Show simple item record

Alternatives to immediate release tacrolimus in solid organ transplant recipients: When the gold standard is in short supply

dc.contributor.authorJorgenson, Margaret R.
dc.contributor.authorDescourouez, Jillian L.
dc.contributor.authorBrady, Bethany L.
dc.contributor.authorBowman, Lyndsey
dc.contributor.authorHammad, Sara
dc.contributor.authorKaiser, Tiffany E.
dc.contributor.authorLaub, Melissa R.
dc.contributor.authorMelaragno, Jennifer I.
dc.contributor.authorPark, Jeong M.
dc.contributor.authorChandran, Mary M.
dc.date.accessioned2020-08-10T20:53:23Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-08-10T20:53:23Z
dc.date.issued2020-07
dc.identifier.citationJorgenson, Margaret R.; Descourouez, Jillian L.; Brady, Bethany L.; Bowman, Lyndsey; Hammad, Sara; Kaiser, Tiffany E.; Laub, Melissa R.; Melaragno, Jennifer I.; Park, Jeong M.; Chandran, Mary M. (2020). "Alternatives to immediate release tacrolimus in solid organ transplant recipients: When the gold standard is in short supply." Clinical Transplantation 34(7): n/a-n/a.
dc.identifier.issn0902-0063
dc.identifier.issn1399-0012
dc.identifier.urihttps://hdl.handle.net/2027.42/156148
dc.description.abstractGiven the current climate of drug shortages in the United States, this review summarizes available comparative literature on the use of alternative immunosuppressive agents in adult solid organ transplant recipients including kidney, pancreas, liver, lung, and heart, when immediate‐release tacrolimus (IR‐TAC) is not available. Alternative options explored include extended‐release tacrolimus (ER‐TAC) formulations, cyclosporine, belatacept, mammalian target of rapamycin inhibitors, and novel uses of induction therapy for maintenance immunosuppression. Of available alternatives, only ER‐TAC formulations are of non‐inferior efficacy compared to IR‐TAC when used de novo or after conversion in stable kidney transplant recipients (KTRs). All other alternatives were associated with higher rates of biopsy‐proven rejection, but improved tolerance from classic adverse effects of IR‐TAC including nephrotoxicity and development of diabetes. While most alternative therapies are approved in KTRs, access via third‐party payors is an obstacle in non‐KTRs. In the setting of IR‐TAC shortage, alternate therapeutic options may be plausible depending on the organ population and individual patient situation to ensure appropriate, effective immunosuppression for each patient.
dc.publisherWiley Periodicals, Inc.
dc.publisherAstellas Pharma US Inc
dc.subject.othercalcineurin inhibitor (CNI); immunosuppressant
dc.subject.othermechanistic target of rapamycin (mTOR)
dc.subject.otheranti‐proliferative agent; immunosuppressant
dc.subject.otherimmunosuppression/immune modulation; immunosuppressant
dc.subject.otherfusion proteins and monoclonal antibodies; immunosuppressant
dc.titleAlternatives to immediate release tacrolimus in solid organ transplant recipients: When the gold standard is in short supply
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156148/2/ctr13903.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156148/1/ctr13903_am.pdfen_US
dc.identifier.doi10.1111/ctr.13903
dc.identifier.sourceClinical Transplantation
dc.identifier.citedreferenceVincenti F, Charpentier B, Vanrenterghem Y, et al. A phase III study of belatacept‐based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). Am J Transplant. 2010; 10: 535 ‐ 546.
dc.identifier.citedreferencePestana JOM, Grinyo JM, Vanrenterghem Y, et al. Three‐year outcomes from BENEFIT‐EXT: a phase III study of belatacept versus cyclosporine in recipients of extended criteria donor kidneys. Am J Transplant. 2012; 12: 630 ‐ 639.
dc.identifier.citedreferenceNair V, Liriano‐Ward L, Kent R, et al. Early conversion to belatacept after renal transplantation. Clin Transplant. 2017; 31 ( 5 ): e12951.
dc.identifier.citedreferenceGrinyó JM, Del Carmen RM, Alberu J, et al. Safety and efficacy outcomes 3 years after switching to belatacept from a calcineurin inhibitor in kidney transplant recipients: results from a phase 2 randomized trial. Am J Kidney Dis. 2016; 69 ( 5 ): 587 ‐ 594.
