Show simple item record

Simplified method to quantify valve back- leak uncovers severe mesenteric lymphatic valve dysfunction in mice deficient in connexins 43 and 37

dc.contributor.authorCastorena‐gonzalez, Jorge A.
dc.contributor.authorSrinivasan, R. Sathish
dc.contributor.authorKing, Philip D.
dc.contributor.authorSimon, Alexander M.
dc.contributor.authorDavis, Michael J.
dc.date.accessioned2020-07-02T20:34:49Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-07-02T20:34:49Z
dc.date.issued2020-06
dc.identifier.citationCastorena‐gonzalez, Jorge A. ; Srinivasan, R. Sathish; King, Philip D.; Simon, Alexander M.; Davis, Michael J. (2020). "Simplified method to quantify valve back- leak uncovers severe mesenteric lymphatic valve dysfunction in mice deficient in connexins 43 and 37." The Journal of Physiology 598(12): 2297-2310.
dc.identifier.issn0022-3751
dc.identifier.issn1469-7793
dc.identifier.urihttps://hdl.handle.net/2027.42/156001
dc.description.abstractThe lymphatic system relies on robust, spontaneous contractions of collecting lymphatic vessels and one- way secondary lymphatic valves to efficiently move lymph forward. Secondary valves prevent reflux and allow for the generation of propulsive pressure during each contraction cycle. Lymphatic valve defects are one of the major causes of lymph transport dysfunction. Genetic mutations in multiple genes have been associated with the development of primary lymphoedema in humans; and many of the same mutations in mice result in valve defects that subsequently lead to chylous ascites or chylothorax. At present the only experimental technique for the quantitative assessment of lymphatic valve function utilizes the servo- null micropressure system, which is highly accurate and precise, but relatively inaccessible and difficult to use. We developed a novel, simplified alternative method for quantifying valve function and determining the degree of pressure back- leak through an intact valve in pressurized, single- valve segments of isolated lymphatic vessels. With this diameter- based method, the competence of each lymphatic valve is challenged over a physiological range of pressures (e.g. 0.5- 10cmH2O) and pressure back- leak is extrapolated from calibrated, pressure- driven changes in diameter upstream from the valve. Using mesenteric lymphatic vessels from C57BL/6J, Ub- CreERT2;Rasa1fx/fx, Foxc2Cre/+, Lyve1- Cre;Cx43fx/fx, and Prox1- CreERT2;Cx43fx/fx;Cx37- /- mice, we tested our method on lymphatic valves displaying a wide range of dysfunction, from fully competent to completely incompetent. Our results were validated by simultaneous direct measurement of pressure back- leak using a servo- null micropressure system. Our diameter- based technique can be used to quantify valve function in isolated lymphatic valves from a variety of species. This method also revealed that haplodeficiency in Foxc2 (Foxc2Cre/+) is not sufficient to cause significant valve dysfunction; however, postnatal endothelial- specific deletion of Cx43 in Cx37- /- mice results in rapid regression of valve leaflets and severe valve dysfunction.Key pointsLymphatic valve defects are one of the major causes of lymph transport dysfunction; however, there are no accessible methods for quantitatively assessing valve function.This report describes a novel technique for quantifying lymphatic valve back- leak.Postnatal endothelial- specific deletion of connexin 43 (Cx43) in connexin 37 null (Cx37- /- ) mice results in rapid regression of valve leaflets and severe valve dysfunction.This method can also be used for assessing the function of venous and lymphatic valves from various species, including humans.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherlymph transport
dc.subject.otherconnexin43
dc.subject.otherconnexin37
dc.subject.otherlymphatic vessel
dc.subject.otherservo- null micropressure system
dc.subject.othervalve function
dc.subject.otherback- leak
dc.subject.otherRasa1
dc.subject.otherFoxc2
dc.titleSimplified method to quantify valve back- leak uncovers severe mesenteric lymphatic valve dysfunction in mice deficient in connexins 43 and 37
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPhysiology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/156001/1/tjp14086_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/156001/2/tjp14086.pdf
dc.identifier.doi10.1113/JP279472
dc.identifier.sourceThe Journal of Physiology
dc.identifier.citedreferenceReneman RS & Hoeks AP ( 1995 ). Arterial distensibility and compliance in hypertension. Neth J Med 47, 152 - 161.
