Show simple item record

Patient‐Specific Analysis of Neural Activation During Spinal Cord Stimulation for Pain

dc.contributor.authorLempka, Scott F.
dc.contributor.authorZander, Hans J.
dc.contributor.authorAnaya, Carlos J.
dc.contributor.authorWyant, Alexandria
dc.contributor.authorOzinga, John G.
dc.contributor.authorMachado, Andre G.
dc.date.accessioned2020-08-10T20:54:23Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-08-10T20:54:23Z
dc.date.issued2020-07
dc.identifier.citationLempka, Scott F.; Zander, Hans J.; Anaya, Carlos J.; Wyant, Alexandria; Ozinga, John G.; Machado, Andre G. (2020). "Patient‐Specific Analysis of Neural Activation During Spinal Cord Stimulation for Pain." Neuromodulation: Technology at the Neural Interface 23(5): 572-581.
dc.identifier.issn1094-7159
dc.identifier.issn1525-1403
dc.identifier.urihttps://hdl.handle.net/2027.42/156183
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherChronic pain
dc.subject.otherfailed back surgery syndrome
dc.subject.otherspinal cord stimulation
dc.subject.othercomputer simulation
dc.titlePatient‐Specific Analysis of Neural Activation During Spinal Cord Stimulation for Pain
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurology and Neurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156183/2/ner13037_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156183/1/ner13037.pdfen_US
dc.identifier.doi10.1111/ner.13037
dc.identifier.sourceNeuromodulation: Technology at the Neural Interface
dc.identifier.citedreferenceFeirabend HKP, Choufoer H, Ploeger S, Holsheimer J, van Gool JD. Morphometry of human superficial dorsal and dorsolateral column fibres: significance to spinal cord stimulation. Brain 2002; 125: 1137 – 1149.
dc.identifier.citedreferenceLujan JL, Chaturvedi A, Malone DA, Rezai AR, Machado AG, Mcintyre CC. Axonal pathways linked to therapeutic and nontherapeutic outcomes during psychiatric deep brain stimulation. Hum Brain Mapp 2012; 33: 958 – 968. https://doi.org/10.1002/hbm.21262.
dc.identifier.citedreferenceMcIntyre CC, Chaturvedi A, Shamir RR, Lempka SF. Engineering the next generation of clinical deep brain stimulation technology. Brain Stimul 2015; 8: 21 – 26. https://doi.org/10.1016/j.brs.2014.07.039.
dc.identifier.citedreferenceArle JE, Carlson KW, Mei L, Shils JL. Modeling effects of scar on patterns of dorsal column stimulation. Neuromodulation. 2014; 17: 320 – 333. https://doi.org/10.1111/ner.12128.
dc.identifier.citedreferenceKumar K, Taylor RS, Jacques L et al. Spinal cord stimulation versus conventional medical management for neuropathic pain: a multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain 2007; 132: 179 – 188. https://doi.org/10.1016/j.pain.2007.07.028.
dc.identifier.citedreferenceStruijk JJ, Holsheimer J, Boom HBK. Excitation of dorsal root fibers in spinal cord stimulation: a theoretical study. IEEE Trans Biomed Eng 1993; 40: 632 – 639.
dc.identifier.citedreferenceHolsheimer J, Buitenweg JR, Das J, De Sutter P, Manola L, Nuttin B. The effect of pulse width and contact configuration on paresthesia coverage in spinal cord stimulation. Neurosurgery 2011; 68: 1452 – 1461. https://doi.org/10.1227/NEU.0b013e31820b4f47.
dc.identifier.citedreferenceSankarasubramanian V, Buitenweg JR, Holsheimer J, Veltink PH. Staggered transverse tripoles with quadripolar lateral anodes using percutaneous and surgical leads in spinal cord stimulation. Neurosurgery 2013; 72: 483 – 491. https://doi.org/10.1227/NEU.0b013e31827d0e12.
dc.identifier.citedreferenceLadenbauer J, Minassian K, Hofstoetter US, Dimitrijevic MR, Ratty F. Stimulation of the human lumbar spinal cord with implanted and surface electrodes—a computer simulation study. IEEE Trans Neural Syst Rehabil Eng 2010; 18: 637 – 645.
dc.identifier.citedreferenceGunalan K, Chaturvedi A, Howell B et al. Creating and parameterizing patient‐specific deep brain stimulation pathway‐activation models using the hyperdirect pathway as an example. PLoS One 2017; 12: e0176132.
dc.identifier.citedreferenceLempka SF, Howell B, Gunalan K, Machado AG, McIntyre CC. Characterization of the stimulus waveforms generated by implantable pulse generators for deep brain stimulation. Clin Neurophysiol 2018; 129: 731 – 742. https://doi.org/10.1016/j.clinph.2018.01.015.
dc.identifier.citedreferenceMcIntyre CC, Richardson AG, Grill WM. Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. J Neurophysiol 2002; 87: 995 – 1006.