dc.identifier.citedreferencede Graav GN, Baan CC, Clahsen‐van Groningen MC, et al. A randomized controlled clinical trial comparing belatacept with tacrolimus after de novo kidney transplantation. Transplantation. 2017; 101 ( 10 ): 2571 ‐ 2581.
dc.identifier.citedreferenceCohen JB, Eddinger KC, Forder KA, et al. Belatacept compared to tacrolimus for kidney transplantation: a propensity score matched cohort study. Transplantation. 2017; 101 ( 10 ): 2582 ‐ 2589.
dc.identifier.citedreferenceWen X, Casey MJ, Santos AH, et al. Comparison of utilization and clinical outcomes for belatacept‐ and tacrolimus‐based immunosuppression in renal transplant recipients. Am J Transplant. 2016; 16 ( 11 ): 3202 ‐ 3211.
dc.identifier.citedreferenceFerguson R, Grinyo J, Vincenti F, et al. Immunosuppression with belatacept‐based, corticosteroid‐avoiding regimens in de novo kidney transplant recipients. Am J Transplant. 2011; 11: 66 ‐ 76.
dc.identifier.citedreferenceWojciechowski D, Chanadran S, Vincenti F. Early post‐transplant conversion from tacrolimus to belatacept for prolonged delayed graft function improves renal function in kidney transplant recipients. Clin Transplant. 2017; 31 ( 5 ): e12930.
dc.identifier.citedreferenceDürr M, Lachmann N, Zukunft B, et al. Late conversion to belatacept after kidney transplantation: outcome and prognostic factors. Transplant Proc. 2017; 49 ( 8 ): 1747 ‐ 1756.
dc.identifier.citedreferenceOng P, Mudambi L, Fuentes A, et al. Belatacept as primary immunosuppression in a lung transplant recipient. J Heart Lung Transplant. 2014; 33 ( S4 ): S31.
dc.identifier.citedreferenceMujtaba MA, Sharfuddin AA, Taber T, et al. Conversion from tacrolimus to belatacept to prevent the progression of chronic kidney disease in pancreas transplantation: a case report of two patients. Am J Transplant. 2014; 14 ( 11 ): 2657 ‐ 2661.
dc.identifier.citedreferenceEnderby CY, Habib P, Patel PC, et al. Belatacept maintenance in a heart transplant recipient. Transplantation. 2014; 98 ( 7 ): e74 ‐ e75.
dc.identifier.citedreferenceKlintmalm GB, Lake JR, Vargas HE, et al. Belatacept‐based immunosuppression in de novo liver transplant recipients: 1‐year experience from a phase II randomized study. Am J Transplant. 2014; 14: 1817 ‐ 1827.
dc.identifier.citedreferenceLaMattina JC, Jason MP, Hanish SI, et al. Safety of belatacept bridging immunosuppression in hepatitis C‐positive liver transplant recipients with renal dysfunction. Transplantation. 2014; 97: 133 ‐ 137.
dc.identifier.citedreferenceWebster AC, Playford EG, Higgins G, Chapman JR, Craig JC. Interleukin 2 receptor antagonists for renal transplant recipients: a meta‐analysis of randomized trials. Transplantation. 2004; 77 ( 2 ): 166 ‐ 176.
dc.identifier.citedreferenceKovarik JM, Moore R, Wolf P, et al. Screening for basiliximab exposure‐response relationships in renal allotransplantation. Clin Transplant. 1999; 13: 32.
dc.identifier.citedreferenceHeffron TG, Smallwood GA, Pillen T, et al. Liver transplant induction trial of daclizumab to spare calcineurin inhibition. Transpl Proc. 2002; 34: 1514.
dc.identifier.citedreferenceYoshida EM, Marotta PJ, Greig PD, et al. Evaluation of renal function in liver transplant recipients receiving daclizumab (Zenapax), mycophenolate mofetil, and a delayed, low‐dose tacrolimus regimen vs. a standard‐dose tacrolimus and mycophenolate mofetil regimen: a multicenter randomized clinical trial. Liver Transpl. 2005; 11: 1064.
dc.identifier.citedreferenceNeuberger JM, Mamelok RD, Neuhaus P, et al. Delayed introduction of reduced‐dose tacrolimus, and renal function in liver transplantation: the ‘ReSpECT’ study. Am J Transplant. 2009; 9: 327.