dc.identifier.citedreferenceHennig GW, Spencer NJ, Jokela- Willis S, Bayguinov PO, Lee HT, Ritchie LA, Ward SM, Smith TK & Sanders KM ( 2010 ). ICC- MY coordinate smooth muscle electrical and mechanical activity in the murine small intestine. Neurogastroenterol Motil 22, e138 - 151.
dc.identifier.citedreferenceKanady JD, Dellinger MT, Munger SJ, Witte MH & Simon AM ( 2011 ). Connexin37 and Connexin43 deficiencies in mice disrupt lymphatic valve development and result in lymphatic disorders including lymphedema and chylothorax. Dev Biol 354, 253 - 266.
dc.identifier.citedreferenceKarkkainen MJ, Ferrell RE, Lawrence EC, Kimak MA, Levinson KL, McTigue MA, Alitalo K & Finegold DN ( 2000 ). Missense mutations interfere with VEGFR- 3 signalling in primary lymphoedema. Nat Genet 25, 153 - 159.
dc.identifier.citedreferenceLapinski PE, Lubeck BA, Chen D, Doosti A, Zawieja SD, Davis MJ & King PD ( 2017 ). RASA1 regulates the function of lymphatic vessel valves in mice. J Clin Invest 127, 2569 - 2585.
dc.identifier.citedreferenceLawton PF, Lee MD, Saunter CD, Girkin JM, McCarron JG & Wilson C ( 2019 ). VasoTracker, a low- cost and open source pressure myograph system for vascular physiology. Front Physiol 10, 99.
dc.identifier.citedreferenceLiao Y, Day KH, Damon DN & Duling BR ( 2001 ). Endothelial cell- specific knockout of connexin 43 causes hypotension and bradycardia in mice. Proc Natl Acad Sci U S A 98, 9989 - 9994.
dc.identifier.citedreferenceLjunggren P, Maahs DM, Johansson P, Ludvigsson J, Pyle L, Sippl R, Wadwa RP & Snell- Bergeon J ( 2016 ). Reduced brachial artery distensibility in patients with type 1 diabetes. J Diabetes Complications 30, 893 - 897.
dc.identifier.citedreferenceMeens MJ, Sabine A, Petrova TV & Kwak BR ( 2014 ). Connexins in lymphatic vessel physiology and disease. FEBS Lett 588, 1271 - 1277.
dc.identifier.citedreferenceModi S, Stanton AW, Svensson WE, Peters AM, Mortimer PS & Levick JR ( 2007 ). Human lymphatic pumping measured in healthy and lymphoedematous arms by lymphatic congestion lymphoscintigraphy. J Physiol 583, 271 - 285.
dc.identifier.citedreferenceMunger SJ, Davis MJ & Simon AM ( 2017 ). Defective lymphatic valve development and chylothorax in mice with a lymphatic- specific deletion of Connexin43. Dev Biol 421, 204 - 218.
dc.identifier.citedreferenceNonomura K, Lukacs V, Sweet DT, Goddard LM, Kanie A, Whitwam T, Ranade SS, Fujimori T, Kahn ML & Patapoutian A ( 2018 ). Mechanically activated ion channel PIEZO1 is required for lymphatic valve formation. Proc Natl Acad Sci U S A 115, 12817 - 12822.
dc.identifier.citedreferenceOlszewski WL ( 2002 ). Contractility patterns of normal and pathologically changed human lymphatics. Ann N Y Acad Sci 979, 52 - 63; discussion 76- 59.
dc.identifier.citedreferenceOlszewski WL & Engeset A ( 1980 ). Intrinsic contractility of prenodal lymph vessels and lymph flow in human leg. Am J Physiol Heart Circ Physiol 239, H775 - H783.
dc.identifier.citedreferenceOstergaard P, Simpson MA, Brice G, Mansour S, Connell FC, Onoufriadis A, Child AH, Hwang J, Kalidas K, Mortimer PS, Trembath R & Jeffery S ( 2011 ). Rapid identification of mutations in GJC2 in primary lymphoedema using whole exome sequencing combined with linkage analysis with delineation of the phenotype. J Med Genet 48, 251 - 255.
dc.identifier.citedreferenceReaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM & Rossant J ( 1995 ). Cardiac malformation in neonatal mice lacking connexin43. Science 267, 1831 - 1834.
