Show simple item record

Body Composition Measurements from Birth through 5 Years: Challenges, Gaps, and Existing & Emerging Technologies—A National Institutes of Health workshop

dc.contributor.authorGallagher, Dympna
dc.contributor.authorAndres, Aline
dc.contributor.authorFields, David A.
dc.contributor.authorEvans, William J.
dc.contributor.authorKuczmarski, Robert
dc.contributor.authorLowe, William L.
dc.contributor.authorLumeng, Julie C.
dc.contributor.authorOken, Emily
dc.contributor.authorShepherd, John A.
dc.contributor.authorSun, Shumei
dc.contributor.authorHeymsfield, Steven B.
dc.date.accessioned2020-08-10T20:53:25Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-08-10T20:53:25Z
dc.date.issued2020-08
dc.identifier.citationGallagher, Dympna; Andres, Aline; Fields, David A.; Evans, William J.; Kuczmarski, Robert; Lowe, William L.; Lumeng, Julie C.; Oken, Emily; Shepherd, John A.; Sun, Shumei; Heymsfield, Steven B. (2020). "Body Composition Measurements from Birth through 5 Years: Challenges, Gaps, and Existing & Emerging Technologies—A National Institutes of Health workshop." Obesity Reviews 21(8): n/a-n/a.
dc.identifier.issn1467-7881
dc.identifier.issn1467-789X
dc.identifier.urihttps://hdl.handle.net/2027.42/156150
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.othergrowth
dc.subject.otherearly childhood phenotyping
dc.subject.othernutritional assessment
dc.titleBody Composition Measurements from Birth through 5 Years: Challenges, Gaps, and Existing & Emerging Technologies—A National Institutes of Health workshop
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156150/2/obr13033_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156150/1/obr13033.pdfen_US
dc.identifier.doi10.1111/obr.13033
dc.identifier.sourceObesity Reviews
dc.identifier.citedreferenceFleisch AF, Rifas‐Shiman SL, Koutrakis P, et al. Prenatal exposure to traffic pollution: associations with reduced fetal 7growth and rapid infant weight gain. Epidemiology. 2015; 26 ( 1 ): 43 ‐ 50.
dc.identifier.citedreferenceKadakia R, Nodzenski M, Talbot O, et al. Maternal metabolites during pregnancy are associated with newborn outcomes and hyperinsulinaemia across ancestries. Diabetologia. 2019; 62 ( 3 ): 473 ‐ 484.
dc.identifier.citedreferenceLowe WL Jr, Bain JR, Nodzenski M, et al. Maternal BMI and glycemia impact the fetal metabolome. Diabetes Care. 2017; 40 ( 7 ): 902 ‐ 910.
dc.identifier.citedreferenceKarasik D, Zillikens MC, Hsu YH, et al. Disentangling the genetics of lean mass. Am J Clin Nutr. 2019; 109 ( 2 ): 276 ‐ 287.
dc.identifier.citedreferenceLu Y, Day FR, Gustafsson S, et al. New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. Nat Commun. 2016; 7: 1 – 15, 10495.
dc.identifier.citedreferenceKhera AV, Chaffin M, Wade KH, et al. Polygenic prediction of weight and obesity trajectories from birth to adulthood. Cell. 2019; 177 ( 3 ): 587 ‐ 596. e589
dc.identifier.citedreferenceBarroso I, McCarthy MI. The genetic basis of metabolic disease. Cell. 2019; 177 ( 1 ): 146 ‐ 161.
dc.identifier.citedreferenceStimpson SA, Leonard MS, Clifton LG, et al. Longitudinal changes in total body creatine pool size and skeletal muscle mass using the D‐creatine dilution method. J Cachexia Sarcopenia Muscle. 2013; 4 ( 3 ): 217 ‐ 223.
dc.identifier.citedreferenceStimpson SA, Turner SM, Clifton LG, et al. Total‐body creatine pool size and skeletal muscle mass determination by creatine‐(methyl‐D3) dilution in rats. J Appl Physiol (1985). 2012; 112 ( 11 ): 1940 ‐ 1948.
