Show simple item record

Turbulence Power Spectra in Regions Surrounding Jupiter’s South Polar Cyclones From Juno/JIRAM

dc.contributor.authorMoriconi, M. L.
dc.contributor.authorMigliorini, A.
dc.contributor.authorAltieri, F.
dc.contributor.authorAdriani, A.
dc.contributor.authorMura, A.
dc.contributor.authorOrton, G.
dc.contributor.authorLunine, J. I.
dc.contributor.authorGrassi, D.
dc.contributor.authorAtreya, S. K.
dc.contributor.authorIngersoll, A. P.
dc.contributor.authorDinelli, B. M.
dc.contributor.authorBolton, S. J.
dc.contributor.authorLevin, S.
dc.contributor.authorTosi, F.
dc.contributor.authorNoschese, R.
dc.contributor.authorPlainaki, C.
dc.contributor.authorCicchetti, A.
dc.contributor.authorSindoni, G.
dc.contributor.authorOlivieri, A.
dc.date.accessioned2020-08-10T20:53:48Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-08-10T20:53:48Z
dc.date.issued2020-07
dc.identifier.citationMoriconi, M. L.; Migliorini, A.; Altieri, F.; Adriani, A.; Mura, A.; Orton, G.; Lunine, J. I.; Grassi, D.; Atreya, S. K.; Ingersoll, A. P.; Dinelli, B. M.; Bolton, S. J.; Levin, S.; Tosi, F.; Noschese, R.; Plainaki, C.; Cicchetti, A.; Sindoni, G.; Olivieri, A. (2020). "Turbulence Power Spectra in Regions Surrounding Jupiter’s South Polar Cyclones From Juno/JIRAM." Journal of Geophysical Research: Planets 125(7): n/a-n/a.
dc.identifier.issn2169-9097
dc.identifier.issn2169-9100
dc.identifier.urihttps://hdl.handle.net/2027.42/156164
dc.description.abstractWe present a power spectral analysis of two narrow annular regions near Jupiter’s South Pole derived from data acquired by the Jovian Infrared Auroral Mapper instrument onboard NASA’s Juno mission. In particular, our analysis focuses on the data set acquired by the Jovian Infrared Auroral Mapper M‐band imager (hereafter IMG‐M) that probes Jupiter’s thermal emission in a spectral window centered at 4.8 μm. We analyze the power spectral densities of circular paths outside and inside of cyclones on images acquired during six Juno perijoves. The typical spatial resolution is around 55 km pixel−1. We limited our analysis to six acquisitions of the South Pole from February 2017 to May 2018. The power spectral densities both outside and inside the circumpolar ring seem to follow two different power laws. The wave numbers follow average power laws of −0.9 ± 0.2 (inside) and −1.2 ± 0.2 (outside) and of −3.2 ± 0.3 (inside) and −3.4 ± 0.2 (outside), respectively, beneath and above the transition in slope located at ~2 × 10−3 km−1 wave number. This kind of spectral behavior is typical of two‐dimensional turbulence. We interpret the 500 km length scale, corresponding to the transition in slope, as the Rossby deformation radius. It is compatible with the dimensions of a subset of eddy features visible in the regions analyzed, suggesting that a baroclinic instability may exist. If so, it means that the quasi‐geostrophic approximation is valid in this context.Plain Language SummaryJuno has revealed extraordinary and unexpected dynamics in Jupiter’s polar regions. The clouds imaged in the infrared and visible parts of the spectrum by JIRAM and JunoCam, respectively, are organized around a central cyclone in regular patterns of eight (North Pole) and five (South Pole) cyclones. We studied the spatial and temporal variability of the regions immediately outside the cyclonic circulations at the South Pole. By analyzing multiple JIRAM images at five microns, geographically merged and appropriately filtered and sampled, we found that cloud patterns poleward and equatorward the ring of cyclones at Jupiter’s South Pole, may originate from flow instabilities not linked to vortices’ dynamics. These instabilities can have their origin in the horizontal pressure and temperature gradients rather than in the cyclonic circulations and their interactions, also considering the low speed values of the wind field in those regions.Key PointsDynamics consistent with quasi‐geostrophic 2‐D turbulence in the Jupiter South Polar regions surrounding the main cyclonic circulationsThe forcing scales resulting from these analyses indicate that baroclinic instabilities may exist in the analyzed regionsMany waves have been revealed in the Jupiter South Polar region by JIRAM images