dc.identifier.citedreferenceAnaya, C. J., Zander, H. J., Graham, R. D., Sankarasubramanian, V., & Lempka, S. F. ( 2019 ). Evoked Potentials Recorded From the Spinal Cord During Neurostimulation for Pain: A Computational Modeling Study. Neuromodulation: Technology at the Neural Interface. https://doi.org/10.1111/ner.12965
dc.identifier.citedreferenceRattay, F. ( 1986 ). Analysis of Models for External Stimulation of Axons. IEEE Transactions on Biomedical Engineering, BME‐33 (10), 974 – 977. https://doi.org/10.1109/tbme.1986.325670
dc.identifier.citedreferenceParker JL, Karantonis DM, Single PS, Obradovic M, Cousins MJ. Compound action potentials recorded in the human spinal cord during neurostimulation for pain relief. Pain 2012; 153: 593 – 601. https://doi.org/10.1016/j.pain.2011.11.023.
dc.identifier.citedreferenceRusso M, Cousins MJ, Brooker C et al. Effective relief of pain and associated symptoms with closed‐loop spinal cord stimulation system: preliminary results of the Avalon study. Neuromodulation 2018; 21: 38 – 47. https://doi.org/10.1111/ner.12684.
dc.identifier.citedreferenceKameyama T, Hashizume Y, Sobue G. Morphologic features of the normal human cadaveric spinal cord. Spine (Phila Pa 1976) 1996; 21: 1285 – 1290.
dc.identifier.citedreferencePlonsey R, Heppner DB. Considerations of quasi‐stationarity in electrophysiological systems. Bull Math Biophys 1967; 29: 657 – 664. https://doi.org/10.1007/BF02476917.
dc.identifier.citedreferenceButson CR, McIntyre CC. Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation. Clin Neurophysiol 2005; 116: 2490 – 2500. https://doi.org/10.1016/j.clinph.2005.06.023.
dc.identifier.citedreferenceBossetti CA, Birdno MJ, Grill WM. Analysis of the quasi‐static approximation for calculating potentials generated by neural stimulation. J Neural Eng 2008; 5: 44 – 53. https://doi.org/10.1088/1741-2560/5/1/005.
dc.identifier.citedreferenceWagner FB, Mignardot J, Le G‐m CG et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 2018; 563: 65 – 71. https://doi.org/10.1038/s41586-018-0649-2.
dc.identifier.citedreferenceLempka SF, Johnson MD, Miocinovic S, Vitek JL, Mcintyre CC. Current‐controlled deep brain stimulation reduces in vivo voltage fluctuations observed during voltage‐controlled stimulation. Clin Neurophysiol 2010; 121: 2128 – 2133. https://doi.org/10.1016/j.clinph.2010.04.026.
dc.identifier.citedreferenceMiocinovic S, Lempka SF, Russo GS et al. Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation. Exp Neurol 2009; 216: 166 – 176. https://doi.org/10.1016/j.expneurol.2008.11.024.
dc.identifier.citedreferenceLempka SF, Patil PG. Innovations in spinal cord stimulation for pain. Curr Opin Biomed Eng 2018; 8: 51 – 60. https://doi.org/10.1016/j.cobme.2018.10.005.
dc.identifier.citedreferenceNorth RB, Kidd DH, Piantadosi S. Spinal cord stimulation versus reoperation for failed back surgery syndrome: a prospective, randomized study design. Acta Neurochir 1995; 64: 106 – 108.
dc.identifier.citedreferenceKemler MA, Barendse GA, van Kleef M et al. Spinal cord stimulatoin in patients with chronic reflex sympathetic dystrophy. N Engl J Med 2000; 343: 618 – 624.
dc.identifier.citedreferenceKumar K, Taylor RS, Jacques L et al. The effects of spinal cord stimulation in neuropathic pain are sustained: a 24‐month follow‐up of the prospective randomized controlled multicenter trial of the effectiveness of spinal cord stimulation. Neurosurgery 2008; 63: 762 – 770. https://doi.org/10.1227/01.NEU.0000325731.46702.D9.
dc.identifier.citedreferenceSankarasubramanian V, Harte SE, Chiravuri S et al. Objective measures to characterize the physiological effects of spinal cord stimulation in neuropathic pain: a literature review. Neuromodulation 2018; 22 (2): 127 – 148. https://doi.org/10.1111/ner.12804.
dc.identifier.citedreferenceGuan Y, Wacnik PW, Yang F et al. Spinal cord stimulation‐induced analgesia. Anesthesiology 2010; 113: 1392 – 1405. https://doi.org/10.1097/ALN.0b013e3181fcd95c.
dc.identifier.citedreferenceSong Z, Meyerson BA, Linderoth B. Spinal 5‐HT receptors that contribute to the pain‐relieving effects of spinal cord stimulation in a rat model of neuropathy. Pain 2011; 152: 1666 – 1673. https://doi.org/10.1016/j.pain.2011.03.012.
dc.identifier.citedreferenceZhang TC, Janik JJ, Peters RV, Chen G, Ji R‐R, Grill WM. Spinal sensory projection neuron responses to spinal cord stimulation are mediated by circuits beyond gate control. J Neurophysiol 2015; 114: 284 – 300. https://doi.org/10.1152/jn.00147.2015.
