Show simple item record

Storms and the Depletion of Ammonia in Jupiter: I. Microphysics of “Mushballs”

dc.contributor.authorGuillot, Tristan
dc.contributor.authorStevenson, David J.
dc.contributor.authorAtreya, Sushil K.
dc.contributor.authorBolton, Scott J.
dc.contributor.authorBecker, Heidi N.
dc.date.accessioned2020-08-10T20:53:00Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-08-10T20:53:00Z
dc.date.issued2020-08
dc.identifier.citationGuillot, Tristan; Stevenson, David J.; Atreya, Sushil K.; Bolton, Scott J.; Becker, Heidi N. (2020). "Storms and the Depletion of Ammonia in Jupiter: I. Microphysics of “Mushballs”." Journal of Geophysical Research: Planets 125(8): n/a-n/a.
dc.identifier.issn2169-9097
dc.identifier.issn2169-9100
dc.identifier.urihttps://hdl.handle.net/2027.42/156131
dc.description.abstractMicrowave observations by the Juno spacecraft have shown that, contrary to expectations, the concentration of ammonia is still variable down to pressures of tens of bars in Jupiter. We show that during strong storms able to loft water ice into a region located at pressures between 1.1 and 1.5 bar and temperatures between 173 and 188 K, ammonia vapor can dissolve into water ice to form a low‐temperature liquid phase containing about one‐third ammonia and two‐third water. We estimate that, following the process creating hailstorms on Earth, this liquid phase enhances the growth of hail‐like particles that we call mushballs. We develop a simple model to estimate the growth of these mushballs, their fall into Jupiter’s deep atmosphere, and their evaporation. We show that they evaporate deeper than the expected water cloud base level, between 5 and 27 bar depending on the assumed abundance of water ice lofted by thunderstorms and on the assumed ventilation coefficient governing heat transport between the atmosphere and the mushball. Because the ammonia is located mostly in the core of the mushballs, it tends to be delivered deeper than water, increasing the efficiency of the process. Further sinking of the condensates is expected due to cold temperature and ammonia‐ and water‐rich downdrafts formed by the evaporation of mushballs. This process can thus potentially account for the measurements of ammonia depletion in Jupiter’s deep atmosphere.Plain Language SummaryThe Juno mission has revealed that Jupiter’s atmosphere is much more complex and intriguing than previously anticipated. Most of Jupiter’s atmosphere was shown to be depleted in ammonia. While ammonia was expected to be well mixed, large scale variability of ammonia was detected at least 100 km below the cloud level where condensation occurs. We propose a mechanism to explain this depletion and variability. We show that in Jupiter, at very low temperatures (of order −90° C), water ice and ammonia vapor combine to form a liquid and we hypothesize that this subsequently triggers unexpected meteorology. During Jupiter’s violent storms, hailstones form from this liquid, similar to the process in terrestrial storms where hail forms in the presence of supercooled liquid water. Growth of the hailstones creates a slush‐like substance surrounded by a layer of ice, and these “mushballs” fall, evaporate, and continue sinking further in the planet’s deep atmosphere, creating both ammonia depletion and variability, potentially explaining the Juno observations.Key PointsWe show that ammonia can melt water‐ice crystals in Jupiter’s storms and lead to the formation of water‐ammonia hailstones (mushballs)These mushballs and subsequent downdrafts transport ammonia to very deep levelsThis can potentially explain Juno measurements that Jupiter’s ammonia abundance is variable until at least 150 km below the visible clouds
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherPhase diagram
dc.subject.otherStorms
dc.subject.otherWater
dc.subject.othercloud microphysics
dc.subject.otherAmmonia
dc.subject.otherJupiter’s atmosphere
dc.titleStorms and the Depletion of Ammonia in Jupiter: I. Microphysics of “Mushballs”
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156131/2/jgre21375.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156131/1/jgre21375_am.pdfen_US
dc.identifier.doi10.1029/2020JE006403
dc.identifier.sourceJournal of Geophysical Research: Planets
dc.identifier.citedreferenceRasmussen, R. M., & Heymsfield, A. J. ( 1987 ). Melting and shedding of graupel and hail. Part I: Model physics. Journal of Atmospheric Sciences, 44 ( 19 ), 2754 – 2763.
