Show simple item record

Dietary yeast influences ethanol sedation in Drosophila via serotonergic neuron function

dc.contributor.authorSchmitt, Rebecca E.
dc.contributor.authorMessick, Monica R.
dc.contributor.authorShell, Brandon C.
dc.contributor.authorDunbar, Ellyn K.
dc.contributor.authorFang, Huai‐fang
dc.contributor.authorShelton, Keith L.
dc.contributor.authorVenton, B. Jill
dc.contributor.authorPletcher, Scott D.
dc.contributor.authorGrotewiel, Mike
dc.date.accessioned2020-07-02T20:34:29Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-07-02T20:34:29Z
dc.date.issued2020-07
dc.identifier.citationSchmitt, Rebecca E.; Messick, Monica R.; Shell, Brandon C.; Dunbar, Ellyn K.; Fang, Huai‐fang ; Shelton, Keith L.; Venton, B. Jill; Pletcher, Scott D.; Grotewiel, Mike (2020). "Dietary yeast influences ethanol sedation in Drosophila via serotonergic neuron function." Addiction Biology 25(4): n/a-n/a.
dc.identifier.issn1355-6215
dc.identifier.issn1369-1600
dc.identifier.urihttps://hdl.handle.net/2027.42/155987
dc.description.abstractAbuse of alcohol is a major clinical problem with far- reaching health consequences. Understanding the environmental and genetic factors that contribute to alcohol- related behaviors is a potential gateway for developing novel therapeutic approaches for patients that abuse the drug. To this end, we have used Drosophila melanogaster as a model to investigate the effect of diet, an environmental factor, on ethanol sedation. Providing flies with diets high in yeast, a routinely used component of fly media, increased their resistance to ethanol sedation. The yeast- induced resistance to ethanol sedation occurred in several different genetic backgrounds, was observed in males and females, was elicited by yeast from different sources, was readily reversible, and was associated with increased nutrient intake as well as decreased internal ethanol levels. Inhibition of serotonergic neuron function using multiple independent genetic manipulations blocked the effect of yeast supplementation on ethanol sedation, nutrient intake, and internal ethanol levels. Our results demonstrate that yeast is a critical dietary component that influences ethanol sedation in flies and that serotonergic signaling is required for the effect of dietary yeast on nutrient intake, ethanol uptake/elimination, and ethanol sedation. Our studies establish the fly as a model for diet- induced changes in ethanol sedation and raise the possibility that serotonin might mediate the effect of diet on alcohol- related behavior in other species.Flies fed a high yeast diet consume more nutrients, have decreased levels of internal ethanol when exposed to ethanol vapor and require longer exposure to ethanol to become sedated (ie, increased ST50). Our studies implicate serotonergic neurons as key regulators of nutrient consumption and therefore, the effect of dietary yeast on ethanol sedation in flies.
dc.publisherWiley Periodicals, Inc.
dc.publisherAcademic Press
dc.subject.otherdiet
dc.subject.otherbehavior
dc.subject.otherDrosophila
dc.subject.otheralcohol
dc.subject.otherethanol
dc.subject.othersedation
dc.titleDietary yeast influences ethanol sedation in Drosophila via serotonergic neuron function
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurology and Neurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155987/1/adb12779.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155987/2/adb12779_am.pdf
dc.identifier.doi10.1111/adb.12779
dc.identifier.sourceAddiction Biology
dc.identifier.citedreferenceDenno ME, Privman E, Borman RP, Wolin DC, Venton BJ. Quantification of histamine and carcinine in Drosophila melanogaster tissues. ACS Chem Nerosci. 2016; 7 ( 3 ): 407 - 414.
dc.identifier.citedreferenceAlekseyenko OV, Lee C, Kravitz EA. Targeted manipulation of serotonergic neurotransmission affects the escalation of aggression in adult male Drosophila melanogaster. PLoS ONE. 2010; 5 ( 5 ): e10806.
dc.identifier.citedreferenceBaines RA, Uhler JP, Thompson A, Sweeney ST, Bate M. Altered electrical properties in Drosophila neurons developing without synaptic transmission. J Neurosci. 2001; 21 ( 5 ): 1523 - 1531.
