Show simple item record

Ultralong‐Range Energy Transport in a Disordered Organic Semiconductor at Room Temperature Via Coherent Exciton‐Polariton Propagation

dc.contributor.authorHou, Shaocong
dc.contributor.authorKhatoniar, Mandeep
dc.contributor.authorDing, Kan
dc.contributor.authorQu, Yue
dc.contributor.authorNapolov, Alexander
dc.contributor.authorMenon, Vinod M.
dc.contributor.authorForrest, Stephen R.
dc.date.accessioned2020-08-10T20:54:14Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-08-10T20:54:14Z
dc.date.issued2020-07
dc.identifier.citationHou, Shaocong; Khatoniar, Mandeep; Ding, Kan; Qu, Yue; Napolov, Alexander; Menon, Vinod M.; Forrest, Stephen R. (2020). "Ultralong‐Range Energy Transport in a Disordered Organic Semiconductor at Room Temperature Via Coherent Exciton‐Polariton Propagation." Advanced Materials 32(28): n/a-n/a.
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.urihttps://hdl.handle.net/2027.42/156177
dc.description.abstractAmorphous molecular solids are inherently disordered, exhibiting strong exciton localization. Optical microcavities containing such disordered excitonic materials have been theoretically shown to support both propagating and localized exciton‐polariton modes. Here, the ultrastrong coupling of a Bloch surface wave photon and molecular excitons in a disordered organic thin film at room temperature is demonstrated, where the major fraction of the polaritons are propagating states. The delocalized exciton‐polariton has a group velocity as high as 3 × 107 m s–1 and a lifetime of 500 fs, leading to propagation distances of over 100 µm from the excitation source. The polariton intensity shows a halo‐like pattern that is due to self‐interference of the polariton mode, from which a coherence length of 20 µm is derived and is correlated with phase breaking by polariton scattering. The demonstration of ultralong‐range exciton‐polariton transport at room temperature promises new photonic and optoelectronic applications such as efficient energy transfer in disordered condensed matter systems.Long‐range excitation energy transport over 100 µm is demonstrated in an amorphous organic thin film on a distributed Bragg reflector. The exciton exhibits ultrastrong coupling with a Bloch surface wave photon, overcoming the short exciton diffusion lengths of disordered material systems. The halo‐like polariton propagation pattern is explained by self‐interference.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherorganic semiconductors
dc.subject.otherultrastrong coupling
dc.subject.otherenergy transport
dc.subject.otherdisordered materials
dc.subject.otherexciton‐polaritons
dc.titleUltralong‐Range Energy Transport in a Disordered Organic Semiconductor at Room Temperature Via Coherent Exciton‐Polariton Propagation
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156177/3/adma202002127-sup-0001-SuppMat.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156177/2/adma202002127.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156177/1/adma202002127_am.pdfen_US
dc.identifier.doi10.1002/adma.202002127
dc.identifier.sourceAdvanced Materials
dc.identifier.citedreferenceM. Liscidini, D. Gerace, D. Sanvitto, D. Bajoni, Appl. Phys. Lett. 2011, 98, 121118.
dc.identifier.citedreferenceG. D. Scholes, G. R. Fleming, A. Olaya‐Castro, R. Van Grondelle, Nat. Chem. 2011, 3, 763.
dc.identifier.citedreferenceJ. L. Brédas, E. H. Sargent, G. D. Scholes, Nat. Mater. 2017, 16, 35.
dc.identifier.citedreferenceX. H. Jin, M. B. Price, J. R. Finnegan, C. E. Boott, J. M. Richter, A. Rao, S. Matthew Menke, R. H. Friend, G. R. Whittell, I. Manners, Science 2018, 360, 897.
dc.identifier.citedreferenceA. T. Haedler, K. Kreger, A. Issac, B. Wittmann, M. Kivala, N. Hammer, J. Köhler, H. W. Schmidt, R. Hildner, Nature 2015, 523, 196.
dc.identifier.citedreferenceH. Najafov, B. Lee, Q. Zhou, L. C. Feldman, V. Podzorov, Nat. Mater. 2010, 9, 938.
dc.identifier.citedreferenceJ. Schachenmayer, C. Genes, E. Tignone, G. Pupillo, Phys. Rev. Lett. 2015, 114, 196403.
