Photocatalytic plate‐like La2Ti2O7 nanoparticles synthesized via liquid‐feed flame spray pyrolysis (LF‐FSP) of metallo‐organic precursors
dc.contributor.author | Abe, Yoshiyuki | |
dc.contributor.author | Laine, Richard M. | |
dc.date.accessioned | 2020-08-10T20:53:07Z | |
dc.date.available | WITHHELD_14_MONTHS | |
dc.date.available | 2020-08-10T20:53:07Z | |
dc.date.issued | 2020-09 | |
dc.identifier.citation | Abe, Yoshiyuki; Laine, Richard M. (2020). "Photocatalytic plate‐like La2Ti2O7 nanoparticles synthesized via liquid‐feed flame spray pyrolysis (LF‐FSP) of metallo‐organic precursors." Journal of the American Ceramic Society 103(9): 4832-4839. | |
dc.identifier.issn | 0002-7820 | |
dc.identifier.issn | 1551-2916 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/156137 | |
dc.description.abstract | Nanoparticles (NPs) of a perovskite‐slab‐type oxide, La2Ti2O7, were synthesized using LF‐FSP coupled with subsequent heat treatments, and their photocatalytic activity was evaluated using decolorization of methyl orange solution under Uv irradiation. The LF‐FSP process used metallo‐organic precursors to produce NPs with very low agglomeration with average particle sizes (APSs) of 26 nm (LF‐FSP NP). Optimized heat treatment of these NPs at 1000°C/3 h/air gave small, plate‐like NPs with high crystallinity, and BET specific surface areas (SSAs) of 14 m2/g, that exhibited the best observed photocatalytic activity. High‐angle annular dark‐field scanning TEM showed that heat‐treating eliminates microstructural defects in these NPs, improving photocatalytic activity by ≈30%. The current approach to perovskite‐slab‐type NPs using LF‐FSP provides a simple route to materials with superior photocatalytic activity and offers the advantage of good productivity, 30 g/h. | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | nanoparticle | |
dc.subject.other | perovskite‐slab‐type compound | |
dc.subject.other | photocatalyst | |
dc.subject.other | liquid‐feed flame spray pyrolysis | |
dc.subject.other | La2Ti2O7 | |
dc.title | Photocatalytic plate‐like La2Ti2O7 nanoparticles synthesized via liquid‐feed flame spray pyrolysis (LF‐FSP) of metallo‐organic precursors | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Materials Science and Engineering | |
dc.subject.hlbtoplevel | Engineering | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/156137/2/jace17196_am.pdf | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/156137/1/jace17196.pdf | en_US |
dc.identifier.doi | 10.1111/jace.17196 | |
dc.identifier.source | Journal of the American Ceramic Society | |
dc.identifier.citedreference | Hojamberdiev M, Yamaguchi A, Yubuta K, Oishi S, Teshima K. Fabrication of La 2 Ti 2 O 7 crystals using an alkali‐metal molybdate flux growth method and their nitridability to form LaTiO 2 N crystals under a high‐temperature NH 3 atmosphere. Inorg Chem. 2015; 54 ( 7 ): 3237 – 44. | |
dc.identifier.citedreference | Rahimi‐Nasrabadi M, Mahdavi S, Adib K. Photocatalytically active La 2 Ti 2 O 7 nanostructures, synthesis and characterization. J Mater Sci: Mater Electron. 2017; 28 ( 17 ): 12564 – 71. | |
dc.identifier.citedreference | Rugen EE, Koczkur KM, Skrabalak SE. Facile synthesis of porous La‐Ti‐O and LaTiO 2 N microspheres. Dalton Trans. 2017; 46 ( 32 ): 10727 – 33. | |