dc.identifier.citedreferenceFang H, Vickrey TL, Venton BJ. Analysis of biogenic amines in a single Drosophila larva brain by capillary electrophoresis with fast- scan cyclic voltammetry detection. Anal Chem. 2011; 83 ( 6 ): 2258 - 2264.
dc.identifier.citedreferenceDenno ME, Privman E, Venton BJ. Analysis of neurotransmitter tissue content of Drosophila melanogaster in different life stages. ACS Chem Nerosci. 2015; 6 ( 1 ): 117 - 123.
dc.identifier.citedreferencePoirier L, Shane A, Zheng J, Seroude L. Characterization of the Drosophila gene- switch system in aging studies: a cautionary tale. Aging Cell. 2008; 7 ( 5 ): 758 - 770.
dc.identifier.citedreferenceShaposhnikov M, Proshkina E, Shilova L, Zhavoronkov A, Moskalev A. Lifespan and stress resistance in Drosophila with overexpressed DNA repair genes. Sci Rep. 2015; 5: 15299.
dc.identifier.citedreferenceHwangbo DS, Gershman B, Tu MP, Palmer M, Tatar M. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature. 2004; 429 ( 6991 ): 562 - 566.
dc.identifier.citedreferenceLopez- Alvarez A, Diaz- Perez AL, Sosa- Aguirre C, Macias- Rodriguez L, Campos- Garcia J. Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe- 1 comparing with Saccharomyces cerevisiae baker’s yeast used in tequila production. J Biosci Bioeng. 2012; 113 ( 5 ): 614 - 618.
dc.identifier.citedreferenceShiroma S, Jayakody LN, Horie K, Okamoto K, Kitagaki H. Enhancement of ethanol fermentation in Saccharomyces cerevisiae sake yeast by disrupting mitophagy function. Appl Environ Microbiol. 2014; 80 ( 3 ): 1002 - 1012.
dc.identifier.citedreferenceSnoek T, Verstrepen KJ, Voordeckers K. How do yeast cells become tolerant to high ethanol concentrations? Curr Genet. 2016; 62 ( 3 ): 475 - 480.
dc.identifier.citedreferenceAldrete- Tapia JA, Miranda- Castilleja DE, Arvizu- Medrano SM, Hernandez- Iturriaga M. Selection of yeast strains for tequila fermentation based on growth dynamics in combined fructose and ethanol media. J Food Sci. 2018; 83 ( 2 ): 419 - 423.
dc.identifier.citedreferenceDeshpande SA, Carvalho GB, Amador A, et al. Quantifying Drosophila food intake: comparative analysis of current methodology. Nat Methods. 2014; 11 ( 5 ): 535 - 540.
dc.identifier.citedreferenceDevineni AV, Heberlein U. Acute ethanol responses in Drosophila are sexually dimorphic. Proc Natl Acad Sci U S A. 2012; 109 ( 51 ): 21087 - 21092.
dc.identifier.citedreferenceRhodenizer D, Martin I, Bhandari P, Pletcher SD, Grotewiel M. Genetic and environmental factors impact age- related impairment of negative geotaxis in Drosophila by altering age- dependent climbing speed. Exp Gerontol. 2008; 43 ( 8 ): 739 - 748.
dc.identifier.citedreferenceGargano JW, Martin I, Bhandari P, Grotewiel MS. Rapid iterative negative geotaxis (RING): a new method for assessing age- related locomotor decline in Drosophila. Exp Gerontol. 2005; 40 ( 5 ): 386 - 395.
dc.identifier.citedreferenceRovenko BM, Kubrak OI, Gospodaryov DV, et al. High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster. J Insect Physiol. 2015; 79: 42 - 54.
dc.identifier.citedreferenceRovenko BM, Perkhulyn NV, Gospodaryov DV, Sanz A, Lushchak OV, Lushchak VI. High consumption of fructose rather than glucose promotes a diet- induced obese phenotype in Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol. 2015; 180: 75 - 85.
dc.identifier.citedreferenceCarvalho GB, Kapahi P, Benzer S. Compensatory ingestion upon dietary restriction in Drosophila melanogaster. Nat Methods. 2005; 2 ( 11 ): 813 - 815.