dc.identifier.citedreferenceSabine A, Agalarov Y, Maby- El Hajjami H, Jaquet M, Hagerling R, Pollmann C, Bebber D, Pfenniger A, Miura N, Dormond O, Calmes JM, Adams RH, Makinen T, Kiefer F, Kwak BR & Petrova TV ( 2012 ). Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic- valve formation. Dev Cell 22, 430 - 445.
dc.identifier.citedreferenceSabine A, Bovay E, Demir CS, Kimura W, Jaquet M, Agalarov Y, Zangger N, Scallan JP, Graber W, Gulpinar E, Kwak BR, Makinen T, Martinez- Corral I, Ortega S, Delorenzi M, Kiefer F, Davis MJ, Djonov V, Miura N & Petrova TV ( 2015 ). FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature. J Clin Invest 125, 3861 - 3877.
dc.identifier.citedreferenceSabine A, Davis MJ, Bovay E & Petrova TV ( 2018 ). Characterization of mouse mesenteric lymphatic valve structure and function. Methods Mol Biol 1846, 97 - 129.
dc.identifier.citedreferenceScallan JP & Davis MJ ( 2013 ). Genetic removal of basal nitric oxide enhances contractile activity in isolated murine collecting lymphatic vessels. J Physiol 591, 2139 - 2156.
dc.identifier.citedreferenceScallan JP, Wolpers JH & Davis MJ ( 2013 ). Constriction of isolated collecting lymphatic vessels in response to acute increases in downstream pressure. J Physiol 591, 443 - 459.
dc.identifier.citedreferenceScallan JP, Zawieja SD, Castorena- Gonzalez JA & Davis MJ ( 2016 ). Lymphatic pumping: mechanics, mechanisms and malfunction. J Physiol 594, 5749 - 5768.
dc.identifier.citedreferenceSimon AM, Goodenough DA, Li E & Paul DL ( 1997 ). Female infertility in mice lacking connexin 37. Nature 385, 525 - 529.
dc.identifier.citedreferenceStanton AW, Modi S, Bennett Britton TM, Purushotham AD, Peters AM, Levick JR & Mortimer PS ( 2009 ). Lymphatic drainage in the muscle and subcutis of the arm after breast cancer treatment. Breast Cancer Res Treat 117, 549 - 557.
dc.identifier.citedreferenceTentolouris N, Liatis S, Moyssakis I, Tsapogas P, Psallas M, Diakoumopoulou E, Voteas V & Katsilambros N ( 2003 ). Aortic distensibility is reduced in subjects with type 2 diabetes and cardiac autonomic neuropathy. Eur J Clin Invest 33, 1075 - 1083.
dc.identifier.citedreferenceVan Bortel LM, Kool MJ, Boudier HA & Struijker Boudier HA ( 1995 ). Effects of antihypertensive agents on local arterial distensibility and compliance. Hypertension 26, 531 - 534.
dc.identifier.citedreferenceWiederhielm CA, Woodbury JW, Kirk S & Rushmer RF ( 1964 ). Pulsatile pressures in the microcirculation of frog’s mesentery. Am J Physiol 207, 173 - 176.
dc.identifier.citedreferenceZawieja SD, Castorena- Gonzalez JA, Dixon B & Davis MJ ( 2017 ). Experimental models used to assess lymphatic contractile function. Lymphat Res Biol 15, 331 - 342.
dc.identifier.citedreferenceZawieja SD, Castorena- Gonzalez JA, Scallan JP & Davis MJ ( 2018 ). Differences in L- type Ca 2+ channel activity partially underlie the regional dichotomy in pumping behavior by murine peripheral and visceral lymphatic vessels. Am J Physiol Heart Circ Physiol 314, H991 - H1010.
dc.identifier.citedreferenceBender SB, Castorena- Gonzalez JA, Garro M, Reyes- Aldasoro CC, Sowers JR, DeMarco VG & Martinez- Lemus LA ( 2015 ). Regional variation in arterial stiffening and dysfunction in Western diet- induced obesity. Am J Physiol Heart Circ Physiol 309, H574 - H582.
dc.identifier.citedreferenceBlatter C, Meijer EFJ, Padera TP & Vakoc BJ ( 2018 ). Simultaneous measurements of lymphatic vessel contraction, flow and valve dynamics in multiple lymphangions using optical coherence tomography. J Biophotonics 11, e201700017.
