Rattlesnake colouration affects detection by predators
dc.contributor.author | Harmel, M. V. | |
dc.contributor.author | Crowell, H. L. | |
dc.contributor.author | Whelan, J. M. | |
dc.contributor.author | Taylor, E. N. | |
dc.date.accessioned | 2020-08-10T20:53:33Z | |
dc.date.available | WITHHELD_13_MONTHS | |
dc.date.available | 2020-08-10T20:53:33Z | |
dc.date.issued | 2020-08 | |
dc.identifier.citation | Harmel, M. V.; Crowell, H. L.; Whelan, J. M.; Taylor, E. N. (2020). "Rattlesnake colouration affects detection by predators." Journal of Zoology 311(4): 260-268. | |
dc.identifier.issn | 0952-8369 | |
dc.identifier.issn | 1469-7998 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/156155 | |
dc.description.abstract | Crypsis, or the ability of an animal to avoid detection by other animals, is strongly impacted by an animal’s colouration and pattern. Crypsis may be especially important for ambush foragers, which spend much of their time above ground and therefore benefit from being inconspicuous to predators and prey. The purpose of this study was to investigate the effect of rattlesnake skin colouration on the likelihood of it being detected and attacked by a predator, on the latency (time) to attack, and on the attack frequency on each physical body section of the models. Clay models representing four commonly observed rattlesnake colour morphs (light, dark and two intermediate colour patterns) were deployed in two different habitat types (wooded area and open field), and the marks made on the models by predators were quantified over time. We found that light snake models, which have little contrast with substrate, were less likely to be attacked and were attacked later than darker model types, which have higher contrast with substrate. Predators attacked the various body segments of the models at similar frequencies. Our data suggest dark‐coloured rattlesnakes, which have the most contrast with the golden‐coloured grasses and therefore have the lowest crypsis, are most at risk from predation.Using a combination of physical snake models and camera traps, our study showed that snakes with dark colouration, regardless of habitat type, experienced a higher risk of predation and were attacked earlier in the study than light coloured snakes (i.e. snakes that contrasted less with the surrounding substrate). Interestingly, despite using a venomous species as our model, snake predators showed no preference as to which section of the snake body was targeted for attack. | |
dc.publisher | SAS Institute Inc | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | Crotalus oreganus helleri | |
dc.subject.other | crypsis | |
dc.subject.other | colouration | |
dc.subject.other | predation risk | |
dc.subject.other | clay models | |
dc.subject.other | pit viper | |
dc.title | Rattlesnake colouration affects detection by predators | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Natural Resources and Environment | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/156155/2/jzo12786_am.pdf | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/156155/1/jzo12786.pdf | en_US |
dc.identifier.doi | 10.1111/jzo.12786 | |
dc.identifier.source | Journal of Zoology | |
dc.identifier.citedreference | Rößler, D.C., Pröhl, H. & Lötters, S. ( 2018 ). The future of clay model studies. BMC Zool. 3, 1 – 5. | |
dc.identifier.citedreference | Klauber, L.M. ( 1956 ). Rattlesnakes: their habits, life histories, and influence on mankind. Berkeley, CA: University of California Press. | |
