxin sequestration in monarch butterflies. Functional Ecology, https://doi.org/10.1111/1365‐2435.13270
dc.identifier.citedreferenceAgrawal, A. A. ( 2011 ). Current trends in the evolutionary ecology of plant defence. Functional Ecology, 25, 420 – 432. https://doi.org/10.1111/j.1365‐2435.2010.01796.x
dc.identifier.citedreferenceAgrawal, A. A., & Fishbein, M. ( 2006 ). Plant defense syndromes. Ecology, 87, S132 – S149.
dc.identifier.citedreferenceAgrawal, A. A., & Fishbein, M. ( 2008 ). Phylogenetic escalation and decline of plant defense strategies. Proceedings of the National Academy of Sciences, 105, 10057 – 10060. https://doi.org/10.1073/pnas.0802368105
dc.identifier.citedreferenceAgrawal, A. A., & Karban, R. ( 1999 ). Why induced defenses may be favored over constitutive strategies in plants. The Ecology and Evolution of Inducible Defenses, https://doi.org/10.1159/000331745
dc.identifier.citedreferenceAgrawal, A. A., & Konno, K. ( 2009 ). Latex: A Model for Understanding Mechanisms, Ecology, and Evolution of Plant Defense Against Herbivory. Annual Review of Ecology Evolution and Systematics, 40, 311 – 331. https://doi.org/10.1146/annurev.ecolsys.110308.120307
dc.identifier.citedreferenceAgrawal, A. A., Petschenka, G., Bingham, R. A., Weber, M. G., & Rasmann, S. ( 2012 ). Toxic cardenolides: Chemical ecology and coevolution of specialized plant‐herbivore interactions. New Phytologist, 194, 28 – 45. https://doi.org/10.1111/j.1469‐8137.2011.04049.x
dc.identifier.citedreferenceAinsworth, E. A., & Long, S. P. ( 2005 ). What have we learned from 15 years of free air CO enrichment (FACE)? A meta‐analytic review of the response of photosynthesis, canopy properties and plant production to rising CO. The New Phytologist, 179, 5.
dc.identifier.citedreferenceAnderson, M. J. ( 2001 ). A new method for non parametric multivariate analysis of variance. Austral Ecology, 26, 32 – 46. https://doi.org/10.1111/j.1442‐9993.2001.01070.pp.x
dc.identifier.citedreferenceBain, J. C., & Day, F. P. ( 2019 ). Legacy effects of long‐term CO2 enrichment on plant biomass recovery from fire seven years after return to ambient CO2 levels1. The Journal of the Torrey Botanical Society, 146, 1. https://doi.org/10.3159/torrey‐d‐17‐00044.1
dc.identifier.citedreferenceBaucom, R. S., & De Roode, J. C. ( 2011 ). Ecological immunology and tolerance in plants and animals. Functional Ecology, 25, 18 – 28. https://doi.org/10.1111/j.1365‐2435.2010.01742.x
dc.identifier.citedreferenceBazzaz, F., Ackerly, D., Woodward, F., & Rochefort, L. ( 2013 ). CO enrichment and dependence of reproduction on density in an annual plant and a simulation of its population dynamics. Journal of Ecology, 80 ( 4 ), 643 – 651.
dc.identifier.citedreferenceBekaert, M., Edger, P. P., Hudson, C. M., Pires, J. C., & Conant, G. C. ( 2012 ). Metabolic and evolutionary costs of herbivory defense: Systems biology of glucosinolate synthesis. New Phytologist, 196 ( 2 ), 596 – 605. https://doi.org/10.1111/j.1469‐8137.2012.04302.x
dc.identifier.citedreferenceBidart‐Bouzat, M. G., Mithen, R., & Berenbaum, M. R. ( 2005 ). Elevated CO 2 influences herbivory‐induced defense responses of Arabidopsis thaliana. Oecologia, 145, 415 – 424. https://doi.org/10.1007/s00442‐005‐0158‐5
dc.identifier.citedreferenceBoege, K., Dirzo, R., Siemens, D., & Brown, P. ( 2007 ). Ontogenetic switches from plant resistance to tolerance: Minimizing costs with age? Ecology Letters, 10, 177 – 187. https://doi.org/10.1111/j.1461‐0248.2006.01012.x
dc.identifier.citedreferenceBorkin, S. S. ( 1982 ). The Great Lakes Entomologist Notes on Shifting Distribution Patterns and Survival of Immature Danaus Plexippus (Lepidoptera: Danaidae) on the Food Plant Asclepias syriaca. The Great Lakes Entomologist, 15.