dc.identifier.citedreference | Zhao Z, Zhang Y, Yang J, Li H, Song W, Zhao X. Low‐temperature synthesis of La 2 Ti 2 O 7 nanocrystal by metallorganic decomposition method. J Ceram Soc Jpn. 2005; 113 ( 1313 ): 67 – 70. | |
dc.identifier.citedreference | Chen D, Xu R. Hydrothermal synthesis and characterization of La 2 M 2 O 7 (M= Ti, Zr) powders. Mater Res Bull. 1998; 33 ( 3 ): 409 – 17. | |
dc.identifier.citedreference | Li KW, Wang Y, Wang H, Zhu M, Yan H. Hydrothermal synthesis and photocatalytic properties of layered La 2 Ti 2 O 7 nanosheets. Nanotechnology. 2006; 17 ( 19 ): 4863 – 7. | |
dc.identifier.citedreference | Onozuka K, Kawakami Y, Imai H, Yokoi T, Tatsumi T, Kondo JN. Perovskite‐type La 2 Ti 2 O 7 mesoporous photocatalyst. J Solid State Chem. 2012; 192: 87 – 92. | |
dc.identifier.citedreference | Arney D, Porter B, Greve B, Maggard PA. New molten‐salt synthesis and photocatalytic properties of La 2 Ti 2 O 7 particles. J Photochem Photobiol A: Chem. 2008; 199 ( 2–3 ): 230 – 5. | |
dc.identifier.citedreference | Wagata H, Zettsu N, Yamaguchi A, Nishikiori H, Yabuta K, Oishi S, et al. Chloride flux growth of La 2 Ti 2 O 7 crystals and subsequent nitridation to form LaTiO 2 N crystals. Cryst Growth Des. 2015; 15 ( 1 ): 124 – 9. | |
dc.identifier.citedreference | Meng F, Hong Z, Arndt J, Li M, Zhi M, Yang F, et al. Visible light photocatalytic activity of nitrogen‐doped La 2 Ti 2 O 7 nanosheets originating from band gap narrowing. Nano Res. 2012; 5 ( 3 ): 213 – 21. | |
dc.identifier.citedreference | Fuierer PA, Newnham RE. La 2 Ti 2 O 7 Ceramics. J Am Ceram Soc. 1991; 74 ( 11 ): 2876 – 81. | |
dc.identifier.citedreference | Ishizawa N, Marumo F, Iwai S, Kimura M, Kawamura T. Compounds with perovskite‐type slabs. V. A high‐temperature modification of La 2 Ti 2 O 7. Acta Cryst. 1982; B38 ( 2 ): 368 – 72. | |
dc.identifier.citedreference | Maeda K, Domen K. New non‐oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C. 2007; 111 ( 22 ): 7851 – 61. | |
dc.identifier.citedreference | Chen D, Jiao X, Xu R. Hydrothermal synthesis and characterization of the layered titanates MLaTiO 4 (M= Li, Na, K) powders. Mater Res Bull. 1999; 34 ( 5 ): 685 – 91. | |
dc.identifier.citedreference | Last JT. Infrared‐absorption studies on barium titanate and related materials. Phys Rev. 1957; 105 ( 6 ): 1740 – 50. | |
dc.identifier.citedreference | Kartha K, Pai MR, Banerjee AM, Pai RV, Meena SS, Bharadwaj SR, et al. Modified surface and bulk properties of Fe‐substituted lanthanum titanates enhances catalytic activity for CO + N 2 O reaction. J Molecular Catalyst A: Chemical. 2011; 335 ( 1–2 ): 158 – 68. | |
dc.identifier.citedreference | Feng W, Wu G, Li L, Guan N. Solvent‐free selective photocatalytic oxidation of benzyl alcohol over modified TiO 2. Green Chem. 2011; 13 ( 11 ): 3265 – 72. | |
dc.identifier.citedreference | Iwabuchi A, Choo C, Tanaka K. Titania nanoparticles prepared with pulsed laser ablation of rutile single crystals in water. J Phys Chem B. 2004; 108 ( 30 ): 10863 – 71. | |
dc.identifier.citedreference | Wang R, Sakai N, Fujishima A, Watanabe T, Hashimoto K. Studies of surface wettability conversion on TiO 2 single‐crystal surfaces. J Phys Chem B. 1999; 103 ( 12 ): 2188 – 94. | |