dc.identifier.citedreference | Langkilde, T., Shine, R. & Mason, R. ( 2004 ). Predatory attacks to the head vs. body modify behavioral responses of garter snakes. Ethology 110, 937 – 947. | |
dc.identifier.citedreference | Luiselli, L. ( 1992 ). Reproductive success in melanistic adders: a new hypothesis and some considerations on Andren and Nilson’s (1981) suggestions. Oikos 64, 601 – 604. | |
dc.identifier.citedreference | Madsen, T. ( 1987 ). Are juvenile grass snakes, Natrix natrix, aposematically coloured? Oikos 48, 265 – 267. | |
dc.identifier.citedreference | Martínez‐Freiría, F., Lanuza, G.P., Pimenta, A.A., Pinto, T. & Santos, X. ( 2017 ). Aposematism and crypsis are not enough to explain dorsal polymorphism in the Iberian adder. Acta Oecologica 85, 165 – 173. | |
dc.identifier.citedreference | Merilaita, S., Scott‐Samuel, N.E. & Cuthill, I.C. ( 2017 ). How camouflage works. Phil. Trans. R. Soc. B. 372, 20160341. | |
dc.identifier.citedreference | Niskanen, M. & Mappes, J. ( 2005 ). Significance of the dorsal zigzag pattern of Vipera latatei gaditana against avian predators. J. Anim. Ecol. 74, 1091 – 1101. | |
dc.identifier.citedreference | Owings, D.H. & Coss, R.G. ( 1977 ). Snake mobbing by California ground squirrels: adaptive variation and ontogeny. Behaviour 62, 50 – 68. | |
dc.identifier.citedreference | Rahn, H. ( 1942 ). Effect of temperature on color change in the rattlesnake. Copeia 1942, 178. | |
dc.identifier.citedreference | RawPedia ( 2018 ). RawPedia: The encyclopedia of RawTherapee, RAW shooting and everything RAW. http://rawpedia.rawtherapee.com/Main_Page | |
dc.identifier.citedreference | Santos, X., Vidal‐Garcia, M., Brito, J.C., Fahd, S., Llorente, G.A., Martínez‐Freiría, F., Parellada, X., Pleguezuelos, J.M. & Sillero, N. ( 2014 ). Phyogeographic and environmental correlates support the cryptic function of the zigzag pattern in a European viper. Evol. Ecol. 28, 611 – 626. | |
dc.identifier.citedreference | Schaefer, H.M. & Stobbe, N. ( 2006 ). Disruptive coloration provides a camouflage independent of background matching. Proc. R. Soc. B 273, 2427 – 2432. | |
dc.identifier.citedreference | Smith, S.M. ( 1975 ). Innate recognition of coral snake pattern by a possible avian predator. Science 187, 759 – 760. | |
dc.identifier.citedreference | Sparks, A., Lind, C.M. & Taylor, E.N. ( 2015 ). Diet of the Northern Pacific rattlesnake ( Crotalus o. oreganus ) in California. Herpetol. Rev. 46, 161 – 165. | |
dc.identifier.citedreference | Steenhof, K. & Kochert, M.N. ( 1985 ). Dietary shifts of sympatric buteos during a prey decline. Oecologia 66, 6 – 16. | |
dc.identifier.citedreference | Stepanek, J., Claunch, N.M., Frazier, J.A., Moore, I.T., Escallón, C., Vernasco, B. & Taylor, E.N. ( 2019 ). Corticosterone‐induced color change in Southern Pacific rattlesnakes ( Crotalus helleri ). Herpetologica 75, 143 – 152. | |
dc.identifier.citedreference | Stevens, M. & Merilaita, S. ( 2009 ). Animal camouflage: current issues and new perspectives. Phil. Trans. R. Soc. B. 364, 423 – 427. | |
dc.identifier.citedreference | Swaisgood, R.R., Owings, D.H. & Rowe, M.P. ( 1999 ). Conflict and assessment in a predator‐prey system: ground squirrels versus rattlesnakes. Anim. Behav. 57, 1033 – 1044. | |
dc.identifier.citedreference | Thayer, A.H. ( 1918 ). Camoflauge. Sci. Monthly 7, 481 – 494. | |
dc.identifier.citedreference | University of California Reserve System. ( 2018 ), September. UC Reserve Santa Barbara Natural Reserve System. Retrieved from http://sedgwick.nrs.ucsb.edu/about/natural_resources | |
