Show simple item record

Understanding Molecular Structures of Buried Interfaces in Halide Perovskite Photovoltaic Devices Nondestructively with Sub‐Monolayer Sensitivity Using Sum Frequency Generation Vibrational Spectroscopy

dc.contributor.authorXiao, Minyu
dc.contributor.authorLu, Tieyi
dc.contributor.authorLin, Ting
dc.contributor.authorAndre, John S.
dc.contributor.authorChen, Zhan
dc.date.accessioned2020-08-10T20:54:34Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-08-10T20:54:34Z
dc.date.issued2020-07
dc.identifier.citationXiao, Minyu; Lu, Tieyi; Lin, Ting; Andre, John S.; Chen, Zhan (2020). "Understanding Molecular Structures of Buried Interfaces in Halide Perovskite Photovoltaic Devices Nondestructively with Sub‐Monolayer Sensitivity Using Sum Frequency Generation Vibrational Spectroscopy." Advanced Energy Materials 10(26): n/a-n/a.
dc.identifier.issn1614-6832
dc.identifier.issn1614-6840
dc.identifier.urihttps://hdl.handle.net/2027.42/156190
dc.description.abstractAs performance of halide perovskite devices progresses, the device structure becomes more complex with more layers. Molecular interfacial structures between different layers play an increasingly important role in determining the overall performance in a halide perovskite device. However, current understanding of such interfacial structures at a molecular level nondestructively is limited, partially due to a lack of appropriate analytical tools to probe buried interfacial molecular structures in situ. Here, sum frequency generation (SFG) vibrational spectroscopy, a state‐of‐the‐art nonlinear interface sensitive spectroscopy, is introduced to the halide perovskite research community and is presented as a powerful tool to understand molecule behavior at buried halide perovskite interfaces in situ. It is found that interfacial molecular orientations revealed by SFG can be directly correlated to halide perovskite device performance. Here how SFG can examine molecular structures (e.g., orientations) at the perovskite/hole transporting layer and perovskite/electron transporting layer interfaces is discussed. This will promote the use of SFG to investigate molecular structures of buried interfaces in various halide perovskite materials and devices in situ nondestructively with a sub‐monolayer interface sensitivity. Such research will help to elucidate structure–function relationships of buried interfaces, aiding in the rational design/development of halide perovskite materials/devices with improved performance.Sum frequency generation vibrational spectroscopy, a state‐of‐the‐art nonlinear vibrational spectroscopy, is applied to elucidate molecular structure at buried halide perovskite interfaces in situ nondestructively with sub‐monolayer sensitivity. Molecular interfacial structures between different layers play an increasingly important, sometimes vital role in determining the overall performance in a halide perovskite device.
dc.publisherWiley Periodicals, Inc.
dc.subject.othersum frequency generation vibrational spectroscopy
dc.subject.otherburied interfaces
dc.subject.othermolecular structures
dc.subject.otherperovskite photovoltaics
dc.subject.othersemiconducting polymers
dc.titleUnderstanding Molecular Structures of Buried Interfaces in Halide Perovskite Photovoltaic Devices Nondestructively with Sub‐Monolayer Sensitivity Using Sum Frequency Generation Vibrational Spectroscopy
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156190/2/aenm201903053_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156190/1/aenm201903053.pdfen_US
dc.identifier.doi10.1002/aenm.201903053
dc.identifier.sourceAdvanced Energy Materials
dc.identifier.citedreferenceA. J. Moad, G. J. Simpson, J. Phys. Chem. B 2004, 108, 3548.
dc.identifier.citedreferencea) J. Li, T. Jiu, C. Duan, Y. Wang, H. Zhang, H. Jian, Y. Zhao, N. Wang, C. Huang, Y. Li, Nano Energy 2018, 46, 331; b) A. Krishna, D. Sabba, H. Li, J. Yin, P. P. Boix, C. Soci, S. G. Mhaisalkar, A. C. Grimsdale, Chem. Sci. 2014, 5, 2702; c) Q. Wang, E. Mosconi, C. Wolff, J. Li, D. Neher, F. De Angelis, G. P. Suranna, R. Grisorio, A. Abate, Adv. Energy Mater. 2019, 9, 1900990; d) Y. Feng, Q. Hu, E. Rezaee, M. Li, Z.‐X. Xu, A. Lorenzoni, F. Mercuri, M. Muccini, Adv. Energy Mater. 2019, 9, 1901019.