dc.identifier.citedreferenceLibert S, Zwiener J, Chu X, Vanvoorhies W, Roman G, Pletcher SD. Regulation of Drosophila life span by olfaction and food- derived odors. Science. 2007; 315 ( 5815 ): 1133 - 1137.
dc.identifier.citedreferenceRegalado JM, Cortez MB, Grubbs J, Link JA, van der Linden A, Zhang Y. Increased food intake after starvation enhances sleep in Drosophila melanogaster. J Genet Genomics = Yi chuan xue bao. 2017; 44 ( 6 ): 319 - 326.
dc.identifier.citedreferenceTrindade de Paula M, Poetini Silva MR, Machado Araujo S, et al. High- fat diet induces oxidative stress and MPK2 and HSP83 gene expression in Drosophila melanogaster. Oxid Med Cell Longev. 2016; 2016: 4018157.
dc.identifier.citedreferenceSchriner SE, Coskun V, Hogan SP, Nguyen CT, Lopez TE, Jafari M. Extension of Drosophila lifespan by Rhodiola rosea depends on dietary carbohydrate and caloric content in a simplified diet. J Med Food. 2016; 19 ( 3 ): 318 - 323.
dc.identifier.citedreferenceReis T. Effects of synthetic diets enriched in specific nutrients on Drosophila development, body fat, and lifespan. PLoS ONE. 2016; 11 ( 1 ): e0146758.
dc.identifier.citedreferenceNavrotskaya V, Oxenkrug G, Vorobyova L, Summergrad P. Attenuation of high sucrose diet- induced insulin resistance in ABC transporter deficient white mutant of Drosophila melanogaster. Integr Obes Diabetes. 2016; 2 ( 2 ): 187 - 190.
dc.identifier.citedreferenceDew- Budd K, Jarnigan J, Reed LK. Genetic and sex- specific transgenerational effects of a high fat diet in Drosophila melanogaster. PLoS ONE. 2016; 11 ( 8 ): e0160857.
dc.identifier.citedreferenceLaye MJ, Tran V, Jones DP, Kapahi P, Promislow DE. The effects of age and dietary restriction on the tissue- specific metabolome of Drosophila. Aging Cell. 2015; 14 ( 5 ): 797 - 808.
dc.identifier.citedreferenceHolmbeck MA, Rand DM. Dietary fatty acids and temperature modulate mitochondrial function and longevity in Drosophila. J Gerontol A Biol Sci Med Sci. 2015; 70 ( 11 ): 1343 - 1354.
dc.identifier.citedreferenceBirse RT, Choi J, Reardon K, et al. High- fat- diet- induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metab. 2010; 12 ( 5 ): 533 - 544.
dc.identifier.citedreferenceMorris SN, Coogan C, Chamseddin K, et al. Development of diet- induced insulin resistance in adult Drosophila melanogaster. Biochim Biophys Acta. 2012; 1822 ( 8 ): 1230 - 1237.
dc.identifier.citedreferenceSchoofs A, Huckesfeld S, Pankratz MJ. Serotonergic network in the subesophageal zone modulates the motor pattern for food intake in Drosophila. J Insect Physiol. 2018; 106 ( Pt 1 ): 36 - 46.
dc.identifier.citedreferenceQuinn PD, Fromme K. Individual differences in subjective alcohol responses and alcohol- related disinhibition. Exp Clin Psychopharmacol. 2016; 24 ( 2 ): 90 - 99.
dc.identifier.citedreferenceCaneto F, Pautassi RM, Pilatti A. Ethanol- induced autonomic responses and risk taking increase in young adults with a positive family history of alcohol problems. Addict Behav. 2018; 76: 174 - 181.
dc.identifier.citedreferenceSpanagel R. Alcoholism: a systems approach from molecular physiology to addictive behavior. Physiol Rev. 2009; 89 ( 2 ): 649 - 705.
dc.identifier.citedreferenceDHHS. 10th Special Report to the U.S. Congress on Alcohol and Health: Highlights from Current Research. 2000.
dc.identifier.citedreferenceWHO. Global status report on alcohol and health 2014. 2014.