dc.identifier.citedreference | Valkonen, J., Niskanen, M., Björklund, M. & Mappes, J. ( 2011 ). Disruption or aposematism? Significance of dorsal zigzag pattern of European vipers. Evol. Ecol. 25, 1047 – 1063. | |
dc.identifier.citedreference | Vanderpool, R., Malcolm, J. & Hill, M. ( 2005 ). Crotalus atrox (Western diamondback rattlesnake) predation. Herpetol. Rev. 36, 191 – 192. | |
dc.identifier.citedreference | Westphal, M., Massie, J., Brokema, J., Smith, B.E. & Morgan, T.J. ( 2011 ). Heritable variation in garter snake colour patterns in postglacial populations. PLoS One 6, 1 – 8. | |
dc.identifier.citedreference | Winebarger, M. ( 2017 ). Conspicuous colouration may function to deter avian predators in Appalachian salamanders. Master of Science, Appalachian State University. | |
dc.identifier.citedreference | Wüster, W., Allum, C.S.E., Bjargardottir, I.B., Bailey, K.L., Dawson, K.J., Guenioui, J., Lewis, J., McGurk, J., Moore, A.G., Niskanen, M. & Pollard, C.P. ( 2004 ). Do aposematism and Batesian mimicry require bright colours? A test, using European viper markings. Proc. R. Soc. Lond. B 271, 2495 – 2499. | |
dc.identifier.citedreference | Bateman, P.W., Fleming, P.A. & Wolfe, A.K. ( 2016 ). A different kind of ecological modelling: the use of clay model organisms to explore predator‐prey interactions in vertebrates. J. Zool. 301, 251 – 262. | |
dc.identifier.citedreference | Bennett, A.T. & Cuthill, I. ( 1994 ). Ultraviolet vision in birds: what is its function? World Heal. Stat Q34, 1471 – 1478. | |
dc.identifier.citedreference | Bittner, T.D. ( 2003 ). Polymorphic clay models of Thamnophis sirtalis suggest patterns of avian predation. Ohio J. Sci. 103, 62 – 66. | |
dc.identifier.citedreference | Bittner, T.D., King, R.B., Kerfin, J.M. & Gatten, R.E. Jr ( 2002 ). Effects of body size and melanism on the thermal biology of garter snakes ( Thamnophis sirtalis ). Copeia 2002, 477 – 482. | |
dc.identifier.citedreference | Bowen, K.D. ( 2003 ). Ontogenetic changes in the coloration of the Northern watersnake, Nerodia sipedon sipedon. J. Herpetol. 37, 729 – 731. | |
dc.identifier.citedreference | Brodie, E.D. III ( 1989 ). Genetic correlations between morphology and antipredator behaviour in natural populations of the garter snake Thamnophis ordinoides. Nature 342, 542 – 543. | |
dc.identifier.citedreference | Brodie, E.D. III & Janzen, F.J. ( 1995 ). Experimental studies of coral snake mimicry: generalized avoidance of ringed snake patterns by free‐ranging avian predators. Funct. Ecol. 9, 186 – 190. | |
dc.identifier.citedreference | Brooks, J.D. ( 2018 ). Colouration, camouflage, and sexual dichromatism in the northern pacific rattlesnake ( Crotalus oreganus ). Master of Science Thesis, Central Washington University. | |
dc.identifier.citedreference | Capula, M. & Luiselli, L. ( 1995 ). Is there a different preference in the choice of background colour between melanistic and cryptically coloured morphs of the adder, Vipera berus ? Boll. Zool. 62, 253 – 256. | |
dc.identifier.citedreference | Carter, G.S. ( 1948 ). Colour and colour vision in animals. Nature 162, 600 – 601. | |
dc.identifier.citedreference | Clark, R. ( 2006 ). Fixed videography to study predation behavior of an ambush foraging snake, Crotalus horridus. Copeia 2006, 181 – 187. | |