dc.identifier.citedreferenceJin, R., & Chu, L. T. ( 2007 ). Uptake of NH3 and NH3+ HOBr Reaction on Ice Surfaces at 190 K. Journal of Physical Chemistry A, 111 ( 32 ), 7833 – 7840.
dc.identifier.citedreferenceKargel, J. S. ( 1992 ). Ammonia‐water volcanism on icy satellites: Phase relations at 1 atmosphere. Icarus, 100 ( 2 ), 556 – 574.
dc.identifier.citedreferenceKargel, J. S., Croft, S. K., Lunine, J. I., & Lewis, J. S. ( 1991 ). Rheological properties of ammonia‐water liquids and crystal‐liquid slurries: Planetological applications. Icarus, 89 ( 1 ), 93 – 112.
dc.identifier.citedreferenceKasper, T., Wong, M. H., Marschall, J., de Pater, I., Romani, P. N., & Kalogerakis, K. S. ( 2011 ). Uptake of ammonia gas by Jovian ices. EPSC‐DPS joint meeting 2011 (Vol. 6, pp. 352 ).
dc.identifier.citedreferenceKessler, E. ( 1969 ). On the distribution and continuity of water substance in atmospheric circulation. Meteorological monographs (Vol. 10, pp. 1 – 84 ). Boston, MA: American Meteorological Society.
dc.identifier.citedreferenceKundu, P. K., & Cohen, I. M. ( 2016 ). Fluid mechanics: Sixth edition. Amsterdam: Academic Press.
dc.identifier.citedreferenceLewis, J. S. ( 1969 ). The clouds of Jupiter and the NH 3, H 2 O and NH 3.H 2 S systems. Icarus, 10 ( 3 ), 365 – 378.
dc.identifier.citedreferenceLi, C., Ingersoll, A., Bolton, S., Levin, S., Janssen, M., Atreya, S., Lunine, J., Steffes, P., Brown, S., Guillot, T., Allison, M., Arballo, J., Bellotti, A., Adumitroaie, V., Gulkis, S., Hodges, A., Li, L., Misra, S., Orton, G., Oyafuso, F., Santos‐Costa, D., Waite, H., & Zhang, Z. ( 2020 ). The water abundance in Jupiter’s equatorial zone. Nature Astronomy, 4 ( 6 ), 609 – 616. https://doi.org/10.1038/s41550-020-1009-3
dc.identifier.citedreferenceLi, C., Ingersoll, A., Janssen, M., Levin, S., Bolton, S., Adumitroaie, V., Allison, M., Arballo, J., Bellotti, A., Brown, S., Ewald, S., Jewell, L., Misra, S., Orton, G., Oyafuso, F., Steffes, P., & Williamson, R. ( 2017 ). The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data. Geophysical Research Lettters, 44, 5317 – 5325. https://doi.org/10.1002/2017GL073159
dc.identifier.citedreferenceLivingston, F. E., Smith, J. A., & George, S. M. ( 2002 ). General trends for bulk diffusion in ice and surface diffusion on ice. Journal of Physical Chemistry A, 106 ( 26 ), 6309 – 6318.
dc.identifier.citedreferenceLodders, K. ( 2003 ). Solar system abundances and condensation temperatures of the elements. Astrophysical Journal, 591 ( 2 ), 1220 – 1247.
dc.identifier.citedreferenceNelson, S. P. ( 1983 ). The influence of storm flow structure on hail growth. Journal of Atmospheric Sciences, 40 ( 8 ), 1965 – 1983.
dc.identifier.citedreferencePhillips, V. T. J., Formenton, M., Bansemer, A., Kudzotsa, I., & Lienert, B. ( 2015 ). A parameterization of sticking efficiency for collisions of snow and graupel with ice crystals: Theory and comparison with observations*. Journal of Atmospheric Sciences, 72 ( 12 ), 4885 – 4902.
dc.identifier.citedreferencePruppacher, H. R., & Klett, J. D. ( 1997 ). Microphysics of clouds and precipitation (pp. 2 ). Dordrecht: Kluwer Academic Publishers.
