Show simple item record

Implant Angulation Effect on the Fracture Resistance of Monolithic Zirconia Custom Abutments: An In Vitro Study

dc.contributor.authorKatsavochristou, Anastasia
dc.contributor.authorSierraalta, Marianella
dc.contributor.authorSaglik, Berna
dc.contributor.authorKoumoulis, Dimitrios
dc.contributor.authorGeorge, Furat
dc.contributor.authorRazzoog, Michael
dc.date.accessioned2020-08-10T20:54:26Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2020-08-10T20:54:26Z
dc.date.issued2020-06
dc.identifier.citationKatsavochristou, Anastasia; Sierraalta, Marianella; Saglik, Berna; Koumoulis, Dimitrios; George, Furat; Razzoog, Michael (2020). "Implant Angulation Effect on the Fracture Resistance of Monolithic Zirconia Custom Abutments: An In Vitro Study." Journal of Prosthodontics 29(5): 394-400.
dc.identifier.issn1059-941X
dc.identifier.issn1532-849X
dc.identifier.urihttps://hdl.handle.net/2027.42/156185
dc.description.abstractPurposeTo investigate the fracture resistance and performance of zirconia when employed for the fabrication of implant abutments with different angulations, simulating anterior maxillary oral rehabilitation.Materials and MethodsForty‐five monolithic zirconia custom abutments of internal conical implant connection were CAD/CAM designed and fabricated. The specimens were divided into three groups (n = 15/group) according to implant‐to‐abutment angulation. The angulations used were; 0°, 15°, and 25°. The abutments were loaded until failure at 135° using the Universal Testing Machine (Instron, Canton, MA). Collected data were statistically analyzed using one‐way ANOVA and post hoc Tukey test.ResultsMean (±standard deviation) load at fracture of the zirconia abutments for the three groups were 962.37 ± 93.81 N (Gr15) > 718.25 ± 93.71 N (Gr25) > 534.05 ±133.77 N (Gr0). Statistically significant difference (p < 0.0001) was found between all groups; Gr0 vs. Gr15, Gr0 vs. Gr25, Gr15 vs. Gr25.ConclusionsContrary to expectations, the non‐angulated monolithic zirconia abutments presented the lowest fracture resistance values. Angulating the abutments 15 or 25 degrees, following the palatal resorption pattern of the premaxilla, significantly increased the in vitro fracture resistance.
dc.publisherUniversity of Michigan
dc.publisherWiley Periodicals, Inc.
dc.subject.otherangulation
dc.subject.otherbioengineering mechanics
dc.subject.otherzirconia abutment
dc.subject.othermonolithic
dc.subject.otherimplant
dc.subject.otherfracture resistance
dc.titleImplant Angulation Effect on the Fracture Resistance of Monolithic Zirconia Custom Abutments: An In Vitro Study
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156185/2/jopr13127_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156185/1/jopr13127.pdfen_US
dc.identifier.doi10.1111/jopr.13127
dc.identifier.sourceJournal of Prosthodontics
dc.identifier.citedreferenceZandparsa R, Albosefi A: An in vitro comparison of fracture load of zirconia custom abutments with internal connection and different angulations and thicknesses: part II. J Prosthodont 2016; 25: 151 ‐ 155
dc.identifier.citedreferenceCamposilvan E, Flamant Q, Anglada M: Surface roughened zirconia: towards hydrothermal stability. J Mech Behav Biomed Mater 2015; 47: 95 ‐ 106
dc.identifier.citedreferenceJoda T, Bürki A, Bethge S, et al: Stiffness, strength, and failure modes of implant‐supported monolithic lithium disilicate crowns: influence of titanium and zirconia abutments. Int J Oral Maxillofac Implants 2015; 30: 1272 ‐ 1279
dc.identifier.citedreferenceAlbosefi A, Finkelman M, Zandparsa R: An in vitro comparison of fracture load of zirconia custom abutments with internal connection and different angulations and thickness: part i. J Prosthodont 2014; 23: 296 ‐ 301