dc.identifier.citedreference | Yan J, Wu G, Guan N, Li L, Li Z, Cao X. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO 2: anatase versus rutile. Phys Chem Chem Phys. 2013; 15 ( 26 ): 10978 – 88. | |
dc.identifier.citedreference | Dai K, Chen H, Peng T, Ke D, Yi H. Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles. Chemosphere. 2007; 69 ( 9 ): 1361 – 7. | |
dc.identifier.citedreference | Hwang DW, Lee JS, Li W, Oh SH. Electronic band structure and photocatalytic activity of Ln 2 Ti 2 O 7 (Ln = La, Pr, Nd). J Phys Chem B. 2003; 107 ( 21 ): 4963 – 70. | |
dc.identifier.citedreference | Uno M, Kosuga A, Okui M, Horisaka K, Yamanaka S. Photoelectrochemical study of lanthanide titanium oxides, Ln 2 Ti 2 O 7 (Ln =. La, Sm, and Gd). J Alloys Comp. 2005; 400 ( 1–2 ): 270 – 5. | |
dc.identifier.citedreference | Abe R, Higashi M, Sayama K, Abe Y, Sugihara H. Photocatalytic activity of R 3 MO 7 and R 2 Ti 2 O 7 (R = Y, Gd, La; M = Nb, Ta) for water splitting into H 2 and O 2. J Phys Chem B. 2006; 110 ( 5 ): 2219 – 26. | |
dc.identifier.citedreference | Bickmore CR, Waldner KF, Baranwal R, Hinklin T, Treadwell DR, Laine RM. Ultrafine titania by flame spray pyrolysis of a titanatrane complex. J Euro Ceram Soc. 1998; 18 ( 4 ): 287 – 97. | |
dc.identifier.citedreference | Laine RM, Marchal JC, Sun HP, Pan XQ. Nano‐α‐Al 2 O 3 by liquid‐feed flame spray pyrolysis. Nat Mater. 2006; 5: 710 – 2. | |
dc.identifier.citedreference | Messing GL, Zhang S‐C, Jayanthi GV. Ceramic powder synthesis by spray pyrolysis. J Am Ceram Soc. 1993; 76 ( 11 ): 2707 – 26. | |
dc.identifier.citedreference | Hinklin T, Toury B, Gervais C, Babonneau F, Gislason JJ, Morton RW, et al. Liquid‐feed flame spray pyrolysis of metalloorganic and inorganic alumina sources in the production of nanoalumina powders. Chem Mater. 2004; 16 ( 1 ): 21 – 30. | |
dc.identifier.citedreference | Yi E, Wang W, Kieffer J, Laine RM. Flame made nanoparticles permit processing of dense, flexible, Li + conducting ceramic electrolyte thin films of cubic‐Li 7 La 3 Zr 2 O 12 (c‐LLZO). J Mater Chem A. 2016; 4 ( 33 ): 12947 – 54. | |
dc.identifier.citedreference | Yi E, Wang W, Kieffer J, Laine RM. Key parameters governing the densification of cubic‐ Li 7 La 3 Zr 2 O 12 Li + conductors. J Power Sources. 2017; 352 ( 1 ): 156 – 64. | |
dc.identifier.citedreference | Yi E, Temeche E, Laine RM. Superionically conducting β’’‐Al 2 O 3 thin films processed using flame synthesized nanopowders. J Mater Chem A. 2018; 6 ( 26 ): 12411 – 9. | |
dc.identifier.citedreference | Abe Y, Yi E, Laine RM. Processing thin, dense, transparent Ce:Y 3 Al 5 O 12 films from flame made nanopowders for white light applications. J Euro Ceram Soc. 2019; 39 ( 15 ): 4972 – 9. | |
dc.identifier.citedreference | Bednorz JG, Müller KA. Possible high Tc superconductivity in the Ba‐La‐Cu‐O system. Z Physik B. 1986; 64: 189 – 93. | |
dc.identifier.citedreference | Wu MK, Ashburn JR, Torng CJ, Hor PH, Meng RL, Gao L, et al. Superconductivity at 93 K in a new mixed‐phase Y‐Ba‐Cu‐O compound system at ambient pressure. Phys Rev Lett. 1987; 58 ( 9 ): 908 – 10. | |
dc.identifier.citedreference | Mulder AT, Benedek NA, Rondinelli JM, Fennie CJ. Turning ABO 3 antiferroelectrics into ferroelectrics: design rules for practical rotation‐driven ferroelectricity in double perovskites and A 3 B 2 O 7 Ruddlesden‐Popper compounds. Adv Fun Mater. 2013; 23 ( 38 ): 4810 – 20. | |