dc.identifier.citedreferenceHeath AC, Bucholz KK, Madden PA, et al. Genetic and environmental contributions to alcohol dependence risk in a national twin sample: consistency of findings in women and men. Psychol Med. 1997; 27 ( 6 ): 1381 - 1396.
dc.identifier.citedreferenceKendler KS, Prescott CA, Neale MC, Pedersen NL. Temperance board registration for alcohol abuse in a national sample of Swedish male twins, born 1902 to 1949. Arch Gen Psychiatry. 1997; 54 ( 2 ): 178 - 184.
dc.identifier.citedreferenceTrue WR, Heath AC, Bucholz K, et al. Models of treatment seeking for alcoholism: the role of genes and environment. Alcohol Clin Exp Res. 1996; 20 ( 9 ): 1577 - 1581.
dc.identifier.citedreferenceKalu N, Ramchandani VA, Marshall V, et al. Heritability of level of response and association with recent drinking history in nonalcohol- dependent drinkers. Alcohol Clin Exp Res. 2012; 36 ( 6 ): 522 - 529.
dc.identifier.citedreferenceKaun KR, Devineni AV, Heberlein U. Drosophila melanogaster as a model to study drug addiction. Hum Genet. 2012; 131 ( 6 ): 959 - 975.
dc.identifier.citedreferenceDevineni AV, Heberlein U. The evolution of Drosophila melanogaster as a model for alcohol research. Annu Rev Neurosci. 2013; 36: 121 - 138.
dc.identifier.citedreferenceRothenfluh A, Troutwine BR, Ghezzi A, Atkinson NS. The genetics of alcohol responses of invertebrate model systems. In: Noronha A, Cui C, Harris RA, Crabbe JC, eds. Neurobiology of Alcohol Dependence. London: Academic Press; 2014: 467 - 495.
dc.identifier.citedreferenceGrotewiel M, Bettinger JC. Drosophila and Caenorhabditis elegans as discovery platforms for genes involved in human alcohol use disorder. Alcohol Clin Exp Res. 2015; 39 ( 8 ): 1292 - 1311.
dc.identifier.citedreferenceKapfhamer D, King I, Zou ME, Lim JP, Heberlein U, Wolf FW. JNK pathway activation is controlled by Tao/TAOK3 to modulate ethanol sensitivity. PLoS ONE. 2012; 7 ( 12 ): e50594.
dc.identifier.citedreferenceWolf FW, Rodan AR, Tsai LT, Heberlein U. High- resolution analysis of ethanol- induced locomotor stimulation in Drosophila. J Neurosci. 2002; 22 ( 24 ): 11035 - 11044.
dc.identifier.citedreferenceAdkins AE, Hack LM, Bigdeli TB, et al. Genomewide association study of alcohol dependence identifies risk loci altering ethanol- response behaviors in model organisms. Alcohol Clin Exp Res. 2017; 41 ( 5 ): 911 - 928.
dc.identifier.citedreferenceSandhu S, Kollah AP, Lewellyn L, Chan RF, Grotewiel M. An inexpensive, scalable behavioral assay for measuring ethanol sedation sensitivity and rapid tolerance in Drosophila. J Vis Exp: JoVE. 2015; 98: e52676.
dc.identifier.citedreferenceAcevedo SF, Gonzalez DA, Rodan AR, Rothenfluh A. S6 Kinase reflects and regulates ethanol- induced sedation. J Neurosci. 2015; 35 ( 46 ): 15396 - 15402.
dc.identifier.citedreferenceChan RF, Lewellyn L, DeLoyht JM, et al. Contrasting influences of Drosophila white/mini- white on ethanol sensitivity in two different behavioral assays. Alcohol Clin Exp Res. 2014; 38 ( 6 ): 1582 - 1593.
dc.identifier.citedreferenceBhandari P, Hill JS, Farris SP, et al. Chloride intracellular channels modulate acute ethanol behaviors in Drosophila, Caenorhabditis elegans and mice. Genes Brain Behav. 2012; 11 ( 4 ): 387 - 397.
dc.identifier.citedreferenceMaples T, Rothenfluh A. A simple way to measure ethanol sensitivity in flies. J Vis Exp: JoVE. 2011 ( 48 ): e2541.