dc.identifier.citedreferenceDenry I, Kelly J: State of the art of zirconia for dental applications. Dent Mater 2008; 24: 299 ‐ 307
dc.identifier.citedreferenceNakamura K, Harada A, Inagaki R, et al: Fracture resistance of monolithic zirconia molar crowns with reduced thickness. Acta Odontol Scand 2015; 73: 602 ‐ 608
dc.identifier.citedreferenceBalik A, Karatas MO, Keskin H: Effects of different abutment connection designs on the stress distribution around five different implants: a 3‐dimensional finite element analysis. J Oral Implantol 2012; 38: 491 ‐ 496
dc.identifier.citedreferenceCoray R, Zeltner M, Ozcan M: Fracture strength of implant abutments after fatigue testing: a systematic review and a meta‐analysis. J Mech Behav Biomed Mater 2016; 62: 333 ‐ 346
dc.identifier.citedreferenceBelser UC, Grütter L, Vailati F, et al: Outcome evaluation of early placed maxillary anterior single‐tooth implants using objective esthetic criteria: a cross‐sectional, retrospective study in 45 patients with a 2‐ to 4‐year follow‐up using pink and white esthetic scores. J Periodontol 2009; 80: 140 ‐ 151
dc.identifier.citedreferencePalacci P, Nowzari H: Soft tissue enhancement around dental implants. Periodontol 2000 2008; 47 ): 113 ‐ 132
dc.identifier.citedreferenceChappuis V, Engel O, Reyes M, et al: Ridge alterations post‐extraction in the esthetic zone: a 3D analysis with CBCT. J Dent Res 2013; 92: 195S ‐ 201S
dc.identifier.citedreferenceHuynh‐Ba G, Pjetursson BE, Sanz M, et al: Analysis of the socket bone wall dimensions in the upper maxilla in relation to immediate implant placement. Clin Oral Implan Res 2009; 21: 37 ‐ 42
dc.identifier.citedreferenceVera C, De Kok IJ, Reinhold D, et al: Evaluation of buccal alveolar bone dimension of maxillary anterior and premolar teeth: a cone beam computed tomography investigation. Int J Oral Maxillofac Implants 2012; 27: 1514 ‐ 1519
dc.identifier.citedreferenceSethi A, Kaus T, Sochor P: The use of angulated abutments in implant dentistry: five‐year clinical results of an ongoing prospective study. Int J Oral Maxillofac Implants 2000; 15: 801 ‐ 810
dc.identifier.citedreferenceNothdurft FP, Doppler KE, Erdelt KJ, et al: Fracture behavior of straight or angulated zirconia implant abutments supporting anterior single crowns. Clin Oral Invest 2011; 15: 157 ‐ 163
dc.identifier.citedreferenceThulasidas S, Givan DA, Lemons JE, et al: Influence of implant angulation on the fracture resistance of zirconia abutments. J Prosthodont 2015; 24: 127 ‐ 135
dc.identifier.citedreferenceKatsavochristou A: The effect of implant/abutment angulation on the fracture load of ZrO 2 ceramic custom abutments for the anterior maxilla; an in vitro study [dissertation]. Ann Arbor, Rackham Graduate School, Ann Arbor: University of Michigan, 2017
dc.identifier.citedreferenceReitz PV, Aoki H, Yoshioka M, et al: A cephalometric study of tooth position as related to facial structure in profiles of human beings: a comparison of Japanese (Oriental) and American (Caucasian) adults. J Prosthet Dent 1973; 29: 157 ‐ 166
dc.identifier.citedreferenceInternational Organization for Standardization: Dentistry‐ implants‐dynamic loading test for endosseous dental implants. ISO 14801: 2016 (E)
dc.identifier.citedreferenceKim KS, Lim YJ, Kim MJ, et al: Variation in the total lengths of abutment/implant assemblies generated with a function of applied tightening torque in external and internal implant‐abutment connection. Clin Oral Implan Res 2010; 22: 834 ‐ 839
dc.identifier.citedreferenceKim JS, Raigrodski AJ, Flinn BD, et al: In vitro assessment of three types of zirconia implant abutments under static load. J Prosthet Dent 2013; 109: 255 ‐ 263
dc.identifier.citedreferenceFaul F, Erdfelder E, Buchner A, et al: Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Meth 2009; 41: 1149 ‐ 1160