dc.identifier.citedreferenceRasmussen, R. M., Levizzani, V., & Pruppacher, H. R. ( 1984 ). A wind tunnel and theoretical study on the melting behavior of atmospheric ice particles: III. Experiment and theory for spherical ice particles of radius larger than 500 microns. Journal of Atmospheric Sciences, 41 ( 3 ), 381 – 388.
dc.identifier.citedreferenceRogers, R. R., & Yau, M. K. ( 1996 ). A short course in cloud physics. Elsevier.
dc.identifier.citedreferenceRoos, D. V. D. S. ( 1972 ). A giant hailstone from Kansas in free fall. Journal of Applied Meteorology, 11 ( 6 ), 1008 – 1011.
dc.identifier.citedreferenceSeiff, A., Kirk, D. B., Knight, T. C. D., Young, R. E., Mihalov, J. D., Young, L. A., Milos, F. S., Schubert, G., Blanchard, R. C., & Atkinson, D. ( 1998 ). Thermal structure of Jupiter’s atmosphere near the edge of a 5‐μm hot spot in the north equatorial belt. Journal Geophysical Research, 103 ( E10 ), 22,857 – 22,890.
dc.identifier.citedreferenceShowman, A. P., & de Pater, I. ( 2005 ). Dynamical implications of Jupiter’s tropospheric ammonia abundance. Icarus, 174 ( 1 ), 192 – 204.
dc.identifier.citedreferenceStein, R. F., & Nordlund, Å. ( 1998 ). Simulations of solar granulation. I. General Properties. The Astrophysical Journal, 499 ( 2 ), 914 – 933.
dc.identifier.citedreferenceStoker, C. R. ( 1986 ). Moist convection: A mechanism for producing the vertical structure of the Jovian Equatorial Plumes. Icarus, 67 ( 1 ), 106 – 125.
dc.identifier.citedreferenceSugiyama, K., Nakajima, K., Odaka, M., Kuramoto, K., & Hayashi, Y. Y. ( 2014 ). Numerical simulations of Jupiter’s moist convection layer: Structure and dynamics in statistically steady states. Icarus, 229, 71 – 91.
dc.identifier.citedreferenceTurner, J. S. ( 1969 ). Buoyant plumes and thermals. Annual Review of Fluid Mechanics, 1 ( 1 ), 29 – 44.
dc.identifier.citedreferenceWeidenschilling, S. J., & Lewis, J. S. ( 1973 ). Atmospheric and cloud structures of the Jovian planets. Icarus, 20 ( 4 ), 465 – 476.
dc.identifier.citedreferenceYair, Y., Levin, Z., & Tzivion, S. ( 1995 ). Microphysical processes and dynamics of a Jovian thundercloud. Icarus, 114 ( 2 ), 278 – 299.
dc.identifier.citedreferenceAtreya, S. K., Wong, M. H., Owen, T. C., Mahaffy, P. R., Niemann, H. B., de Pater, I., Drossart, P., & Encrenaz, Th ( 1999 ). A comparison of the atmospheres of Jupiter and Saturn: Deep atmospheric composition, cloud structure, vertical mixing, and origin. Planetary Space Science, 47 ( 10‐11 ), 1243 – 1262.
dc.identifier.citedreferenceBecker, H., Alexander, J. W., Atreya, S. K., Bolton, S. J., Brennan, M. J., Brown, S. T., Guillaume, A., Guillot, T., Ingersoll, A. P., Levin, S. M., Lunine, J. I., Aglyamov, Y. S., & Steffes, P. G. ( 2020 ). Small lightning flashes from shallow electrical storms on Jupiter. Nature. https://doi.org/10.1038/s41586-020-2532-1
dc.identifier.citedreferenceBolton, S. J., Adriani, A., Adumitroaie, V., Allison, M., Anderson, J., Atreya, S., Bloxham, J., Brown, S., Connerney, J. E. P., DeJong, E., Folkner, W., Gautier, D., Grassi, D., Gulkis, S., Guillot, T., Hansen, C., Hubbard, W. B., Iess, L., Ingersoll, A., Janssen, M., Jorgensen, J., Kaspi, Y., Levin, S. M., Li, C., Lunine, J., Miguel, Y., Mura, A., Orton, G., Owen, T., Ravine, M., Smith, E., Steffes, P., Stone, E., Stevenson, D., Thorne, R., Waite, J., Durante, D., Ebert, R. W., Greathouse, T. K., Hue, V., Parisi, M., Szalay, J. R., & Wilson, R. ( 2017 ). Jupiter’s interior and deep atmosphere: The initial pole‐to‐pole passes with the Juno spacecraft. Science, 356 ( 6340 ), 821 – 825.