dc.publisherWiley
dc.subject.otherFourier analysis
dc.subject.otherJupiter
dc.subject.otherplanetary atmospheres
dc.subject.otherpolar regions
dc.subject.otherturbulence
dc.titleTurbulence Power Spectra in Regions Surrounding Jupiter’s South Polar Cyclones From Juno/JIRAM
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156164/4/jgre21413-sup-0001-2019JE006096-SI.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156164/3/jgre21413_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156164/2/jgre21413.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156164/1/jgre21413-sup-0002-2019JE006096-fs01.pdfen_US
dc.identifier.doi10.1029/2019JE006096
dc.identifier.sourceJournal of Geophysical Research: Planets
dc.identifier.citedreferenceDanilov, S. D., & Gurarie, D. ( 2000 ). Quasi‐two‐dimensional turbulence. Uspekhi Fizicheskikh Nauk, 43 ( 9 ), 863 – 900. https://doi.org/10.1070/PU2000v043n09ABEH000782
dc.identifier.citedreferenceGrassi, D., Adriani, A., Moriconi, M. L., Mura, A., Tabataba‐Vakili, F., Ingersoll, A., Orton, G., Hansen, C., Altieri, F., Filacchione, G., Sindoni, G., Dinelli, B. M., Fabiano, F., Bolton, S. J., Levin, S., Atreya, S. K., Lunine, J. I., Momary, T., Tosi, F., Migliorini, A., Piccioni, G., Noschese, R., Cicchetti, A., Plainaki, C., Olivieri, A., Turrini, D., Stefani, S., Sordini, R., & Amoroso, M. ( 2018 ). First estimate of wind fields in the Jupiter polar regions from JIRAM‐Juno images. Journal of Geophysical Research: Planets, 123, 1511 – 1524. https://doi.org/10.1029/2018JE005555
dc.identifier.citedreferenceGrassi, D., Adriani, A., Mura, A., Dinelli, B. M., Sindoni, G., Turrini, D., Filacchione, G., Migliorini, A., Moriconi, M. L., Tosi, F., Noschese, R., Cicchetti, A., Altieri, F., Fabiano, F., Piccioni, G., Stefani, S., Atreya, S., Lunine, J., Orton, G., Ingersoll, A., Bolton, S., Levin, S., Connerney, J., Olivieri, A., & Amoroso, M. ( 2017 ). Preliminary results on the composition of Jupiter’s troposphere in hot spot regions from the JIRAM/Juno instrument. Geophysical Research Letters, 44, 4615 – 4624. https://doi.org/10.1002/2017GL072841
dc.identifier.citedreferenceHarrington, J., Dowling, T. E., & Baron, R. L. ( 1996 ). Jupiter’s tropospheric thermal emission II: Power spectrum analysis and wave search. Icarus, 124 ( 1 ), 32 – 44. https://doi.org/10.1006/icar.1996.0188
dc.identifier.citedreferenceIngersoll, A. P., Dowling, T. E., Gierasch, P. J., Orton, G. S., Read, P. L., Sánchez‐Lavega, A., et al. ( 2004 ). Dynamics of Jupiter’s atmosphere. In F. Bagenal, T. E. Dowling & W. B. McKinnon (Eds.). Jupiter: The planet, satellites and magnetosphere (chapter 6) (Vol. 1, pp. 105 – 128 ). Cambridge: Cambridge University press.
dc.identifier.citedreferenceIrwin, P. G. J., Weir, A. L., Taylor, F. W., Calcutt, S. B., & Carlson, R. W. ( 2001 ). The origin of belt/zone contrasts in the atmosphere of Jupiter and their correlation with 5 μm opacity. Icarus, 149 ( 2 ), 397 – 415. https://doi.org/10.1006/icar.2000.6542
dc.identifier.citedreferenceActon, C. H. ( 1996 ). Ancillary data services of NASA’s navigation and ancillary information facility. Planetary and Space Science, 44 ( 1 ), 65 – 70. https://doi.org/10.1016/0032-0633(95)00107-7
dc.identifier.citedreferenceAdriani, A., Filacchione, G., di Iorio, T., Turrini, D., Noschese, R., Cicchetti, A., Grassi, D., Mura, A., Sindoni, G., Zambelli, M., Piccioni, G., Capria, M. T., Tosi, F., Orosei, R., Dinelli, B. M., Moriconi, M. L., Roncon, E., Lunine, J. I., Becker, H. N., Bini, A., Barbis, A., Calamai, L., Pasqui, C., Nencioni, S., Rossi, M., Lastri, M., Formaro, R., & Olivieri, A. ( 2014 ). JIRAM, the Jovian infrared auroral mapper. Space Science Reviews, 213 ( 1–4 ), 393 – 446. https://doi.org/10.1007/s11214-014-0094-y