dc.identifier.citedreferenceStimmelmayr M, Edelhoff D, Güth JF, et al: Wear at the titanium‐titanium and the titanium‐zirconia implant‐abutment interface: a comparative in vitro study. Dent Mater 2012; 28: 1215 ‐ 1220
dc.identifier.citedreferenceTruninger TC, Stawarczyk B, Leutert CR, et al: Bending moments of zirconia and titanium abutments with internal and external implant‐abutment connections after aging and chewing simulation. Clin Oral Implan Res 2012; 23: 12 ‐ 18
dc.identifier.citedreferenceBorchers L, Stiesch M, Bach FW, et al: Influence of hydrothermal and mechanical conditions on the strength of zirconia. Acta Biomater 2010; 6: 4547 ‐ 4552
dc.identifier.citedreferenceKelly JR: Clinically relevant approach to failure testing of all‐ceramic restorations. J Prosthet Dent 1999; 81: 652 ‐ 661
dc.identifier.citedreferenceCanullo L, Coelho PG, Bonfante EA: Mechanical testing of thin‐walled zirconia abutments. J Appl Oral Sci 2013; 21: 20 ‐ 24
dc.identifier.citedreferenceBuser D, Martin W, Belser UC: Optimizing esthetics for implant restorations in the anterior maxilla: anatomic and surgical considerations. Int J Oral Maxillofac Implants 2004; 19 ( Suppl ): 43 ‐ 61
dc.identifier.citedreferenceJung ER, Zembic A, Pjetursson BE, et al: Systematic review of the survival rate and the incidence of biological, technical, and aesthetic complications of single crowns on implants reported in longitudinal studies with a mean follow‐up of 5 years. Clin Oral Implan Res 2012; 23: 2 ‐ 21
dc.identifier.citedreferenceKatsavochristou A, Koumoulis D: Incidence of abutment screw failure of single or splinted implant prostheses: a review and update on current clinical status. J Oral Rehabil 2019; 10: 387 ‐ 311
dc.identifier.citedreferenceBidra AS, Rungruanganunt P: Clinical outcomes of implant abutments in the anterior region: a systematic review. J Esthet Restor Dent 2013; 25: 159 ‐ 176
dc.identifier.citedreferenceBressan E, Paniz G, Lops D, et al: Influence of abutment material on the gingival color of implant‐supported all‐ceramic restorations: a prospective multicenter study. Clin Oral Implan Res 2010; 22: 631 ‐ 637
dc.identifier.citedreferencevan Brakel R, Noordmans HJ, Frenken J, et al: The effect of zirconia and titanium implant abutments on light reflection of the supporting soft tissues. Clin Oral Implan Res 2011; 22: 1172 ‐ 1178
dc.identifier.citedreferencePiconi C, Maccauro G: Zirconia as a ceramic biomaterial. Biomaterials 1999; 20: 1 ‐ 25
dc.identifier.citedreferenceYilmaz H, Aydin C, Gul BE: Flexural strength and fracture toughness of dental core ceramics. J Prosthet Dent 2007; 98: 120 ‐ 128
dc.identifier.citedreferenceAboushelib MN, Salameh Z: Zirconia implant abutment fracture: clinical case reports and precautions for use. Int J Prosthodont 2009; 22: 616 ‐ 619
dc.identifier.citedreferenceEkfeldt A, Fürst B, Carlsson GE: Zirconia abutments for single‐tooth implant restorations: a retrospective and clinical follow‐up study. Clin Oral Implan Res 2011; 22: 1308 ‐ 1314
dc.identifier.citedreferenceMartínez‐Rus F, Ferreiroa A, Ozcan M, et al: Fracture resistance of crowns cemented on titanium and zirconia implant abutments: A comparison of monolithic versus manually veneered all‐ceramic systems. Int J Oral Maxillofac Implants 2012; 27: 1448 ‐ 1455
dc.identifier.citedreferenceBasílio MA, Cardoso KV, Antonio SG, et al: Effects of artificial aging conditions on yttria‐stabilized zirconia implant abutments. J Prosthet Dent 2016; 116: 277 ‐ 285
dc.identifier.citedreferenceAlqahtani F, Flinton R: Postfatigue fracture resistance of modified prefabricated zirconia implant abutments. J Prosthet Dent 2014; 112: 299 ‐ 305
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.