dc.identifier.citedreferencea) D. Forgács, L. Gil‐Escrig, D. Pérez‐Del‐Rey, C. Momblona, J. Werner, B. Niesen, C. Ballif, M. Sessolo, H. J. Bolink, Adv. Energy Mater. 2017, 7, 1602121; b) S. Gharibzadeh, B. A. Nejand, M. Jakoby, T. Abzieher, D. Hauschild, S. Moghadamzadeh, J. A. Schwenzer, P. Brenner, R. Schmager, A. A. Haghighirad, L. Weinhardt, U. Lemmer, B. S. Richards, I. A. Howard, U. W. Paetzold, Adv. Energy Mater. 2019, 9, 1803699.
dc.identifier.citedreferenceP. Schulz, D. Cahen, A. Kahn, Chem. Rev. 2019, 119, 3349.
dc.identifier.citedreferenceM. Xiao, S. Joglekar, X. Zhang, J. Jasensky, J. Ma, Q. Cui, L. J. Guo, Z. Chen, J. Am. Chem. Soc. 2017, 139, 3378.
dc.identifier.citedreferenceJ. A. Christians, P. Schulz, J. S. Tinkham, T. H. Schloemer, S. P. Harvey, B. J. T. de Villers, A. Sellinger, J. J. Berry, J. M. Luther, Nat. Energy 2018, 3, 68.
dc.identifier.citedreferenceY. Yang, Q. Chen, Y.‐T. Hsieh, T.‐B. Song, N. D. Marco, H. Zhou, ACS Nano 2015, 9, 7714.
dc.identifier.citedreferenceS. Yang, J. Dai, Z. Yu, Y. Shao, Y. Zhou, X. Xiao, X. C. Zeng, J. Huang, J. Am. Chem. Soc. 2019, 141, 5781.
dc.identifier.citedreferenceY. Hou, X. Du, S. Scheiner, D. P. McMeekin, Z. Wang, N. Li, M. S. Killian, H. Chen, M. Richter, I. Levchuk, N. Schrenker N, E. Spiecker, T. Stubhan, N. A. Luechinger, A. Hirsch, P. Schmuki, H. P. Steinrück, R. H. Fink, M. Halik, H. J. Snaith, C. J. Brabec, Science 2017, 358, 1192.
dc.identifier.citedreferenceJ. J. Yoo, S. Wieghold, M. C. Sponseller, M. R. Chua, S. N. Bertram, N. T. P. Hartono, J. S. Tresback, E. C. Hansen, J.‐P. Correa‐Baena, V. Bulović, T. Buonassisi, S. S. Shin, M. G. Bawendi, Energy Environ. Sci. 2019, 12, 2192.
dc.identifier.citedreferenceC. M. Wolff, P. Caprioglio, M. Stolterfoht, D. Neher, Adv. Mater. 2019, 1902762.
dc.identifier.citedreferencea) G. Grancini, V. D’Innocenzo, E. R. Dohner, N. Martino, A. S. Kandada, E. Mosconi, F. De Angelis, H. Karunadasa, E. Hoke, A. Petrozza, Chem. Sci. 2015, 6, 7305; b) Q. Dong, F. Liu, M. K. Wong, H. W. Tam, A. B. Djurišić, A. Ng, C. Surya, W. K. Chan, A. M. C. Ng, ChemSusChem 2016, 9, 2597.
dc.identifier.citedreferenceY. Shen, Nature 1989, 337, 519.
dc.identifier.citedreferencea) Y. R. Shen, Annu. Rev. Phys. Chem. 1989, 40, 327; b) K. B. Eisenthal, Chem. Rev. 1996, 96, 1343; c) M. Buck, M. Himmelhaus, J. Vac. Sci. Technol., A 2001, 19, 2717; d) Z. Chen, Y. R. Shen, G. A. Somorjai, Annu. Rev. Phys. Chem. 2002, 53, 437; e) C. T. Williams, D. A. Beattie, Surf. Sci. 2002, 500, 545; f) G. L. Richmond, Chem. Rev. 2002, 102, 2693; g) F. M. Geiger, Annu. Rev. Phys. Chem. 2009, 60, 61; h) Z. Chen, Prog. Polym. Sci. 2010, 35, 1376; i) E. C. Y. Yan, L. Fu, Z. Wang, W. Liu, Chem. Rev. 2014, 114, 8471; j) S. Roy, K.‐K. Hung, U. Stege, D. K. Hore, Appl. Spectrosc. Rev. 2014, 49, 233; k) B. Ding, J. Jasensky, Y. Li, Z. Chen, Acc. Chem. Res. 2016, 49, 1149; l) D. Hu, K. Chou, J. Am. Chem. Soc. 2014, 136, 15114; m) H. Wang, W. Chen, J. C. Wagner, W. Xiong, J. Phys. Chem. B 2019, 123, 6212; n) S.‐Y. Jung, S.‐M. Lim, F. Albertorio, G. Kim, M. C. Gurau, R. D. Yang, M. A. Holden, P. S. Cremer, J. Am. Chem. Soc. 2003, 125, 12782.