dc.identifier.citedreferenceCantarovich M, Metrakos P, Giannetti N, Cecere R, Barkun J, Tchervenkov J. Anti‐CD25 monoclonal antibody coverage allows for calcineurin inhibitor "holiday" in solid organ transplant patients with acute renal dysfunction. Transplantation. 2002; 73 ( 7 ): 1169 ‐ 1172.
dc.identifier.citedreferenceVincenti F, Grinyo J, Ramos E, et al. Can antibody prophylaxis allow sparing of other immunosuppressives? Transplant Proc. 1999; 31: 1246.
dc.identifier.citedreferenceKirchner VA, Suszynski TM, Radosevich DM, et al. Anti‐CD25 antibody (daclizumab) maintenance therapy in pancreas transplantation. Transplant Proc. 2010; 42 ( 6 ): 2003 ‐ 2005.
dc.identifier.citedreferenceGabardi S, Catella J, Martin ST, et al. Maintenance immunosuppression with intermittent intravenous IL‐2 receptor antibody therapy in renal transplant recipients. Ann Pharmacother. 2011; 45 ( 9 ): e48.
dc.identifier.citedreferenceHalloran PF. Immunosuppressive drugs for kidney transplantation. N Engl J Med. 2004; 351: 2715 ‐ 2729.
dc.identifier.citedreferenceHardinger K, Brennan D, Klein C. Selection of induction therapy in kidney transplantation. Transpl Int. 2013; 26: 662 ‐ 672.
dc.identifier.citedreferenceBook BK, Pescovitz MD, Agarwal A, et al. In vitro monitoring of in vivo development of human anti‐thymoglobulin antibodies by ELISA. Transplant Proc. 2006; 38 ( 9 ): 2869 ‐ 2871.
dc.identifier.citedreferenceRegan JF, Campbell K, Van Smith LE, et al. Sensitization following Thymoglobulin and Atgam rejection therapy as determined with a rapid enzyme‐linked immunosorbent assay. US Thymoglobulin Multi‐Center Study Group. Transplant Immunol. 1999; 7 ( 2 ): 115 ‐ 121.
dc.identifier.citedreferenceWaldmann H. Development and clinical use of CAMPATH 1H. Transplant Rev. 2003; 17: S5 ‐ S7.
dc.identifier.citedreferenceGruessner RW, Kandaswamy R, Humar A, Gruessner AC, Sutherland DE. Calcineurin inhibitor‐ and steroid‐free immunosuppression in pancreas‐kidney and solitary pancreas transplantation. Transplantation. 2005; 79 ( 9 ): 1184 ‐ 1189.
dc.identifier.citedreferenceWebster AC, Woodroffe RC, Taylor RS, Chapman JR, Craig JC. Tacrolimus versus ciclosporin as primary immunosuppression for kidney transplant recipients: meta‐analysis and meta‐regression of randomised trial data. BMJ. 2005; 331 ( 7520 ): 810 ‐ 821.
dc.identifier.citedreferenceMuduma G, Saunders R, Odeyemi I, Pollock RF. Systematic review and meta‐analysis of tacrolimus versus ciclosporin as primary immunosuppression after liver transplant. PLoS One. 2016; 11 ( 11 ): e0160421.
dc.identifier.citedreferenceFDA. Drug shortages. 2019. Accessed at https://www.accessdata.fda.gov/scripts/drugshortages/default.cfm. Accessed September 19, 2019
dc.identifier.citedreferenceAstagraf XL ® [package insert]. Northbrook, IL: Astellas Pharma US Inc.; 2015.
dc.identifier.citedreferenceEnvarsus XR ® [package insert]. Edison, NJ: Veloxis Pharmaceuticals, Inc; 2018.
dc.identifier.citedreferencePhilosophe B, Leca N, West‐Thielke PM, et al. Evaluation of flexible tacrolimus drug concentration monitoring approach in patients receiving extended‐release once‐daily tacrolimus tablets. J Clin Pharmacol. 2018; 58 ( 7 ): 891 ‐ 896.