dc.identifier.citedreferenceBurnham, K. P., & Anderson, D. R. ( 2002 ). Model Selection and Multimodel Inference: A Practical Information‐Theoretic Approach, ( 2nd ed. ). New York, NY: Springer Science & Business Media.
dc.identifier.citedreferenceColey, D. C., & Chapin, F. S. ( 1985 ). Resource Availability and Plant Antiherbivore Defense. Science (80‐), 230, 895 – 899. https://doi.org/10.1126/science.171.3973.757
dc.identifier.citedreferenceCrawley, M. J. ( 2012 ). Statistical Modelling. Chichester, UK: John Wiley & Sons Ltd.
dc.identifier.citedreferenceDecker, L. E., de Roode, J. C., & Hunter, M. D. ( 2018 ). Elevated atmospheric concentrations of carbon dioxide reduce monarch tolerance and increase parasite virulence by altering the medicinal properties of milkweeds. Ecology Letters, 21, 1353 – 1363. https://doi.org/10.1111/ele.13101
dc.identifier.citedreferenceDrake, B. G., Gonzalez‐Meler, M. A., & Long, S. P. ( 1997 ). More efficient plants: A consequence of rising atmospheric CO? Annual Review of Plant Physiology and Plant Molecular Biology, 48, 609 – 639. https://doi.org/10.1146/annurev.arplant.48.1.609
dc.identifier.citedreferenceDrake, B. G., Leadley, P. W., Arp, W. J., Nassiry, D., & Curtis, P. S. ( 1989 ). An open top chamber for field studies of elevated atmospheric CO 2 concentration on saltmarsh vegetation. Functional Ecology, 3, 363. https://doi.org/10.2307/2389377
dc.identifier.citedreferenceEndara, M. J., & Coley, P. D. ( 2011 ). The resource availability hypothesis revisited: A meta‐analysis. Functional Ecology, 25 ( 2 ), 389 – 398. https://doi.org/10.1111/j.1365‐2435.2010.01803.x
dc.identifier.citedreferenceFine, P. V. A., Miller, Z. J., Mesones, I. et al ( 2006 ). The growth‐defense trade‐off and habitat specialization by plants in Amazonian forests. Ecology, 87, https://doi.org/10.1890/0012‐9658(2006)87[150:TGTAHS]2.0.CO;2
dc.identifier.citedreferenceFineblum, W. L., Rausher, M. D. ( 1995 ). Tradeoff between resistance and tolerance to herbivore damage in a morning glory. Nature, 377, 517 – 520. https://doi.org/10.1038/377517a0
dc.identifier.citedreferenceFischer, S. J., Williams, E. H., Brower, L. P., & Palmiotto, P. A. ( 2015 ). Enhancing monarch butterfly reproduction by mowing fields of common milkweed. American Midland Naturalist, 173, 229 – 240. https://doi.org/10.1674/amid‐173‐02‐229‐240.1
dc.identifier.citedreferenceFornoni, J. ( 2011 ). Ecological and evolutionary implications of plant tolerance to herbivory. Functional Ecology, 25, 399 – 407. https://doi.org/10.1111/j.1365‐2435.2010.01805.x
dc.identifier.citedreferenceFornoni, J., Nú Ñ Ez‐Farfán J., Valverde P. L. ( 2003 ). Evolutionary ecology of tolerance to herbivory: Advances and perspectives. Comments on Theoretical Biology, 8, 643 – 663. https://doi.org/10.1080/08948550390234703