dc.identifier.citedreferenceBhandari P, Kendler KS, Bettinger JC, Davies AG, Grotewiel M. An assay for evoked locomotor behavior in Drosophila reveals a role for integrins in ethanol sensitivity and rapid ethanol tolerance. Alcohol Clin Exp Res. 2009; 33 ( 10 ): 1794 - 1805.
dc.identifier.citedreferenceGhezzi A, Krishnan HR, Atkinson NS. Susceptibility to ethanol withdrawal seizures is produced by BK channel gene expression. Addict Biol. 2012; 19 ( 3 ): 332 - 337.
dc.identifier.citedreferenceScholz H, Ramond J, Singh CM, Heberlein U. Functional ethanol tolerance in Drosophila. Neuron. 2000; 28 ( 1 ): 261 - 271.
dc.identifier.citedreferenceBerger KH, Heberlein U, Moore MS. Rapid and chronic: two distinct forms of ethanol tolerance in Drosophila. Alcohol Clin Exp Res. 2004; 28 ( 10 ): 1469 - 1480.
dc.identifier.citedreferenceGhezzi A, Al- Hasan YM, Larios LE, Bohm RA, Atkinson NS. slo K(+) channel gene regulation mediates rapid drug tolerance. Proc Natl Acad Sci U S A. 2004; 101 ( 49 ): 17276 - 17281.
dc.identifier.citedreferenceJa WW, Carvalho GB, Mak EM, et al. Prandiology of Drosophila and the CAFE assay. Proc Natl Acad Sci U S A. 2007; 104 ( 20 ): 8253 - 8256.
dc.identifier.citedreferenceEngel GL, Marella S, Kaun KR, et al. Sir2/Sirt1 links acute inebriation to presynaptic changes and the development of alcohol tolerance, preference, and reward. J Neurosci. 2016; 36 ( 19 ): 5241 - 5251.
dc.identifier.citedreferencePeru y Colón de Portugal RL, Ojelade SA, Penninti PS, et al. Long- lasting, experience- dependent alcohol preference in Drosophila. Addict Biol. 2014; 19 ( 3 ): 392 - 401.
dc.identifier.citedreferencePohl JB, Baldwin BA, Dinh BL, et al. Ethanol preference in Drosophila melanogaster is driven by its caloric value. Alcohol Clin Exp Res. 2012; 36 ( 11 ): 1903 - 1912.
dc.identifier.citedreferenceOgueta M, Cibik O, Eltrop R, Schneider A, Scholz H. The influence of Adh function on ethanol preference and tolerance in adult Drosophila melanogaster. Chem Senses. 2010; 35 ( 9 ): 813 - 822.
dc.identifier.citedreferenceDzitoyeva S, Dimitrijevic N, Manev H. Gamma- aminobutyric acid B receptor 1 mediates behavior- impairing actions of alcohol in Drosophila: adult RNA interference and pharmacological evidence. Proc Natl Acad Sci U S A. 2003; 100 ( 9 ): 5485 - 5490.
dc.identifier.citedreferenceKumar S, Porcu P, Werner DF, et al. The role of GABA(A) receptors in the acute and chronic effects of ethanol: a decade of progress. Psychopharmacology (Berl). 2009; 205 ( 4 ): 529 - 564.
dc.identifier.citedreferenceBettinger JC, Davies AG. The role of the BK channel in ethanol response behaviors: evidence from model organism and human studies. Front Physiol. 2014; 5: 346.
dc.identifier.citedreferenceWen T, Parrish CA, Xu D, Wu Q, Shen P. Drosophila neuropeptide F and its receptor, NPFR1, define a signaling pathway that acutely modulates alcohol sensitivity. Proc Natl Acad Sci U S A. 2005; 102 ( 6 ): 2141 - 2146.
dc.identifier.citedreferenceDavies AG, Bettinger JC, Thiele TR, Judy ME, McIntire SL. Natural variation in the npr- 1 gene modifies ethanol responses of wild strains of C. elegans. Neuron. 2004; 42 ( 5 ): 731 - 743.
dc.identifier.citedreferenceXu K, Kranzler HR, Sherva R, et al. Genomewide association study for maximum number of alcoholic drinks in European Americans and African Americans. Alcohol Clin Exp Res. 2015; 39 ( 7 ): 1137 - 1147.