dc.identifier.citedreferenceCussler, E. L. ( 2009 ). Diffusion. Mass Transfer in Fluid Systems ( 3rd ed. ). Cambridge: Cambridge University Press.
dc.identifier.citedreferenceDavidovits, C. R., Kolb, C. E., Williams, L. R., Jayne, J. T., & Worsnop, D. R. ( 2006 ). Mass accommodation and chemical reactions at gas‐liquid interfaces. Chemical Review, 106, 1323 – 1354.
dc.identifier.citedreferencede Pater, I., Sault, R. J., Butler, B., DeBoer, D., & Wong, M. H. ( 2016 ). Peering through Jupiter’s clouds with radio spectral imaging. Science, 352 ( 6290 ), 1198 – 1201.
dc.identifier.citedreferencede Pater, I., Sault, R. J., Wong, M. H., Fletcher, L. N., DeBoer, D., & Butler, B. ( 2019 ). Jupiter’s ammonia distribution derived from VLA maps at 3‐37 GHz. Icarus, 322, 168 – 191.
dc.identifier.citedreferenceDean, J. A. ( 1999 ). Lange’s handbook of chemistry (15th ed.). New York: McGraw Hill Inc.
dc.identifier.citedreferenceGierasch, P. J., Ingersoll, A. P., Banfield, D., Ewald, S. P., Helfenstein, P., Simon‐Miller, A., Vasavada, A., Breneman, H. H., Senske, D. A., & Galileo Imaging Team ( 2000 ). Observation of moist convection in Jupiter’s atmosphere. Nature, 403 ( 6770 ), 628 – 630.
dc.identifier.citedreferenceGuillot, T. ( 2005 ). The interiors of giant planets: Models and outstanding questions. Annual Review of Earth and Planetary Sciences, 33, 493 – 530.
dc.identifier.citedreferenceGuillot, T., Miguel, Y., Militzer, B., Hubbard, W. B., Kaspi, Y., Galanti, E., Cao, H., Helled, R., Wahl, S. M., Iess, L., Folkner, W. M., Stevenson, D. J., Lunine, J. I., Reese, D. R., Biekman, A., Parisi, M., Durante, D., Connerney, J. E. P., Levin, S. M., & Bolton, S. J. ( 2018 ). A suppression of differential rotation in Jupiter’s deep interior. Nature, 555 ( 7695 ), 227 – 230.
dc.identifier.citedreferenceHomann, H., Guillot, T., Bec, J., Ormel, C. W., Ida, S., & Tanga, P. ( 2016 ). Effect of turbulence on collisions of dust particles with planetesimals in protoplanetary disks. Astronomy and Astrophysics, 589, A129.
dc.identifier.citedreferenceHueso, R., Sánchez‐Lavega, A., & Guillot, T. ( 2002 ). A model for large‐scale convective storms in Jupiter. Journal of Geophysical Research, 107 ( E10 ), 5075. https://doi.org/10.1029/2001JE001839
dc.identifier.citedreferenceIngersoll, A. P., Adumitroaie, V., Allison, M. D., Atreya, S., Bellotti, A. A., Bolton, S. J., Brown, S. T., Gulkis, S., Janssen, M. A., Levin, S. M., Li, C., Li, L., Lunine, J. I., Orton, G. S., Oyafuso, F. A., & Steffes, P. G. ( 2017 ). Implications of the ammonia distribution on Jupiter from 1 to 100 bars as measured by the Juno microwave radiometer. Geophysical Research Letters, 44, 7676 – 7685. https://doi.org/10.1002/2017GL074277
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.