dc.identifier.citedreferenceGingras V, Aris IM, Rifas‐Shiman SL, Switkowski KM, Oken E, Hivert MF. Timing of complementary feeding introduction and adiposity throughout childhood. Pediatrics. 2019; 144 ( 6 ): 1 – 9, e20191320. https://pediatrics.aappublications.org/content/pediatrics/144/6/e20191320.full.pdf
dc.identifier.citedreferenceGingras V, Rifas‐Shiman SL, Taveras EM, Oken E, Hivert MF. Dietary behaviors throughout childhood are associated with adiposity and estimated insulin resistance in early adolescence: a longitudinal study. Int J Behav Nutr Phys Act. 2018; 15 ( 1 ): 1 – 12, 129. https://ijbnpa.biomedcentral.com/track/pdf/10.1186/s12966-018-0759-0
dc.identifier.citedreferenceFleisch AF, Luttmann‐Gibson H, Perng W, et al. Prenatal and early life exposure to traffic pollution and cardiometabolic health in childhood. Pediatr Obes. 2017; 12 ( 1 ): 48 ‐ 57.
dc.identifier.citedreferenceFleisch AF, Rifas‐Shiman SL, Mora AM, et al. Early‐life exposure to perfluoroalkyl substances and childhood metabolic function. Environ Health Perspect. 2017; 125 ( 3 ): 481 ‐ 487.
dc.identifier.citedreferenceMora AM, Oken E, Rifas‐Shiman SL, et al. Prenatal exposure to perfluoroalkyl substances and adiposity in early and mid‐childhood. Environ Health Perspect. 2017; 125 ( 3 ): 467 ‐ 473.
dc.identifier.citedreferenceOken E, Levitan EB, Gillman MW. Maternal smoking during pregnancy and child overweight: systematic review and meta‐analysis. Int J Obes (Lond). 2008; 32 ( 2 ): 201 ‐ 210.
dc.identifier.citedreferenceAris IM, Oken E. Childhood adiposity trajectories: discerning order amongst the chaos. Am J Clin Nutr. 2019; 110 ( 5 ): 1049 ‐ 1050.
dc.identifier.citedreferenceOken E, Aris IM, Young JG. Pre‐pregnancy weight and preterm birth: a causal relation? Lancet Diabetes Endocrinol. 2019; 7 ( 9 ): 663 ‐ 665.
dc.identifier.citedreferenceZhang X, Tilling K, Martin RM, et al. Analysis of ‘sensitive’ periods of fetal and child growth. Int J Epidemiol. 2019; 48 ( 1 ): 116 ‐ 123.
dc.identifier.citedreferenceAris IM, Rifas‐Shiman SL, Li LJ, et al. Association of weight for length vs body mass index during the first 2 years of life with cardiometabolic risk in early adolescence. JAMA Netw Open. 2018; 1 ( 5 ): 1 – 16, e182460. https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2703136
dc.identifier.citedreferenceKramer MS, Zhang X, Martin RM, Oken E, Aris IM, Yang S. Growth during infancy and early childhood and its association with metabolic risk biomarkers at 11.5 years. Am J Epidemiol. 2019.pii: kwz234. https://doi.org/10.1093/aje/kwz234
dc.identifier.citedreferenceAnzman‐Frasca S, Stifter CA, Birch LL. Temperament and childhood obesity risk: a review of the literature. J Dev Behav Pediatr. 2012; 33 ( 9 ): 732 ‐ 745.
dc.identifier.citedreferenceDiener MJ, Geenen R, Koelen JA, et al. The significance of attachment quality for obesity: a meta‐analytic review. Can J Behav Sci. 2016; 48 ( 4 ): 255 ‐ 265.
dc.identifier.citedreferenceWard MJ, Kessler DB, Altman SC. Infant‐mother attachment in children with failure‐to‐thrive. Inf Mental Hlth J. 1993; 14 ( 3 ): 208 ‐ 220.
dc.identifier.citedreferenceReinert KR, Po’e EK, Barkin SL. The relationship between executive function and obesity in children and adolescents: a systematic literature review. J Obes. 2013; 2013: 1 ‐ 10, 820956.
dc.identifier.citedreferenceCurtin C, Jojic M, Bandini LG. Obesity in children with autism spectrum disorder. Harv Rev Psychiatry. 2014; 22 ( 2 ): 93 ‐ 103.
dc.identifier.citedreferenceRhee KE, Lumeng JC, Appugliese DP, Kaciroti N, Bradley RH. Parenting styles and overweight status in first grade. Pediatrics. 2006; 117 ( 6 ): 2047 ‐ 2054.
dc.identifier.citedreferencePliner P, Loewen ER. Temperament and food neophobia in children and their mothers. Appetite. 1997; 28 ( 3 ): 239 ‐ 254.
dc.identifier.citedreferenceTask Force On Sudden Infant Death Syndrome. SIDS and other sleep‐related infant deaths: updated 2016 recommendations for a safe infant sleeping environment. Pediatrics. 2016; 138 ( 5 ): 1 ‐ 12, e20162938.