dc.identifier.citedreferenceBrice G, Ostergaard P, Jeffery S, Gordon K, Mortimer PS & Mansour S ( 2013 ). A novel mutation in GJA1 causing oculodentodigital syndrome and primary lymphoedema in a three generation family. Clin Genet 84, 378 - 381.
dc.identifier.citedreferenceCastorena- Gonzalez JA, Scallan JP & Davis MJ ( 2018a ). Methods for assessing the contractile function of mouse lymphatic vessels ex vivo. Methods Mol Biol 1846, 229 - 248.
dc.identifier.citedreferenceCastorena- Gonzalez JA, Zawieja SD, Li M, Srinivasan RS, Simon AM, de Wit C, de la Torre R, Martinez- Lemus LA, Hennig GW & Davis MJ ( 2018b ). Mechanisms of connexin- related lymphedema. Circ Res 123, 964 - 985.
dc.identifier.citedreferenceCha B, Geng X, Mahamud MR, Zhang JY, Chen L, Kim W, Jho EH, Kim Y, Choi D, Dixon JB, Chen H, Hong YK, Olson L, Kim TH, Merrill BJ, Davis MJ & Srinivasan RS ( 2018 ). Complementary Wnt sources regulate lymphatic vascular development via PROX1- dependent Wnt/beta- catenin signaling. Cell Rep 25, 571 - 584 e575.
dc.identifier.citedreferenceDavis MJ, Rahbar E, Gashev AA, Zawieja DC & Moore JE Jr ( 2011 ). Determinants of valve gating in collecting lymphatic vessels from rat mesentery. Am J Physiol Heart Circ Physiol 301, H48 - H60.
dc.identifier.citedreferenceDavis MJ, Zawieja DC & Gashev AA ( 2006 ). Automated measurement of diameter and contraction waves of cannulated lymphatic microvessels. Lymphat Res Biol 4, 3 - 10.
dc.identifier.citedreferenceFerrell RE, Baty CJ, Kimak MA, Karlsson JM, Lawrence EC, Franke- Snyder M, Meriney SD, Feingold E & Finegold DN ( 2010 ). GJC2 missense mutations cause human lymphedema. Am J Hum Genet 86, 943 - 948.
dc.identifier.citedreferenceFinegold DN, Baty CJ, Knickelbein RE, Perschke S, Noon SE, Campbell D, Karlsson JM, Huang D, Kimak MA, Lawrence EC, Feingold E, Meriney SD, Brufsky AM & Ferrell RE ( 2012 ). Connexin 47 mutations increase risk for secondary lymphedema following breast cancer treatment. Clin Cancer Res 18, 2382 - 2390.
dc.identifier.citedreferenceFoote CA, Castorena- Gonzalez JA, Ramirez- Perez FI, Jia G, Hill MA, Reyes- Aldasoro CC, Sowers JR & Martinez- Lemus LA ( 2016 ). Arterial Stiffening in Western Diet- Fed Mice Is Associated with Increased Vascular Elastin, Transforming Growth Factor- beta, and Plasma Neuraminidase. Front Physiol 7, 285.
dc.identifier.citedreferenceGeng X, Cha B, Mahamud MR, Lim KC, Silasi- Mansat R, Uddin MK, Miura N, Xia L, Simon AM, Engel JD, Chen H, Lupu F & Srinivasan RS ( 2016 ). Multiple mouse models of primary lymphedema exhibit distinct defects in lymphovenous valve development. Dev Biol 409, 218 - 233.
dc.identifier.citedreferenceHargens AR & Zweifach BW ( 1976 ). Transport between blood and peripheral lymph in intestine. Microvascular Research 11, 89 - 101.
dc.identifier.citedreferenceHennig GW ( 2016 ). Spatio- temporal mapping and the enteric nervous system. Adv Exp Med Biol 891, 31 - 42.
dc.identifier.citedreferenceHennig GW, Gould TW, Koh SD, Corrigan RD, Heredia DJ, Shonnard MC & Smith TK ( 2015 ). Use of genetically encoded calcium indicators (GECIs) combined with advanced motion tracking techniques to examine the behavior of neurons and glia in the enteric nervous system of the intact murine colon. Front Cell Neurosci 9, 436.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.