dc.identifier.citedreferenceLi D, Zhao H, Gelernter J. Further clarification of the contribution of the ADH1C gene to vulnerability of alcoholism and selected liver diseases. Hum Genet. 2012; 131 ( 8 ): 1361 - 1374.
dc.identifier.citedreferenceLi D, Zhao H, Gelernter J. Strong association of the alcohol dehydrogenase 1B gene (ADH1B) with alcohol dependence and alcohol- induced medical diseases. Biol Psychiatry. 2011; 70 ( 6 ): 504 - 512.
dc.identifier.citedreferenceOjelade SA, Jia T, Rodan AR, et al. Rsu1 regulates ethanol consumption in Drosophila and humans. Proc Natl Acad Sci U S A. 2015; 112 ( 30 ): E4085 - E4093.
dc.identifier.citedreferenceSchumann G, Coin LJ, Lourdusamy A, et al. Genome- wide association and genetic functional studies identify autism susceptibility candidate 2 gene (AUTS2) in the regulation of alcohol consumption. Proc Natl Acad Sci U S A. 2011; 108 ( 17 ): 7119 - 7124.
dc.identifier.citedreferenceNesic J, Duka T. Effects of stress and dietary tryptophan enhancement on craving for alcohol in binge and non- binge heavy drinkers. Behav Pharmacol. 2014; 25 ( 5- 6 ): 503 - 517.
dc.identifier.citedreferenceLahti- Koski M, Pietinen P, Heliovaara M, Vartiainen E. Associations of body mass index and obesity with physical activity, food choices, alcohol intake, and smoking in the 1982- 1997 FINRISK Studies. Am J Clin Nutr. 2002; 75 ( 5 ): 809 - 817.
dc.identifier.citedreferenceLichenstein SD, Jones BL, O’Brien JW, et al. Familial risk for alcohol dependence and developmental changes in BMI: the moderating influence of addiction and obesity genes. Pharmacogenomics. 2014; 15 ( 10 ): 1311 - 1321.
dc.identifier.citedreferenceBarry D, Petry NM. Associations between body mass index and substance use disorders differ by gender: results from the National Epidemiologic Survey on Alcohol and Related Conditions. Addict Behav. 2009; 34 ( 1 ): 51 - 60.
dc.identifier.citedreferenceGuccione L, Paolini AG, Penman J, Djouma E. The effects of calorie restriction on operant- responding for alcohol in the alcohol preferring (iP) rat. Behav Brain Res. 2012; 230 ( 1 ): 281 - 287.
dc.identifier.citedreferenceAnji A, Kumari M. Supplementing the liquid alcohol diet with chow enhances alcohol intake in C57 BL/6 mice. Drug Alcohol Depend. 2008; 97 ( 1- 2 ): 86 - 93.
dc.identifier.citedreferenceMarshall SA, Rinker JA, Harrison LK, Fletcher CA, Herfel TM, Thiele TE. Assessment of the effects of 6 standard rodent diets on binge- like and voluntary ethanol consumption in male C57BL/6J mice. Alcohol Clin Exp Res. 2015; 39 ( 8 ): 1406 - 1416.
dc.identifier.citedreferenceWolstenholme JT, Bowers MS, Pais AB, et al. Dietary omega- 3 fatty acids differentially impact acute ethanol- responsive behaviors and ethanol consumption in DBA/2J versus C57BL/6J mice. Alcohol Clin Exp Res. 2018; 42 ( 8 ): 1476 - 1485.
dc.identifier.citedreferenceRaabe RC, Mathies LD, Davies AG, Bettinger JC. The omega- 3 fatty acid eicosapentaenoic acid is required for normal alcohol response behaviors in C. elegans. PLoS ONE. 2014; 9 ( 8 ): e105999.
dc.identifier.citedreferenceWang L, Liu X, Luo X, Zeng M, Zuo L, Wang KS. Genetic variants in the fat mass- and obesity- associated (FTO) gene are associated with alcohol dependence. J Mol Neurosci: MN. 2013; 51 ( 2 ): 416 - 424.