dc.identifier.citedreferenceTremblay S, Nigro V, Weinberg J, Woodle ES, Alloway RR. A steady‐state head‐to‐head pharmacokinetic comparison of All FK‐506 (Tacrolimus) formulations (ASTCOFF): an open‐label, prospective, randomized, two‐Arm, three‐period crossover study. Am J Transplant. 2017; 17: 432 ‐ 442.
dc.identifier.citedreferenceStaatz CE, Tett SE. Clinical pharmacokinetics of once‐daily tacrolimus in solid‐organ transplant patients. Clin Pharmacokinet. 2015; 54: 993 ‐ 1025.
dc.identifier.citedreferenceAsempa TE, Rebellato LM, Hudson S, Briley K, Maldonado AQ. Impact of CYP3A5 genomic variances on clinical outcomes among African American kidney transplant recipients. Clin Transplant. 2018; 32 ( 1 ): e13162.
dc.identifier.citedreferenceTrofe‐Clark J, Brennan DC, West‐Thielke P, et al. Results of ASERTAA, a randomized prospective crossover pharmacogenetic study of immediate release tacrolimus versus extended release tacrolimus in African American kidney transplant recipients. Am J Kidney Dis. 2018; 71: 315 ‐ 326.
dc.identifier.citedreferenceHuppertz A, Ott C, Bruckner T, et al. Prolonged‐release tacrolimus is less susceptible to interaction with the strong CYP3A inhibitor voriconazole in healthy volunteers. Clin Pharmacol Ther. 2019; 106: 1290 ‐ 1298.
dc.identifier.citedreferenceLangone A, Steinberg SM, Gedaly R, et al. Switching study of kidney transplant patients with tremor to LCP‐Tacro (STRATO): an open‐label, multicenter, prospective phase 3b study. Clin Transplant. 2015; 29: 796 ‐ 805.
dc.identifier.citedreferenceClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000. Identifier: NCT03762473, Conversion to Envarsus Post Kidney Transplant Protects Against BK Infection. Available from: https://clinicaltrials.gov/ct2/show/NCT03762473
dc.identifier.citedreferenceShuker N, Cadogan M, van Gelder T, et al. Conversion from twice‐daily to once‐daily tacrolimus does not reduce intrapatient variability in tacrolimus exposure. Ther Drug Monit. 2015; 37 ( 2 ): 262 ‐ 269.
dc.identifier.citedreferenceAlloway R, Steinberg S, Khalil K, et al. Two years postconversion from a prograf‐based regimen to a once‐daily tacrolimus extended‐release formulation in stable kidney transplant recipients. Transplantation. 2007; 83 ( 12 ): 1648 ‐ 1651.
dc.identifier.citedreferenceSilva HT Jr, Yang HC, Meier‐Kriesche HU, et al. Long‐term follow‐up of a phase III clinical trial comparing tacrolimus extended‐release/MMF, tacrolimus/MMF, and cyclosporine/MMF in de novo kidney transplant recipients. Transplantation. 2014; 97 ( 6 ): 636 ‐ 641.
dc.identifier.citedreferenceSaengram W, Vadcharavivad S, Poolsup N, Chancharoenthana W. Extended release versus immediate release tacrolimus in kidney transplant recipients: a systematic review and meta‐analysis. Eur J Clin Pharmacol. 2018; 74 ( 10 ): 1249 ‐ 1260.
dc.identifier.citedreferenceDib M, Barbas A, Marquez M, et al. Safety and efficacy of conversion from conventional twice daily tacrolimus to once daily extended release tacrolimus in stable pancreas transplant (SPK and PAK) recipients [abstract]. Am J Transplant. 2015; 15. Special Issue: SI, Meeting Abstract: 889.
dc.identifier.citedreferenceTrunečka P, Boillot O, Seehofer D, et al. Once‐daily prolonged‐release tacrolimus (ADVAGRAF) versus twice‐daily tacrolimus (PROGRAF) in liver transplantation. Am J Transplant. 2010; 10 ( 10 ): 2313 ‐ 2323.
dc.identifier.citedreferenceGonzález‐Vílchez F, Crespo‐Leiro M, Palomo J, et al. Multicentre study to evaluate conversion from standard‐release tacrolimus (SRT) to extended‐release tacrolimus (ERT) in a large series of heart transplanted patients. J Heart Lung Transplant. 2015; 34 ( 4 ): S32.