dc.identifier.citedreferenceAdriani, A., Mura, A., Orton, G., Hansen, C., Altieri, F., Moriconi, M. L., Rogers, J., Eichstädt, G., Momary, T., Ingersoll, A. P., Filacchione, G., Sindoni, G., Tabataba‐Vakili, F., Dinelli, B. M., Fabiano, F., Bolton, S. J., Connerney, J. E. P., Atreya, S. K., Lunine, J. I., Tosi, F., Migliorini, A., Grassi, D., Piccioni, G., Noschese, R., Cicchetti, A., Plainaki, C., Olivieri, A., O’Neill, M. E., Turrini, D., Stefani, S., Sordini, R., & Amoroso, M. ( 2018 ). Clusters of cyclones encircling Jupiter’s poles. Nature, 555 ( 7695 ), 216 – 219. https://doi.org/10.1038/nature25491
dc.identifier.citedreferenceAdriani, A., Bracco, A., Grassi, D., Moriconi, M. L., Mura, A., Orton, G., Altieri, F., Ingersoll, A., Atreya, S. K., Lunine, J. I., Migliorini, A., Noschese, R., Cicchetti, A., Sordini, R., Tosi, F., Sindoni, G., Plainaki, C., Dinelli, B. M., Turrini, D., Filacchione, G., Piccioni, G., Bolton, S. J. ( 2020 ). Two‐Year Observations of the Jupiter Polar Regions by JIRAM on Board Juno. Journal of Geophysical Research: Planets, 125 ( 6 ). https://doi.org/10.1029/2019je006098
dc.identifier.citedreferenceAurnou, J. M., Heimpel, M. H., & Featherstone, N. A. ( 2018 ). Simulating atmospheric features of Jupiter and Saturn with deep convection models. Paper presented at Fall Meeting 2018, American Geophysical Union, New Orleans, Louisiana.
dc.identifier.citedreferenceBarrado‐Izagirre, N., Pérez‐Hoyos, S., & Sánchez‐Lavega, A. ( 2009 ). Brightness power spectral distribution and waves in Jupiter’s upper cloud and hazes. Icarus, 202 ( 1 ), 181 – 196. https://doi.org/10.1016/j.icarus.2009.02.015
dc.identifier.citedreferenceBendat, J. S., & Piersol, A. G. ( 1986 ). Random data: Analysis and measurement procedures, (p. 566 ). New York: Wiley.
dc.identifier.citedreferenceBevington, P. H., & Robinson, D. K. ( 1992 ). Data reduction and error analysis for the physical sciences, ( 2nd ed. p. 328 ). New York: McGraw. Hill.
dc.identifier.citedreferenceFoster, E. L., Iliescu, T., & Wang, Z. ( 2013 ). A finite element discretization of the streamfunction formulation of the stationary quasi‐geostrophic equations of the ocean. Computer Methods in Applied Mechanics and Engineering, 261‐262, 105 – 117. https://doi.org/10.1016/j.cma.2013.04.008
dc.identifier.citedreferenceYoung, R. M. B., & Read, P. L. ( 2017 ). Forward and inverse kinetic energy cascades in Jupiter’s turbulent weather layer. Nature Physics, 13 ( 11 ), 1135 – 1140. https://doi.org/10.1038/NPHYS4227
dc.identifier.citedreferenceWatkins, C., & Cho, J. Y.‐K. ( 2013 ). The vertical structure of Jupiter’s equatorial zonal wind above the cloud deck, derived using mesoscale gravity waves. Geophysical Research Letters, 40, 472 – 476. https://doi.org/10.1029/2012GL054368
dc.identifier.citedreferenceTravis, L. D. ( 1978 ). Nature of the atmospheric dynamics on Venus from power Spectrum analysis of mariner 10 images. Journal of the Atmospheric Sciences, 35 ( 9 ), 1584 – 1595. https://doi.org/10.1175/1520-0469(1978)035%3C1584:NOTADO%3E2.0.CO;2
dc.identifier.citedreferenceBrueshaber, S. R., Sayanagi, K. M., & Dowling, T. E. ( 2019 ). Dynamical regimes of giant planet polar vortices. Icarus, 323, 46 – 61. https://doi.org/10.1016/j.icarus.2019.02.001
dc.identifier.citedreferenceChoi, D. S., & Showman, A. P. ( 2011 ). Power spectral analysis of Jupiter’s clouds and kinetic energy from Cassini. Icarus, 216 ( 2 ), 597 – 609. https://doi.org/10.1016/j.icarus.2011.10.001
dc.identifier.citedreferenceConrath, B. J., Gierasch, P. J., & Nath, N. ( 1981 ). Stability of zonal flows on Jupiter. Icarus, 48 ( 2 ), 256 – 282. https://doi.org/10.1016/0019-1035(81)90108-1