dc.identifier.citedreferenceGershenzon, J. ( 1994 ). Metabolic costs of terpenoid accumulation in higher plants. Journal of Chemical Ecology, 20 ( 6 ), 1281 – 1328. https://doi.org/10.1007/BF02059810
dc.identifier.citedreferenceGuo, H., Sun, Y., Ren, Q., Zhu‐Salzman, K., Kang, L. E., Wang, C., … Ge, F. ( 2012 ). Elevated CO 2 Reduces the Resistance and Tolerance of Tomato Plants to Helicoverpa armigera by Suppressing the JA Signaling Pathway. PLoS ONE, 7, e41426. https://doi.org/10.1371/journal.pone.0041426
dc.identifier.citedreferenceHaan, N. L., & Landis, D. A. ( 2019 ). Grassland disturbance increases monarch butterfly oviposition and decreases arthropod predator abundance. Biological Conservation, 233, 185 – 192. https://doi.org/10.1016/j.biocon.2019.03.007
dc.identifier.citedreferenceHahn, P. G., Agrawal, A. A., Sussman, K. I., & Maron, J. L. ( 2019 ). Population variation, environmental gradients, and the evolutionary ecology of plant defense against herbivory. American Naturalist, 193 ( 1 ), 20 – 34. https://doi.org/10.1086/700838
dc.identifier.citedreferenceHahn, P. G., & Maron, J. L. ( 2016 ). A framework for predicting intraspecific variation in plant defense. Trends in Ecology & Evolution, 31 ( 8 ), 646 – 656. https://doi.org/10.1016/j.tree.2016.05.007
dc.identifier.citedreferenceHerms, D. A., & Mattson, W. J. ( 1992 ). The dilemma of plants: To grow or defend. The Quarterly Review of Biology, 67, 283 – 335. https://doi.org/10.1086/417659
dc.identifier.citedreferenceHochwender, C. G., Marquis, R. J., & Stowe, K. A. ( 2000 ). The potential for and constraints on the evolution of compensatory ability in Asclepias syriaca. Oecologia, 122, 361 – 370. https://doi.org/10.1007/s004420050042
dc.identifier.citedreferenceHungate, B. A., Johnson, D. W., Dijkstra, P. et al ( 2006 ). Nitrogen cycling during seven years of atmospheric CO2 enrichment in a scrub oak woodland. Ecology, https://doi.org/10.1890/04‐1732
dc.identifier.citedreferenceHunter, M. D. ( 2001 ). Effects of elevated atmospheric carbon dioxide on insect‐plant interactions. Agricultural and Forest Entomology, 3, 153 – 159. https://doi.org/10.1046/j.1461‐9555.2001.00108.x
dc.identifier.citedreferenceJia, X., Zhao, Y., Liu, T., & Huang, S. ( 2016 ). Elevated CO 2 affects secondary metabolites in Robinia pseudoacacia L. seedlings in Cd‐ and Pb‐ contaminated soils. Chemosphere, 160, 199 – 207. https://doi.org/10.1016/J.CHEMOSPHERE.2016.06.089
dc.identifier.citedreferenceKarban, R., & Baldwin, I. T. ( 2013 ). Induced Responses to Herbivory. Chicago, IL: University of Chicago Press.