dc.identifier.citedreferenceGonzalez‐Vilchez F, Lambert J, Almenar L, et al. A comparison of the extended‐release and standard‐release formulations of tacrolimus in de novo heart transplant recipients: a 12‐month outcome Study. J Heart Lung Transplant. 2014; 33 ( 4 ): S172.
dc.identifier.citedreferenceGonzález‐Vílchez F, Lambert JL, et al. Efficacy and safety of de novo and early use of extended‐release tacrolimus in heart transplantation. Rev Esp Cardiol (Engl Ed). 2018; 71 ( 1 ): 18 ‐ 25.
dc.identifier.citedreferenceMéndez A, Berastegui C, López‐Meseguer M, et al. Pharmacokinetic study of conversion from tacrolimus twice‐daily to tacrolimus once‐daily in stable lung transplantation. Transplantation. 2014; 97 ( 3 ): 358 ‐ 362.
dc.identifier.citedreferenceSoto GAC, Ruiz‐Antoran B, Laporta R, et al. Dose increase needed in most cystic fibrosis lung transplantation patients when changing from twice‐ to once‐daily tacrolimus oral administration. Eur J Clin Pharmacol. 2015; 71 ( 6 ): 715 ‐ 722.
dc.identifier.citedreferenceEtienne I, Woillard JB, Marquet P, Estenne M, Knoop C, Monchaud C. The once‐daily tacrolimus extended‐release formulation provides similar drug exposure in non‐CF and CF lung transplant recipients when compared to the conventional twice‐daily formulation. J Cyst Fibros. 2014; 13 ( 2 ): S107.
dc.identifier.citedreferenceSenzolo M, Ferronato C, Burra P. Neurologic complications after solid organ transplantation. Transpl int. 2009; 22: 269 ‐ 278.
dc.identifier.citedreferenceBudde K, Bunnapradist S, Grinyo JM, et al. Novel once‐daily extended‐release tacrolimus (LCPT) versus twice‐daily tacrolimus in de novo kidney transplants: one‐year results of phase III, double‐blind, randomized trial. Am J Transplant. 2014; 14: 2796 ‐ 2806.
dc.identifier.citedreferenceRostaing L, Bunnapradist S, Grinyó JM, et al. Novel once‐daily extended release tacrolimus (LCPT) versus twice‐daily tacrolimus in de novo kidney transplants: two‐ year results of phase 3, double‐ blind, randomized trial. Am J Kidney Dis. 2016; 67: 648 ‐ 659.
dc.identifier.citedreferenceBunnapradist S, Ciechanowski K, West‐Thielke P, et al. Conversion from twice‐daily tacrolimus to once‐daily extended release tacrolimus (LCPT): the phase III randomized MELT trial. Am J Transplant. 2013; 13 ( 3 ): 760 ‐ 769.
dc.identifier.citedreferenceBunnapradist S, Rostaing L, Alloway RR, et al. LCPT once‐daily extended‐release tacrolimus tablets versus twice‐daily capsules: a pooled analysis of two phase 3 trials in important de novo and stable kidney transplant recipient subgroups. Transpl Int. 2016; 29: 603 ‐ 611.
dc.identifier.citedreferenceAlloway RR, Eckhoff DE, Washburn WK, Teperman LW. Conversion from twice daily tacrolimus capsules to once daily extended‐release tacrolimus (LCP‐Tacro): phase 2 trial of stable liver transplant recipients. Liver Transpl. 2014; 20 ( 5 ): 564 ‐ 575.
dc.identifier.citedreferenceAltieri M, Delava G, Kimmoun E, Allaire M, Salamé E, Dumortier J. Conversion from once‐daily prolonged‐release tacrolimus to once‐daily extended‐release tacrolimus in stable liver transplant recipients. Exp Clin Transplant. 2018; 3: 321 ‐ 325.
dc.identifier.citedreferenceDuBay DA, Teperman L, Ueda K, et al. Pharmacokinetics of once‐daily extended‐release tacrolimus tablets versus twice‐daily capsules in de novo liver transplant. Clin Pharmacol Drug Dev. 2019; 8 ( 8 ): 995 – 1008.
dc.identifier.citedreferenceKerstenetzky L, Descourouez JL, Jorgenson MR, et al. A single‐center experience with tacrolimus LCP (Envarsus XR) in pancreas transplant recipients. Ann Pharmacother. 2018; 52 ( 4 ): 392 ‐ 396.