dc.identifier.citedreferenceD. M. Myers, S. Mukherjee, J. Beaumariage, D. W. Snoke, M. Steger, L. N. Pfeiffer, K. West, Phys. Rev. B 2018, 98, 235302.
dc.identifier.citedreferenceS. K. Saikin, M. A. Shakirov, C. Kreisbeck, U. Peskin, Y. N. Proshin, A. Aspuru‐Guzik, J. Phys. Chem. C 2017, 121, 24994.
dc.identifier.citedreferenceS. K. Saikin, A. Eisfeld, S. Valleau, A. Aspuru‐Guzik, Nanophotonics 2013, 2, 21.
dc.identifier.citedreferenceJ. Feist, F. J. Garcia‐Vidal, Phys. Rev. Lett. 2015, 114, 196402.
dc.identifier.citedreferenceV. M. Agranovich, M. Litinskaia, D. G. Lidzey, Phys. Rev. B 2003, 67, 085311.
dc.identifier.citedreferenceP. Michetti, G. C. La Rocca, Phys. Rev. B 2005, 71, 115320.
dc.identifier.citedreferenceM. Litinskaya, Phys. Lett. A 2008, 372, 3898.
dc.identifier.citedreferenceG. Lerario, D. Ballarini, A. Fieramosca, A. Cannavale, A. Genco, F. Mangione, S. Gambino, L. Dominici, M. De Giorgi, G. Gigli, D. Sanvitto, Light: Sci. Appl. 2017, 6, e16212.
dc.identifier.citedreferenceR. Pandya, R. Y. S. Chen, Q. Gu, J. Sung, C. Schnedermann, O. S. Ojambati, R. Chikkaraddy, J. Gorman, G. Jacucci, O. D. Onelli, T. Willhammar, D. N. Johnstone, S. M. Collins, P. A. Midgley, F. Auras, T. Baikie, R. Jayaprakash, F. Mathevet, R. Soucek, M. Du, S. Vignolini, D. G. Lidzey, J. J. Baumberg, R. H. Friend, T. Barisien, L. Legrand, A. W. Chin, A. J. Musser, J. Yuen‐Zhou, S. K. Saikin, P. Kukura, A. Rao, arXiv: 1909.03220, 2019.
dc.identifier.citedreferenceD. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. S. Kim, D. G. Lidzey, Adv. Funct. Mater. 2011, 21, 3691.
dc.identifier.citedreferenceG. G. Rozenman, K. Akulov, A. Golombek, T. Schwartz, ACS Photonics 2018, 5, 105.
dc.identifier.citedreferenceP. Yeh, A. Yariv, C.‐S. Hong, J. Opt. Soc. Am. 1977, 67, 423.
dc.identifier.citedreferenceP. Halevi, Phys. Rev. B 1999, 59, 15112.
dc.identifier.citedreferenceF. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, S. Kéna‐Cohen, Nat. Nanotechnol. 2018, 13, 906.
dc.identifier.citedreferenceK. Takazawa, J. I. Inoue, K. Mitsuishi, T. Takamasu, Phys. Rev. Lett. 2010, 105, 067401.
dc.identifier.citedreferenceM. Litinskaya, P. Reineker, Phys. Rev. B 2006, 74, 165320.
dc.identifier.citedreferenceA. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, F. Nori, Nat. Rev. Phys. 2019, 1, 19.
dc.identifier.citedreferenceS. Hou, Y. Qu, X. Liu, S. R. Forrest, Phys. Rev. B 2019, 100, 045410.
dc.identifier.citedreferenceS. Aberra Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Gartstein, V. M. Agranovich, J. Bellessa, Phys. Rev. Lett. 2012, 108, 066401.
dc.identifier.citedreferenceK. S. Daskalakis, S. A. Maier, S. Kéna‐Cohen, Phys. Rev. Lett. 2015, 115, 035301.
dc.identifier.citedreferenceD. G. Suárez‐Forero, V. Ardizzone, S. F. Covre da Silva, M. Reindl, A. Fieramosca, L. Polimeno, M. De Giorgi, L. Dominici, L. N. Pfeiffer, G. Gigli, D. Ballarini, F. Laussy, A. Rastelli, D. Sanvitto, Light Sci. Appl. 2020, 9, 85.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.