dc.identifier.citedreferenceKasten, K., Stenoien, C., Caldwell, W., & Oberhauser, K. S. ( 2016 ). Can roadside habitat lead monarchs on a route to recovery? Journal of Insect Conservation, 20, 1047 – 1057. https://doi.org/10.1007/s10841‐016‐9938‐y
dc.identifier.citedreferenceKimball, B. A. ( 1983 ). Carbon dioxide and agricultural yield: An assemblage and analysis of 430 prior observations. Agronomy Journal, 75, 779. https://doi.org/10.2134/agronj1983.00021962007500050014x
dc.identifier.citedreferenceKlaiber, J., Dorn, S., & Najar‐Rodriguez, A. J. ( 2013 ). Acclimation to elevated CO 2 increases constitutive glucosinolate levels of brassica plants and affects the performance of specialized herbivores from contrasting feeding guilds. Journal of Chemical Ecology, 39, 653 – 665. https://doi.org/10.1007/s10886‐013‐0282‐3
dc.identifier.citedreferenceKnight, S. M., Norris, D. R., Derbyshire, R., & Flockhart, D. T. T. ( 2019 ). Strategic mowing of roadside milkweeds increases monarch butterfly oviposition. Global Ecology and Conservation, 19, e00678. https://doi.org/10.1016/j.gecco.2019.e00678
dc.identifier.citedreferenceLau, J. A., & Tiffin, P. ( 2009 ). Elevated carbon dioxide concentrations indirectly affect plant fitness by altering plant tolerance to herbivory. Oecologia, 161, 401 – 410. https://doi.org/10.1007/s00442‐009‐1384‐z
dc.identifier.citedreferenceLeadley, P. W., Niklaus, P. A., Stocker, R., & Körner, C. ( 1999 ). A field study of the effects of elevated CO 2 on plant biomass and community structure in a calcareous grassland. Oecologia, 118, 39 – 49. https://doi.org/10.1007/s004420050701
dc.identifier.citedreferenceMalcolm, S. B. ( 2017 ). Anthropogenic impacts on mortality and population viability of the monarch butterfly. Annual Review of Entomology, 63, 277 – 302. https://doi.org/10.1146/annurev‐ento‐020117‐043241
dc.identifier.citedreferenceMalcolm, S. B., & Zalucki, M. P. ( 1996 ). Milkweed latex and cardenolide induction may resolve the lethal plant defence paradox. Entomologia Experimentalis Et Applicata, 80, 193 – 196. https://doi.org/10.1111/j.1570‐7458.1996.tb00916.x
dc.identifier.citedreferenceMarshall, C. B., Avila‐Sakar, G., & Reekie, E. G. ( 2008 ). Effects of nutrient and CO 2 availability on tolerance to herbivory in Brassica rapa. Plant Ecology, 196, 1 – 13. https://doi.org/10.1007/s11258‐007‐9331‐8
dc.identifier.citedreferenceMatiella, T. J. ( 2012 ) The effects of carbon dioxide on three Species of milkweed ( Asclepiadaceae ) and Monarch butterfly ( Danaus plexippus ) larva feeding preference. Retrieved from ProQuest Diss. Theses.
dc.identifier.citedreferenceMcCloud, E. S., & Baldwin, I. T. ( 1997 ). Herbivory and caterpillar regurgitants amplify the wound‐induced increases in jasmonic acid but not nicotine in Nicotiana sylvestris. Planta, 203 ( 4 ), 430 – 435. https://doi.org/10.1007/s004250050210
dc.identifier.citedreferenceMeier, A. R., & Hunter, M. D. ( 2019 ). Mycorrhizae alter constitutive and herbivore‐induced volatile emissions by milkweeds. Journal of Chemical Ecology, 45, 610 – 625. https://doi.org/10.1007/s10886‐019‐01080‐6
dc.identifier.citedreferenceMueller, E. K., & Baum, K. A. ( 2014 ). Monarch–parasite interactions in managed and roadside prairies. Journal of Insect Conservation, 18, 847 – 853. https://doi.org/10.1007/s10841‐014‐9691‐z
dc.identifier.citedreferenceNúñez‐Farfán, J., Fornoni, J., & Valverde, P. L. ( 2007 ). The evolution of resistance and tolerance to herbivores. Annual Review of Ecology Evolution and Systematics, 38, 541 – 566. https://doi.org/10.1146/annurev.ecolsys.38.091206.095822
dc.identifier.citedreferenceOde, P. J., Johnson, S. N., & Moore, B. D. ( 2014 ). Atmospheric change and induced plant secondary metabolites — are we reshaping the building blocks of multi‐trophic interactions? Curr Opin Insect Sci, 5, 57 – 65. https://doi.org/10.1016/j.cois.2014.09.006
dc.identifier.citedreferenceOksanen, B. F., Friendly, M. et al ( 2017 ). Vegan: An introduction to ordination. Vegan Community Ecol. Packag. R Packag. version 2.4‐3.