dc.identifier.citedreferenceSintes H, Sáez‐Giménez B, Berastegui C, et al. Pharmacokinetic study of conversion between 2 formulations of once‐daily extended‐release tacrolimus in stable lung transplant patients. Transplantation. 2018; 102: e439 ‐ e446.
dc.identifier.citedreferenceClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000. Identifier: NCT03373227. Phase II Study Evaluating the Efficacy of Tacrolimus Extended Release Tablets to Twice Daily Tacrolimus Dosing Regimen (Veloxis) 2017 Dec 14. Available from: https://clinicaltrials.gov/ct2/show/NCT03373227
dc.identifier.citedreferenceGlander P, Waiser J, Kasbohm S, et al. Bioavailability and costs of once‐daily and twice‐daily tacrolimus formulations in de novo kidney transplantation. Clin Transplant. 2018; 32: e13311.
dc.identifier.citedreferenceDösch A, Müller S, Konstandin M, et al. Compliance under modified release tacrolimus in chronic stable patients after heart transplantation. Transplantation. 2010; 90 ( S2 ): 3015.
dc.identifier.citedreferenceOh CK, Bang JB, Kim SJ, et al. Improvement of medication adherence with simplified once‐daily immunosuppressive regimen in stable kidney transplant recipients: A prospective cohort study. Asian J Surg. 2019; 43 ( 6 ): 660 ‐ 667. https://doi.org/10.1016/j.asjsur.2019.07.011
dc.identifier.citedreferenceHariharan S, Johnson CP, Bresnahan BA, Taranto SE, McIntosh MJ, Stablein D. Improved graft survival after renal transplantation in the United States, 1988 to 1996. N Engl J Med. 2000; 342 ( 9 ): 605 ‐ 612.
dc.identifier.citedreferenceKidney Disease: Improving global outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009; 9 ( Suppl 3 ): S1 ‐ S155.
dc.identifier.citedreferenceKramer BK, Del Castillo D, Margreiter R, et al. Efficacy and safety of tacrolimus compared with ciclosporin A in renal transplantation: three‐year observational results. Nephrol Dial Transplant. 2008; 23: 2386 ‐ 2392.
dc.identifier.citedreferenceEkberg H, Tedesco‐Silva H, Demirbas A, et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med. 2007; 357: 2562 ‐ 2575.
dc.identifier.citedreferenceSaudek F, Malaise J, Boucek P, Adamec M, Euro‐SPK Study Group. Efficacy and safety of tacrolimus compared with cyclosporin microemulsion in primary SPK transplantation: 3‐year results of the Euro‐SPK 001 trial. Nephrol Dial Transplant. 2005; 20 ( Suppl 2 ): ii3 ‐ ii10, ii62.
dc.identifier.citedreferenceYe F, Ying‐Bin X, Yu‐Guo W, Hetzer R. Tacrolimus versus cyclosporine microemulsion for heart transplant recipients: a meta‐analysis. J Heart Lung Transplant. 2009; 28 ( 1 ): 58 ‐ 66.
dc.identifier.citedreferenceFan Y, Xiao YB, Weng YG. Tacrolimus versus cyclosporine for adult lung transplant recipients: a meta‐analysis. Transplant Proc. 2009; 41 ( 5 ): 1821 ‐ 1824.
dc.identifier.citedreferenceHesselink DA, van Hest RM, Mathot RAA, et al. Cyclosporine interacts with mycophenolic acid by inhibiting the multidrug resistance‐associated protein 2. Am J Transplant. 2005; 5 ( 5 ): 987 ‐ 994.
dc.identifier.citedreferenceGrinyó JM, Ekberg H, Mamelok RD, et al. The pharmacokinetics of mycophenolate mofetil in renal transplant recipients receiving standard‐dose or low‐dose cyclosporine, low‐dose tacrolimus or low‐dose sirolimus: the Symphony pharmacokinetic substudy. Nephrol Dial Transplant. 2009; 24 ( 7 ): 2269 ‐ 2276.
dc.identifier.citedreferenceHirano T, Akashi T, Keira T, et al. Clinical impact of cyclosporine cellular pharmacodynamics in minimal change nephrotic syndrome. Clin Pharmacol Ther. 2000; 68: 532 ‐ 540.