dc.identifier.citedreferencea) W. R. FitzGerald, K. C. Jena, D. K. Hore, J. Mol. Struct. 2015, 1084, 368; b) P. M. Kearns, D. B. O’Brien, A. M. Massari, J. Phys. Chem. Lett. 2016, 7, 62; c) X. Lu, D. Li, C. B. Kristalyn, J. Han, N. Shephard, S. Rhodes, G. Xue, Z. Chen, Macromolecules 2009, 42, 9052; d) X. Lu, G. Xue, X. Wang, J. Han, X. Han, J. Hankett, D. Li, Z. Chen, Macromolecules 2012, 45, 6087; e) J. N. Myers, X. Zhang, J. Bielefeld, Q. Lin, Z. Chen, J. Phys. Chem. B 2015, 119, 1736; f) X. Zhang, J. N. Myers, H. Huang, H. Shobha, Z. Chen, A. Grill, J. Appl. Phys. 2016, 119, 084101; g) X. Lu, N. Shephard, J. Han, G. Xue, Z. Chen, Macromolecules 2008, 41, 8770.
dc.identifier.citedreferenceL. Zhang, C. Liu, J. Zhang, X. Li, C. Cheng, Y. Tian, A. K. Y. Jen, B. Xu, Adv. Mater. 2018, 30, 1804028.
dc.identifier.citedreferenceC. Hirose, N. Akamatsu, K. Domen, Appl. Spectrosc. 1992, 46, 1051.
dc.identifier.citedreferencea) C. Hirose, H. Yamamoto, N. Akamatsu, K. Domen J. Phys. Chem. 1993, 97, 10064; b) C. Hirose, N. Akamatsu, K. Domen J. Chem. Phys. 1992, 96, 997.
dc.identifier.citedreferenceE. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T.‐Y. Yang, J. H. Noh, J. Seo, Nature 2019, 567, 511.
dc.identifier.citedreferenceA. Magomedov, A. Al‐Ashouri, E. Kasparavičius, S. Strazdaite, G. Niaura, M. Jošt, T. Malinauskas, S. Albrecht, V. Getautis, Adv. Energy Mater. 2018, 8, 1801892.
dc.identifier.citedreferenceM. Xiao, X. Zhang, Z. J. Bryan, J. Jasensky, A. J. McNeil, Z. Chen, Langmuir 2015, 31, 5050.
dc.identifier.citedreferenceZ. Sohrabpour, P. M. Kearns, A. M. Massari, J. Phys. Chem. C 2016, 120, 1666.
dc.identifier.citedreferenceP. Dhar, P. P. Khlyabich, B. Burkhart, S. T. Roberts, S. Malyk, B. C. Thompson, A. V. Benderskii, J. Phys. Chem. C 2013, 117, 15213.
dc.identifier.citedreferenceT. C. Anglin, Z. Sohrabpour, A. M. Massari, J. Phys. Chem. C 2011, 115, 20258.
dc.identifier.citedreferenceN. W. Ulrich, M. Xiao, X. Zou, J. Williamson, Z. Chen, IEEE Trans. Compon., Packag., Manuf. Technol. 2018, 8, 1213.
dc.identifier.citedreferenceX. Zhuang, P. Miranda, D. Kim, Y. Shen, Phys. Rev. B 1999, 59, 12632.
dc.identifier.citedreferenceX. Lu, C. Zhang, N. Ulrich, M. Xiao, Y.‐H. Ma, Z. Chen, Anal. Chem. 2017, 89, 466.
dc.identifier.citedreferencea) A. K. Jena, A. Kulkarni, T. Miyasaka, Chem. Rev. 2019, 119, 3036; b) L. M. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.‐W. Lee, E. H. Sargent, Chem. Rev. 2019, 119, 7444.
dc.identifier.citedreferencea) M. Liu, M. B. Johnston, H. J. Snaith, Nature 2013, 501, 395; b) S. T. Ha, X. Liu, Q. Zhang, D. Giovanni, T. C. Sum, Q. Xiong, Adv. Opt. Mater. 2014, 2, 838; c) E. Edri, S. Kirmayer, S. Mukhopadhyay, K. Gartsman, G. Hodes, D. Cahen, Nat. Commun. 2014, 5, 3461; d) Q. Chen, H. Zhou, Z. Hong, S. Luo, H.‐S. Duan, H.‐H. Wang, Y. Liu, G. Li, Y. Yang, J. Am. Chem. Soc. 2014, 136, 622; e) A. Oranskaia, U. Schwingenschlogl, Adv. Energy Mater. 2019, 9, 1901411; f) Y. Liu, Z. Yang, S. F. Liu, Adv. Sci. 2018, 5, 1700471.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.