dc.identifier.citedreference | Amanuma K, Hase T, Miyasaka Y. Preparation and ferroelectric properties of SrBi 2 Ta 2 O 9 thin films. Appl Phys Lett. 1995; 66 ( 2 ): 221 – 3. | |
dc.identifier.citedreference | Mao X, Wang W, Chen X, Lu Y. Multiferroic properties of layer‐structured Bi 5 Fe 0.5 Co 0.5 Ti 3 O 15. Appl Phys Lett. 2009; 95: 082901/1‐3. | |
dc.identifier.citedreference | Keeney L, Maity T, Schmidt M, Amann A, Deepak N, Petkov N, et al. Magnetic field‐induced ferroelectric switching in multiferroic aurivillius phase thin films at room temperature. J Am Ceram Soc. 2013; 96 ( 8 ): 2339 – 57. | |
dc.identifier.citedreference | Shimizu K, Itoh S, Hatamachi T, Kodama T, Sato M, Toda K. Photocatalytic water splitting on Ni‐intercalated Ruddlesden−Popper tantalate H 2 La 2/3 Ta 2 O 7. Chem Mater. 2005; 17 ( 20 ): 5161 – 6. | |
dc.identifier.citedreference | Machida M, Yabunaka J, Kijima T. Synthesis and photocatalytic property of layered perovskite tantalates, RbLnTa 2 O 7 (Ln = La, Pr, Nd, and Sm). Chem Mater. 2000; 12 ( 3 ): 812 – 7. | |
dc.identifier.citedreference | Isupov VA. Crystal chemical aspects of the layered perovskite‐like oxide ferroelectrics of the AnMnO 3 n 2 type. Ferroelectrics. 1999; 220 ( 1 ): 79 – 103. | |
dc.identifier.citedreference | Lichtenberg F, Herrnberger A, Wiedenmann K, Mannhart J. Synthesis of perovskite‐related layered A n B n O 3n+2 = ABO X type niobates and titanates and study of their structural, electric and magnetic properties. Progress in Solid State Chem. 2001; 29 ( 1–2 ): 1 – 70. | |
dc.identifier.citedreference | Nanamatsu S, Kimura M, Doi K, Matsushita S, Yamada N. A new ferroelectric: La 2 Ti 2 O 7. Ferroelectrics. 1974; 8 ( 1 ): 511 – 3. | |
dc.identifier.citedreference | Stefanovich SY, Nanamatsu S, Venevtsev YN. Photovoltaic properties and photoconductivity of A 2 B 2 O 7 ferroelectrics. Ferroelectrics. 1980; 29 ( 1 ): 59 – 62. | |
dc.identifier.citedreference | Yamamoto JK, Bhalla AS. Piezoelectric properties of layered perovskite A 2 Ti 2 O 7 (A=La and Nd) single‐crystal fibers. J Appl Phys. 1991; 70 ( 8 ): 4469 – 71. | |
dc.identifier.citedreference | Wang Z, Teramura K, Hosokawa S, Tanaka T. Photocatalytic conversion of CO 2 in water over Ag‐modified La 2 Ti 2 O 7. Appl Cat B: Environ. 2015; 163: 241 – 7. | |
dc.identifier.citedreference | Kim HG, Hwang DW, Kim J, Kim YG, Lee JS. Highly donor‐doped (110) layered perovskite materials as novel photocatalysts for overall water splitting. Chem Commun. 1999; 12: 1077 – 9. | |
dc.identifier.citedreference | Kim HG, Hwang DW, Bae SW, Jung JH, Lee JS. Photocatalytic water splitting over La 2 Ti 2 O 7 synthesized by the polymerizable complex method. Catal Lett. 2003; 91 ( 3–4 ): 193 – 9. | |
dc.identifier.citedreference | Ku Y, Wang LC, Ma CM. Photocatalytic oxidation of isopropanol in aqueous solution using perovskite – structured La 2 Ti 2 O 7. Chem Eng Technol. 2007; 30 ( 7 ): 895 – 900. | |
dc.identifier.citedreference | Hou WM, Ku Y. Synthesis and characterization of La 2 Ti 2 O 7 employed for photocatalytic degradation of reactive red 22 dyestuff in aqueous solution. J Alloys Comp. 2011; 509 ( 19 ): 5913 – 9. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.