dc.identifier.citedreferenceMorath C, Arns W, Schwenger V, et al. Sirolimus in renal transplantation. Nephrol Dial Transplant. 2007; 22 ( Suppl 8 ): viii61 ‐ viii65.
dc.identifier.citedreferenceRapamune [package insert]. Philadelphia, PA: Wyeth Pharmaceuticals LLC; 2019.
dc.identifier.citedreferenceZortress [package insert]. East Hanover, NJ: Novartis Pharmaceuticals Corporation; 2018.
dc.identifier.citedreferenceKarpe KM, Talaulikar GS, Walters GD. Calcineurin inhibitor withdrawal or tapering for kidney transplant recipients. Cochrane Database of Syst Rev. 2017;( 7 ): CD006750.
dc.identifier.citedreferenceFlechner SM, Kurian SM, Solez K, et al. De novo kidney transplantation without use of calcineurin inhibitors preserves renal structure and function at two years. Am J Transplant. 2004; 4 ( 1776–1785 ): 15.
dc.identifier.citedreferenceHamdy AF, El‐Agroudy AE, Bakr MA, et al. Comparison of sirolimus with low‐dose tacrolimus versus sirolimus‐based calcineurin inhibitor‐free regimen in live donor renal transplantation. Am J Transplant. 2005; 5 ( 2531–2538 ): 16.
dc.identifier.citedreferenceSchena FP, Pascoe MD, Alberu J, et al. Conversion from calcineurin inhibitors to sirolimus maintenance therapy in renal allograft recipients: 24‐month efficacy and safety results from the CONVERT trial. Transplantation. 2009; 87: 233 ‐ 242.
dc.identifier.citedreferenceBudde K, Becker T, Arns W, et al. Everolimus‐based, calcineurin‐inhibitor‐free regimen in recipients of de‐novo kidney transplants: an open‐label, randomised, controlled trial. Lancet. 2011; 377: 837 ‐ 847.
dc.identifier.citedreferenceMjörnstedt L, Schwartz Sørensen S, von zur Mühlen B, et al. Renal function three years after early conversion from a calcineurin inhibitor to everolimus: results from a randomized trial in kidney transplantation. Transpl Int. 2015; 28 ( 42–51 ): 25.
dc.identifier.citedreferenceLebranchu Y, Thierry A, Toupance O, et al. Efficacy on renal function of early conversion from cyclosporine to sirolimus 3 months after renal transplantation: Concept study. Am J Transplant. 2009; 9: 1115 ‐ 1123.
dc.identifier.citedreferenceWeir MR, Mulgaonkar S, Chan L, et al. Mycophenolate mofetil‐based immunosuppression with sirolimus in renal transplantation: a randomized, controlled Spare‐the‐Nephron trial. Kidney Int. 2011; 79: 897 ‐ 907.
dc.identifier.citedreferenceGuba M, Pratschke J, Hugo C, et al. Renal function, efficacy, and safety of sirolimus and mycophenolate mofetil after short‐term calcineurin inhibitor‐based quadruple therapy in de novo renal transplant patients: one‐year analysis of a randomized multicenter trial. Transplantation. 2010; 90 ( 2 ): 175 ‐ 183.
dc.identifier.citedreferenceHeilman RL, Younan K, Wadei HM, et al. Results of a prospective randomized trial of sirolimus conversion in kidney transplant recipients on early corticosteroid withdrawal. Transplantation. 2011; 92: 767 ‐ 773.
dc.identifier.citedreferencePascual J, Berger SP, Witzke O, et al. Everolimus with reduced calcineurin inhibitor exposure in renal transplantation. J Am Soc Nephrol. 2018; 29 ( 7 ): 1979 ‐ 1991.
dc.identifier.citedreferenceBerger SP, Sommerer C, Witzke O, et al. Two‐year outcomes in de novo renal transplant recipients receiving everolimus‐facilitated calcineurin inhibitor reduction regimen from the TRANSFORM study. Am J Transplant. 2019; 19 ( 11 ): 3018 ‐ 3034.
dc.identifier.citedreferenceDe Simone P, Nevens F, De Carlis L, et al. Everolimus with reduced tacrolimus improves renal function in de novo liver transplant recipients: a randomized controlled trial. Am J Transplant. 2012; 12 ( 11 ): 3008 ‐ 3020.