dc.identifier.citedreferenceChassiakos YR, Radesky J, Christakis D, Moreno MA, Cross C, Media CC. Children and adolescents and digital media. Pediatrics. 2016; 138 ( 5 ): e1 ‐ e18, e20162593.
dc.identifier.citedreferenceMoulton CR. Age and chemical development in mammals. J Biol Chem. 1923; 57 ( 1 ): 79 ‐ 97.
dc.identifier.citedreferenceToro‐Ramos T, Paley C, Pi‐Sunyer FX, Gallagher D. Body composition during fetal development and infancy through the age of 5 years. Eur J Clin Nutr. 2015; 69 ( 12 ): 1279 ‐ 1289.
dc.identifier.citedreferenceDemerath EW, Fields DA. Body composition assessment in the infant. Am J Hum Biol. 2014; 26 ( 3 ): 291 ‐ 304.
dc.identifier.citedreferenceHull HR, Thornton JC, Ji Y, et al. Higher infant body fat with excessive gestational weight gain in overweight women. Am J Obstet Gynecol. 2011; 205 ( 3 ): e211 ‐ e217.
dc.identifier.citedreferenceBarbosa Baker Méio M, Lopes Moreira M. Total body water in newborns. In: Preedy VR, ed. Handbook of Anthropometry: Physical Measures of Human Form in Health and Disease. Vol. 2 New York: Springer; 2012: 1121.
dc.identifier.citedreferenceButte NF, Hopkinson JM, Wong WW, Smith EO, Ellis KJ. Body composition during the first 2 years of life: an updated reference. Pediatr Res. 2000; 47 ( 5 ): 578 ‐ 585.
dc.identifier.citedreferenceFomon SJ, Haschke F, Ziegler EE, Nelson SE. Body composition of reference children from birth to age 10 years. Am J Clin Nutr. 1982; 35 ( 5 Suppl ): 1169 ‐ 1175.
dc.identifier.citedreferenceAndres A, Shankar K, Badger TM. Body fat mass of exclusively breastfed infants born to overweight mothers. J Acad Nutr Diet. 2012; 112 ( 7 ): 991 ‐ 995.
dc.identifier.citedreferenceEllis KJ, Abrams SA, Wong WW. Body composition reference data for a young multiethnic female population. Appl Radiat Isot. 1998; 49 ( 5–6 ): 587 ‐ 588.
dc.identifier.citedreferenceHarrington TA, Thomas EL, Frost G, Modi N, Bell JD. Distribution of adipose tissue in the newborn. Pediatr Res. 2004; 55 ( 3 ): 437 ‐ 441.
dc.identifier.citedreferenceKoo WW, Hockman EM, Hammami M. Dual energy X‐ray absorptiometry measurements in small subjects: conditions affecting clinical measurements. J Am Coll Nutr. 2004; 23 ( 3 ): 212 ‐ 219.
dc.identifier.citedreferenceMuller MJ, Bosy‐Westphal A. Effect of over‐ and underfeeding on body composition and related metabolic functions in humans. Curr Diab Rep. 2019; 19 ( 11 ): 1 – 11, 108. https://link.springer.com/content/pdf/10.1007/s11892-019-1221-7.pdf
dc.identifier.citedreferenceRudman D, Chyatte SB, Patterson JH, et al. Metabolic effects of human growth hormone and of estrogens in boys with Duchenne muscular dystrophy. J Clin Invest. 1972; 51 ( 5 ): 1118 ‐ 1124.
dc.identifier.citedreferenceLohman TG. Applicability of body composition techniques and constants for children and youths. Exerc Sport Sci Rev. 1986; 14: 325 ‐ 357.
dc.identifier.citedreferenceCrook TA, Armbya N, Cleves MA, Badger TM, Andres A. Air displacement plethysmography, dual‐energy X‐ray absorptiometry, and total body water to evaluate body composition in preschool‐age children. J Acad Nutr Diet. 2012; 112 ( 12 ): 1993 ‐ 1998.
dc.identifier.citedreferenceFields DA, Allison DB. Air‐displacement plethysmography pediatric option in 2‐6 years old using the four‐compartment model as a criterion method. Obesity (Silver Spring). 2012; 20 ( 8 ): 1732 ‐ 1737.