dc.identifier.citedreferenceR Core Team ( 2019 ). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria.
dc.identifier.citedreferenceRasmann, S., & Agrawal, A. A. ( 2011 ). Latitudinal patterns in plant defense: Evolution of cardenolides, their toxicity and induction following herbivory. Ecology Letters, 14, 476 – 483. https://doi.org/10.1111/j.1461‐0248.2011.01609.x
dc.identifier.citedreferenceRhoades, D. F. ( 1985 ). Offensive‐defensive interactions between herbivores and plants: Their relevance in herbivore population dynamics and ecological theory. American Naturalist, 125, 205 – 238. https://doi.org/10.1086/284338
dc.identifier.citedreferenceRobinson, E. A., Ryan, G. D., & Newman, J. A. ( 2012 ). A meta‐analytical review of the effects of elevated CO 2 on plant–arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytologist, 194, 321 – 336. https://doi.org/10.1111/j.1469‐8137.2012.04074.x
dc.identifier.citedreferenceRosenthal, J. P., & Kotanen, P. M. ( 1994 ). Terrestrial plant tolerance to herbivory. Trends in Ecology & Evolution, 9, 145 – 148. https://doi.org/10.1016/0169‐5347(94)90180‐5
dc.identifier.citedreferenceRyan, G. D., Rasmussen, S., & Newman, J. A. ( 2010 ). Global atmospheric change and trophic interactions: Are there any general responses? Plant Commun from an Ecoogical Perspect, 179 – 214, https://doi.org/10.1007/978‐3‐642‐12162‐3_11
dc.identifier.citedreferenceSimms, E. L., & Rausher, M. D. ( 1987 ). Costs and benefits of plant resistance to herbivory. American Naturalist, 130, 570 – 581. https://doi.org/10.1086/284731
dc.identifier.citedreferenceStamp, N. ( 2003 ). Out of the quagmire of plant defense hypotheses. The Quarterly Review of Biology, 78, 23 – 55. https://doi.org/10.1086/367580
dc.identifier.citedreferenceStamp, N. ( 2004 ). Can the growth‐differentiation balance hypothesis be tested rigorously? Oikos, 107, 439 – 448. https://doi.org/10.1111/j.0030‐1299.2004.12039.x
dc.identifier.citedreferenceStenoien, C., Nail, K. R., Zalucki, J. M., Parry, H., Oberhauser, K. S., & Zalucki, M. P. ( 2016 ). Monarchs in decline: A collateral landscape‐level effect of modern agriculture. Insect Science, https://doi.org/10.1111/1744‐7917.12404
dc.identifier.citedreferenceSternberg, E. D., Lefevre, T., Li, J., De Castillejo, C. L. F., Li, H., Hunter, M. D., & De Roode, J. C. ( 2012 ). Food plant‐derived disease tolerance and resistance in a natural butterfly‐ plant‐parasite interactions. Evolution (N Y), 66, 3367 – 3377. https://doi.org/10.5061/dryad.82j66
dc.identifier.citedreferenceStiling, P., Moon, D., Rossi, A. et al ( 2013 ). Direct and legacy effects of long‐term elevated CO 2 on fine root growth and plant‐insect interactions. New Phytologist, 200, 788 – 795. https://doi.org/10.1111/nph.12295
dc.identifier.citedreferenceStrauss, S. Y., & Agrawal, A. A. ( 1999 ). The ecology and evolution of plant tolerance to herbivory. Trends in Ecology & Evolution, 14, 179 – 185. https://doi.org/10.1016/S0169‐5347(98)01576‐6
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.