dc.identifier.citedreferenceTeperman L, Moonka D, Sebastian A, et al. Calcineurin inhibitor‐free mycophenolate mofetil/sirolimus maintenance in liver transplantation: the randomized spare‐the‐nephron trial. Liver Transpl. 2013; 19 ( 7 ): 675 ‐ 689.
dc.identifier.citedreferenceGlover TE, Watson CJE, Gibbs P, et al. Conversion from calcineurin to mammalian target of rapamycin inhibitors in liver transplantation: a meta‐analysis of randomized controlled trials. Transplantation. 2016; 100 ( 3 ): 621 ‐ 629.
dc.identifier.citedreferenceSaliba F, Duvoux C, Dharancy S. Impact on renal function of stepwise withdrawal of tacrolimus combined with everolimus and EC‐MPS vs standard treatment combining tacrolimus and EC‐MPS in de novo liver transplant recipients: results of the SIMCER Study. Am J Transplant. 2016; 16: 263.
dc.identifier.citedreferenceFischer L, Klempnauer J, Beckebaum S, et al. A randomized, controlled study to assess the conversion from calcineurin‐inhibitors to everolimus after liver transplantation–PROTECT. Am J Transplant. 2012; 12 ( 7 ): 1855 ‐ 1865.
dc.identifier.citedreferenceTang C‐Y, Shen AI, Wei X‐F, et al. Everolimus in de novo liver transplant recipients: a systematic review. Hepatobiliary Pancreat Dis Int. 2015; 14 ( 5 ): 461 ‐ 469.
dc.identifier.citedreferenceZuckermann A, Keogh A, Crespo‐Leiro MG, et al. Randomized controlled trial of sirolimus conversion in cardiac transplant recipients with renal insufficiency. Am. J. Transplant. 2012; 12: 2487 ‐ 2497.
dc.identifier.citedreferenceGroetzner J, Kaczmarek I, Schulz U, et al. Mycophenolate and sirolimus as calcineurin inhibitor‐free immunosuppression improves renal function better than calcineurin inhibitor‐reduction in late cardiac transplant recipients with chronic renal failure. Transplantation. 2009; 87: 726 ‐ 733.
dc.identifier.citedreferenceAndreassen AK, Andersson B, Gustafsson F, et al. Everolimus initiation with early calcineurin inhibitor withdrawal in de novo heart transplant recipients: three‐year results from the randomized schedule study. Am. J. Transplant. 2016; 16: 1238 ‐ 1247.
dc.identifier.citedreferenceAndreassen AK, Andersson B, Gustafsson F, et al. Everolimus initiation and early calcineurin inhibitor withdrawal in heart transplant recipients: A randomized trial. Am J Transplant. 2014; 14: 1828 ‐ 1838.
dc.identifier.citedreferenceGroetzner J, Wittwer T, Kaczmarek I, et al. Conversion to sirolimus and mycophenolate can attenuate the progression of bronchiolitis obliterans syndrome and improves renal function after lung transplantation. Transplantation. 2006; 81 ( 3 ): 355 ‐ 360.
dc.identifier.citedreferenceLischke R, Simonek J, Matousovic K, et al. Initial single‐center experience with sirolimus after lung transplantation. Transplant Proc. 2006; 38 ( 9 ): 3006 ‐ 3011.
dc.identifier.citedreferenceKing‐Biggs MB, Dunitz JM, Park SJ, et al. Airway anastomotic dehiscence associated with use of sirolimus immediately after lung transplantation. Transplantation. 2003; 75 ( 9 ): 1437 ‐ 1443.
dc.identifier.citedreferenceMatias P, Araujo MR, Romão JE Jr, Abensur H, Noronha IL. Conversion to sirolimus in kidney‐pancreas and pancreas transplantation. Transplant Proc. 2008; 40 ( 10 ): 3601 ‐ 3605.
dc.identifier.citedreferenceRostaing L, Kamar N. mTOR inhibitor/proliferation signal inhibitors: entering or leaving the field? J Nephrol. 2010; 23: 133 ‐ 142.
dc.identifier.citedreferenceBelatacept [package insert]. Princeton, NJ: Bristol‐Myers Squibb Company; 2019.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.