dc.identifier.citedreferenceYoun Y, Smith H, Morris B, Argoff C, Pilitsis JG. The effect of high‐frequency stimulation on sensory thresholds in chronic pain patients. Stereotact Funct Neurosurg 2015; 93: 355 – 359. https://doi.org/10.1159/000438998.
dc.identifier.citedreferenceHolsheimer J, Wesselink WA. Effect of anode‐cathode configuration on paresthesia coverage in spinal cord stimulation. Neurosurgery 1997; 41: 654 – 660.
dc.identifier.citedreferenceStruijk JJ, Holsheimer J. Transverse tripolar spinal cord stimulation: theoretical performance of a dual channel system. Med Biol Eng Comput 1996; 34: 273 – 279.
dc.identifier.citedreferenceHowell B, Lad SP, Grill WM. Evaluation of intradural stimulation efficiency and selectivity in a computational model of spinal cord stimulation. PLoS One. 2014; 9: e114938. https://doi.org/10.1371/journal.pone.0114938.
dc.identifier.citedreferenceLee D, Hershey B, Bradley K, Yearwood T. Predicted effects of pulse width programming in spinal cord stimulation: a mathematical modeling study. Med Biol Eng Comput 2011; 49: 765 – 774. https://doi.org/10.1007/s11517-011-0780-9.
dc.identifier.citedreferenceLee D, Gillespie E, Bradley K. Dorsal column steerability with dual parallel leads using dedicated power sources: a computational model. J Vis Exp 2011. https://doi.org/10.3791/2443.
dc.identifier.citedreferenceHolsheimer J. Which neuronal elements are activated directly by spinal cord stimulation. Neuromodulation. 2002; 5: 25 – 31. https://doi.org/10.1046/j.1525-1403.2002._2005.x.
dc.identifier.citedreferenceCapogrosso M, Wenger N, Raspopovic S et al. A computational model for epidural electrical stimulation of spinal sensorimotor circuits. J Neurosci 2013; 33: 19326 – 19340. https://doi.org/10.1523/JNEUROSCI.1688-13.2013.
dc.identifier.citedreferenceLempka SF, McIntyre CC, Kilgore KL, Machado AG. Computational analysis of kilohertz frequency spinal cord stimulation for chronic pain management. Anesthesiology 2015; 122: 1362 – 1376. https://doi.org/10.1097/ALN.0000000000000649.
dc.identifier.citedreferenceZhang TC, Janik JJ, Grill WM. Modeling effects of spinal cord stimulation on wide‐dynamic range dorsal horn neurons: influence of stimulation frequency and GABAergic inhibition. J Neurophysiol 2014; 112: 552 – 567. https://doi.org/10.1152/jn.00254.2014.
dc.identifier.citedreferenceHolsheimer J, den Boer JA, Struijk JJ, Rozeboom AR. MR assessment of the normal position of the spinal cord in the spinal canal. AJNR Am J Neuroradiol 1994; 15: 951 – 959.
dc.identifier.citedreferenceDelmotte A, Jacques L, Kumar K et al. The Franco‐Canadian multicolumn spinal cord stimulation prospective study: a subgroup analysis focusing on the decisive role of lead positioning. Neurochirurgie 2015; 61: S83 – S89. https://doi.org/10.1016/j.neuchi.2014.06.005.
dc.identifier.citedreferenceStruijk JJ, Holsheimer J, Barolat G, He J, Boom HBK. Paresthesia thresholds in spinal cord stimulation: a comparison of theoretical results with clinical data. 1993; I: 101 – 108.
dc.identifier.citedreferenceBarolat G, Ketcik B, He J. Long‐term outcome of spinal cord stimulation for chronic pain management. Neuromodulation 1998; 1: 19 – 29.
dc.identifier.citedreferenceAló KM, Redko V, Charnov J. Four year follow‐up of dual electrode spinal cord stimulation for chronic pain. Neuromodulation 2002; 5: 79 – 88.
dc.identifier.citedreferenceYearwood TL, Hershey B, Bradley K, Lee D. Pulse width programming in spinal cord stimulation: a clinical study. Pain Physician 2010; 13: 321 – 335.
dc.identifier.citedreferenceHe J, Barolat G, Holsheimer J, Struijk JJ. Perception threshold and electrode position for spinal cord stimulation. Pain 1994; 59: 55 – 63. https://doi.org/10.1016/0304-3959(94)90047-7.
dc.identifier.citedreferenceChaturvedi A, Butson CR, Lempka SF, Cooper SE, McIntyre CC. Patient‐specific models of deep brain stimulation: influence of field model complexity on neural activation predictions. Brain Stimul 2010; 3: 65 – 77. https://doi.org/10.1016/j.brs.2010.01.003.
dc.identifier.citedreferenceFrankemolle AMM, Wu J, Noecker AM et al. Reversing cognitive‐motor impairments in Parkinson’s disease patients using a computational modelling approach to deep brain stimulation programming. Brain 2010; 133: 746 – 761. https://doi.org/10.1093/brain/awp315.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.