dc.identifier.citedreferenceAkinbami LJ, Kit BK, Carroll MD, Fakhouri THI, Ogden CL. Trends in anthropometric measures among US children 6 to 23 months, 1976‐2014. Pediatrics. 2017; 139 ( 3 ): 1 – 10, e20163374. https://pediatrics.aappublications.org/content/139/3/e20163374
dc.identifier.citedreferenceChumlea WC, Guo SS, Kuczmarski RJ, et al. Body composition estimates from NHANES III bioelectrical impedance data. Int J Obes Relat Metab Disord. 2002; 26 ( 12 ): 1596 ‐ 1609.
dc.identifier.citedreferenceGrummer‐Strawn LM, Reinold C, Krebs NF, Centers for Disease C, Prevention. Use of World Health Organization and CDC growth charts for children aged 0‐59 months in the United States. MMWR Recomm Rep. 2010; 59 ( RR‐9 ): 1 ‐ 15.
dc.identifier.citedreferenceHales CM, Fryar CD, Carroll MD, Freedman DS, Ogden CL. Trends in obesity and severe obesity prevalence in US youth and adults by sex and age, 2007‐2008 to 2015‐2016. JAMA. 2018; 319 ( 16 ): 1723 ‐ 1725.
dc.identifier.citedreferenceSun SS, Chumlea WC, Heymsfield SB, et al. Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. Am J Clin Nutr. 2003; 77 ( 2 ): 331 ‐ 340.
dc.identifier.citedreferenceToro‐Ramos T, Paley C, Wong WW, et al. Reliability of the EchoMRI infants system for water and fat measurements in newborns. Obesity (Silver Spring). 2017; 25 ( 9 ): 1577 ‐ 1583.
dc.identifier.citedreferenceAndres A, Gomez‐Acevedo H, Badger TM. Quantitative nuclear magnetic resonance to measure fat mass in infants and children. Obesity (Silver Spring). 2011; 19 ( 10 ): 2089 ‐ 2095.
dc.identifier.citedreferenceAndres A, Mitchell AD, Badger TM. QMR: validation of an infant and children body composition instrument using piglets against chemical analysis. Int J Obes (Lond). 2010; 34 ( 4 ): 775 ‐ 780.
dc.identifier.citedreferenceHeard‐Lipsmeyer M, Diaz E, Sims C, et al. Maternal adiposity is associated with fat mass accretion in female but not male offspring during the first two years of life. Obesity (Silver Spring). 2020; 28 ( 3 ): 624 – 630. https://doi.org/10.1002/oby.22735
dc.identifier.citedreferenceDiaz EC, Cleves MA, DiCarlo M, et al. Parental adiposity differentially associates with newborn body composition. Pediatr Obes. 2019; 15 ( 4 ): 1 – 11, e12596. https://doi.org/10.1111/ijpo.12596
dc.identifier.citedreferenceWong MC, Ng BK, Kennedy SF, et al. Children and adolescents’ anthropometrics body composition from 3‐D optical surface scans. Obesity (Silver Spring). 2019; 27 ( 11 ): 1738 ‐ 1749.
dc.identifier.citedreferenceNg BK, Hinton BJ, Fan B, Kanaya AM, Shepherd JA. Clinical anthropometrics and body composition from 3D whole‐body surface scans. Eur J Clin Nutr. 2016; 70 ( 11 ): 1265 ‐ 1270.
dc.identifier.citedreferenceNg BK, Sommer MJ, Wong MC, et al. Detailed 3‐dimensional body shape features predict body composition, blood metabolites, and functional strength: the Shape Up! studies. Am J Clin Nutr. 2019; 110 ( 6 ): 1316 ‐ 1326.
dc.identifier.citedreferenceHorikoshi M, Yaghootkar H, Mook‐Kanamori DO, et al. New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism. Nat Genet. 2013; 45 ( 1 ): 76 ‐ 82.
dc.identifier.citedreferenceUrbanek M, Hayes MG, Armstrong LL, et al. The chromosome 3q25 genomic region is associated with measures of adiposity in newborns in a multi‐ethnic genome‐wide association study. Hum Mol Genet. 2013; 22 ( 17 ): 3583 ‐ 3596.
dc.identifier.citedreferenceWarrington NM, Beaumont RN, Horikoshi M, et al. Maternal and fetal genetic effects on birth weight and their relevance to cardio‐metabolic risk factors. Nat Genet. 2019; 51 ( 5 ): 804 ‐ 814.
dc.identifier.citedreferenceHughes AE, Nodzenski M, Beaumont RN, et al. Fetal genotype and maternal glucose have independent and additive effects on birth weight. Diabetes. 2018; 67 ( 5 ): 1024 ‐ 1029.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.