dc.identifier.citedreference | Creer, D.A. ( 2005 ). Correlations between ontogenetic change in color pattern and antipredator behavior in the racer, Coluber constrictor. Ethology 111, 287 – 300. | |
dc.identifier.citedreference | Cuthill, I.C. ( 2019 ). Camouflage. J. Zool. 308, 75 – 92. | |
dc.identifier.citedreference | Cuthill, I.D., Allen, W.L., Arbuckle, K., Caspers, B., Chaplin, G., Hauber, M.E., Hill, G.E., Jablonski, N.G., Jiggins, C.D., Kelber, A., Mappes, J., Marshall, J., Merrill, R., Osorio, D., Prum, R., Roberts, N.W., Roulin, A., Rowland, H.M., Sherratt, T.M., Skelhorn, J., Speed, M.P., Stevens, M., Stoddard, M.C., Stuart‐Fox, D., Talas, L., Tibbetts, E. & Caro, T. ( 2017 ). The biology of color. Science 357, eaano221. | |
dc.identifier.citedreference | Edgren, R.A. ( 1957 ). Melanism in hog‐nosed snakes. Herpetologica 13, 131 – 135. | |
dc.identifier.citedreference | Endler, J.A. ( 1978 ). Frequency‐dependent predation, crypsis and aposematic coloration. Phil. Trans. R. Soc. Lond. B. 319, 505 – 523. | |
dc.identifier.citedreference | Eskew, E.A., Willson, J.D. & Winne, C.T. ( 2009 ). Ambush site selection and ontogenetic shifts in foraging strategy in a semi‐aquatic pit viper, the Eastern cottonmouth. J. Zool. 277, 179 – 186. | |
dc.identifier.citedreference | Farallo, V.R. & Forstner, M.R.J. ( 2012 ). Predation and the maintenance of colour polymorphism in a habitat specialist squamate. PLoS One 7, e30316. | |
dc.identifier.citedreference | Godfrey, D., Lythgoe, J.N. & Rumball, D.A. ( 1987 ). Zebra stripes and tiger stripes: the spatial frequency distribution of pattern compared to that of background is significant in display crypsis. Biol. J. Linnean Soc. 3, 427 – 433. | |
dc.identifier.citedreference | Goiran, C., Bustamante, P. & Shine, R. ( 2017 ). Industrial melanism in the Seasnake Emydocephalus annulatus. Curr. Biol. 27, 2510 – 2513. | |
dc.identifier.citedreference | Greco, C.F. & Kevan, P.G. ( 1994 ). Contrasting patch choosing by anthophilous ambush predators: vegetation and floral cues for decisions by a crab spider ( Misumena vatia ) and males and females of an ambush bug ( Phymata americana ). Can. J. Zool. 72, 1583 – 1588. | |
dc.identifier.citedreference | Hennessy, D.F. & Owings, D.H. ( 1978 ). Snake species discrimination and the role of olfactory cues in the snake directed behavior of the California ground squirrel. Behaviour 65, 115 – 123. | |
dc.identifier.citedreference | Hinman, K.E., Throop, H.L. & Adams, K.L. ( 1997 ). Predation by free‐ranging birds on partial coral snake mimics: the importance of ring width and colour. Evolution 51, 1041 – 1048. | |
dc.identifier.citedreference | Isaac, L.A. & Gregory, P.T. ( 2013 ). Can snakes hide in plain view? Chromatic and achromatic crypsis of two colour forms of the Western Terrestrial garter snake ( Thamnophis elegans ). Biol. J. Linn. Soc. 108, 756 – 772. | |
dc.identifier.citedreference | Jacobs, G.H. ( 2009 ). Evolution of colour vision in mammals. Phil. Trans. Royal Soc. B 364, 2957 – 2967. | |
dc.identifier.citedreference | . JMP® ( 1989‐2016 ). Version 13.0.0. Cary, NC: SAS Institute Inc. | |
dc.identifier.citedreference | Kendal, D., Hauser, C.E., Garrad, G.E., Jellinek, S., Giljohann, K.M. & Moore, J.L. ( 2013 ). Quantifying plant colour and colour difference as perceived by humans using digital images. PLoS One 8, e72296. | |
dc.identifier.citedreference | Kikuchi, D.W. & Pfennig, D.W. ( 2010 ). Predator cognition permits imperfect coral snake mimicry. Am. Nat. 176, 830 – 834. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.