dc.identifier.citedreferenceWang KS, Zuo L, Pan Y, Xie C, Luo X. Genetic variants in the CPNE5 gene are associated with alcohol dependence and obesity in Caucasian populations. J Psychiatr Res. 2015; 71: 1 - 7.
dc.identifier.citedreferenceMattoo SK, Chakraborty K, Basu D, Ghosh A, Vijaya Kumar KG, Kulhara P. Prevalence & correlates of metabolic syndrome in alcohol & opioid dependent inpatients. Indian J Med Res. 2011; 134: 341 - 348.
dc.identifier.citedreferenceSekhon ML, Lamina O, Hogan KE, Kliethermes CL. Common genes regulate food and ethanol intake in Drosophila. Alcohol. 2016; 53: 27 - 34.
dc.identifier.citedreferenceRo J, Pak G, Malec PA, et al. Serotonin signaling mediates protein valuation and aging. Elife. 2016; 5. https://doi.org/10.7554/elife.16843
dc.identifier.citedreferenceGasque G, Conway S, Huang J, Rao Y, Vosshall LB. Small molecule drug screening in Drosophila identifies the 5HT2A receptor as a feeding modulation target. Sci Rep. 2013; 3 ( 1 ): srep02120.
dc.identifier.citedreferenceTsao CH, Chen CC, Lin CH, Yang HY, Lin S. Drosophila mushroom bodies integrate hunger and satiety signals to control innate food- seeking behavior. Elife. 2018; 7: e35264.
dc.identifier.citedreferenceAlbin SD, Kaun KR, Knapp JM, Chung P, Heberlein U, Simpson JH. A subset of serotonergic neurons evokes hunger in adult Drosophila. Curr Biol. 2015; 25 ( 18 ): 2435 - 2440.
dc.identifier.citedreferenceChen J, Zhang Y, Shen P. Protein kinase C deficiency- induced alcohol insensitivity and underlying cellular targets in Drosophila. Neuroscience. 2010; 166 ( 1 ): 34 - 39.
dc.identifier.citedreferencePlemenitas A, Kastelic M, Porcelli S, Serretti A, Dolzan V, Kores Plesnicar B. Alcohol dependence and genetic variability in the serotonin pathway among currently and formerly alcohol- dependent males. Neuropsychobiology. 2015; 72 ( 1 ): 57 - 64.
dc.identifier.citedreferenceTikkanen R, Tiihonen J, Rautiainen MR, et al. Impulsive alcohol- related risk- behavior and emotional dysregulation among individuals with a serotonin 2B receptor stop codon. Transl Psychiatry. 2015; 5 ( 11 ): e681.
dc.identifier.citedreferenceCope LM, Munier EC, Trucco EM, et al. Effects of the serotonin transporter gene, sensitivity of response to alcohol, and parental monitoring on risk for problem alcohol use. Alcohol. 2017; 59: 7 - 16.
dc.identifier.citedreferenceWang FL, Chassin L. Negative urgency mediates the relation between genetically- influenced serotonin functioning and alcohol problems. Clin Psychol Sci. 2018; 6 ( 1 ): 106 - 122.
dc.identifier.citedreferenceWang FL, Chassin L, Bates JE, et al. Serotonin functioning and adolescents’ alcohol use: a genetically informed study examining mechanisms of risk. Dev Psychopathol. 2018; 30 ( 1 ): 213 - 233.
dc.identifier.citedreferenceHales KG, Korey CA, Larracuente AM, Roberts DM. Genetics on the fly: a primer on the Drosophila model system. Genetics. 2015; 201 ( 3 ): 815 - 842.
dc.identifier.citedreferenceShell B, Schmitt R, Lee KM, Johnson JC, Pletcher S, Grotewiel M. Measurement of solid food intake in Drosohpila via consumption- excretion of a dye tracer. submitted. 2018.
dc.identifier.citedreferencePiper MD, Blanc E, Leitao- Goncalves R, et al. A holidic medium for Drosophila melanogaster. Nat Methods. 2014; 11 ( 1 ): 100 - 105.
dc.identifier.citedreferenceSweeney ST, Broadie K, Keane J, Niemann H, O’Kane CJ. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron. 1995; 14 ( 2 ): 341 - 351.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.