dc.identifier.citedreferenceCosentino, R. G., Butler, B., Sault, B., Morales‐Juberías, R., Simon, A., & de Pater, I. ( 2017 ). Atmospheric waves and dynamics beneath Jupiter’s clouds from radio wavelength observations. Icarus, 292, 168 – 181. https://doi.org/10.1016/j.icarus.2017.01.006
dc.identifier.citedreferenceCosentino, R. G., Simon, A., & Morales‐Juberías, R. ( 2019 ). Jupiter’s turbulent power spectra from Hubble space telescope. Journal of Geophysical Research: Planets, 124, 1204 – 1225. https://doi.org/10.1029/2018JE005762
dc.identifier.citedreferenceSukoriansky, S., Dikovskaya, N., & Galperin, B. ( 2007 ). On the arrest of inverse energy cascade and the Rhines scale. Journal of the Atmospheric Sciences, 64 ( 9 ), 3312 – 3327. https://doi.org/10.1175/jas4013.1
dc.identifier.citedreferenceSánchez‐Lavega, A., & Heimpel, M. ( 2018 ). Atmospheric dynamics of giants and icy planets. In H. J. Deeg J. A. Belmonte (Eds.). Handbook of exoplanets (pp. 3490 ). https://doi.org/10.1007/978-3-319-30648-3_51-1
dc.identifier.citedreferenceSada, P. V., Beebe, R. F., & Conrath, B. J. ( 1996 ). Comparison of the structure and dynamics of Jupiter’s great red spot between the voyager 1 and 2 encounters. Icarus, 119 ( 2 ), 311 – 335. https://doi.org/10.1006/icar.1996.0022
dc.identifier.citedreferenceRhines, P. B. ( 1975 ). Waves and turbulence on a beta‐plane. Journal of Fluid Mechanics, 69 ( 3 ), 417 – 443. https://doi.org/10.1017/S0022112075001504
dc.identifier.citedreferenceReinaud, J. N. ( 2019 ). Three‐dimensional quasi‐geostrophic vortex equilibria with m‐fold symmetry. Journal of Fluid Mechanics, 863, 32 – 59. https://doi.org/10.1017/jfm.2018.989
dc.identifier.citedreferencePhillips, O. M. ( 1960 ). On the dynamics of unsteady gravity waves of finite amplitude. Journal of Fluid Mechanics, 9 ( 2 ), 193 – 217. https://doi.org/10.1017/S0022112060001043
dc.identifier.citedreferencePeralta, J., Hueso, R., & Sánchez‐Lavega, A. ( 2007 ). Cloud brightness distribution and turbulence in Venus using Galileo violet images. Icarus, 188 ( 2 ), 305 – 314. https://doi.org/10.1016/j.icarus.2006.12.005
dc.identifier.citedreferencePedlosky, J. ( 1986 ). Geophysical fluid dynamics, ( 2nd ed. p. 710 ). New York: Springer.
dc.identifier.citedreferenceOrton, G. S., Hansen, C., Caplinger, M., Ravine, M., Atreya, S., Ingersoll, A. P., Jensen, E., Momary, T., Lipkaman, L., Krysak, D., Zimdar, R., & Bolton, S. ( 2017 ). The first close‐up images of Jupiter’s polar regions: Results from the Juno mission JunoCam instrument. Geophysical Research Letters, 44, 4599 – 4606. https://doi.org/10.1002/2016GL072443
dc.identifier.citedreferenceMaltrud, M. E., & Vallis, G. K. ( 1993 ). Energy and enstrophy transfer in numerical simulations of two‐dimensional turbulence. Physics of Fluids A: Fluid Dynamics, 5 ( 7 ), 1760 – 1775. https://doi.org/10.1063/1.858851
dc.identifier.citedreferenceMagalhães, J. A., Seiff, A., & Young, R. E. ( 2002 ). The stratification of Jupiter’s troposphere at the Galileo probe entry site. Icarus, 158 ( 2 ), 410 – 433. https://doi.org/10.1006/icar.2002.6891
dc.identifier.citedreferenceKunde, V., Hanel, R., Maguire, W., Gautier, D., Baluteau, J. P., Marten, A., Chedin, A., Husson, N., & Scott, N. ( 1982 ). The tropospheric gas composition of Jupiter’s north equatorial belt (NH 3, PH 3, CH 3 D, GeH 4, H 2 O) and the Jovian D/H isotopic ratio. Astrophysical Journal, 263, 443 – 467. https://doi.org/10.1086/160516
dc.identifier.citedreferenceKraichnan, R. H. ( 1971 ). Inertial‐range transfer in two‐ and three‐dimensional turbulence. Journal of Fluid Mechanics, 47 ( 3 ), 525 – 535. https://doi.org/10.1017/S0022112071001216
dc.identifier.citedreferenceKraichnan, R. H. ( 1967 ). Inertial ranges in two‐dimensional turbulence. Physics of Fluids, 10 ( 7 ), 1417 – 1422. https://doi.org/10.1063/1.1762301
dc.identifier.citedreferenceKolmogorov, A. N. ( 1941 ). The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Doklady Akademii Nauk SSSR, 30, 301 – 305. https://www.jstor.org/stable/51980
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.