Quantifying Near‐Surface Rock Strength on a Regional Scale From Hillslope Stability Models
dc.contributor.author | Townsend, Kirk F. | |
dc.contributor.author | Gallen, Sean F. | |
dc.contributor.author | Clark, Marin K. | |
dc.date.accessioned | 2020-08-10T20:54:57Z | |
dc.date.available | WITHHELD_12_MONTHS | |
dc.date.available | 2020-08-10T20:54:57Z | |
dc.date.issued | 2020-07 | |
dc.identifier.citation | Townsend, Kirk F.; Gallen, Sean F.; Clark, Marin K. (2020). "Quantifying Near‐Surface Rock Strength on a Regional Scale From Hillslope Stability Models." Journal of Geophysical Research: Earth Surface 125(7): n/a-n/a. | |
dc.identifier.issn | 2169-9003 | |
dc.identifier.issn | 2169-9011 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/156196 | |
dc.description.abstract | Rock strength is a fundamental property of earth materials that influences the morphology of landscapes and modulates feedbacks between surface processes, tectonics, and climate. However, rock strength remains challenging to quantify over the broad spatial scales necessary for geomorphic investigations. Consequently, the factors that control rock strength in the near‐surface environment (i.e., the critical zone) remain poorly understood. Here we quantify near‐surface rock strength on a regional scale by exploiting two hillslope‐stability models, which explicitly relate the balance of forces within a hillslope to Mohr‐Coulomb strength parameters. We first use the Culmann finite‐slope stability model to back‐calculate static rock strength with high‐density measurements of ridge‐to‐channel hillslope height and gradient. Second, we invert the Newmark infinite‐slope stability model for strength using an earthquake peak ground acceleration model and coseismic landslide inventory. We apply these two model approaches to a recently inverted sedimentary basin in the eastern Topatopa Mountains of southern California, USA, where a tectonic gradient has exposed stratigraphic units with variable burial histories. Results show similar trends in strength with respect to stratigraphic position and have comparable strength estimates to the lowest values of published direct‐shear test data. Cohesion estimates are low, with Culmann results ranging from 3 to 60 kPa and Newmark results from 6 to 30 kPa, while friction angle estimates range from 24° to 44° from the Culmann model. We find that maximum burial depth exerts the strongest control on the strength of these young sedimentary rocks, likely through diagenetic changes in porosity, cementation, and ultimately, lithification.Key PointsWe quantify hillslope‐scale, near‐surface rock strength on a regional scale using the Culmann and Newmark hillslope‐stability modelsStrength estimates are generally low, with cohesion model predictions less than 60 kPa for friction angle predictions of 24° to 44°The cohesion of young sedimentary rocks in the shallow subsurface increases with increasing maximum burial depth | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.publisher | American Association of Petroleum Geologists | |
dc.subject.other | landscape evolution | |
dc.subject.other | rock strength | |
dc.subject.other | landslides | |
dc.subject.other | hillslopes | |
dc.subject.other | topography | |
dc.subject.other | basin inversion | |
dc.title | Quantifying Near‐Surface Rock Strength on a Regional Scale From Hillslope Stability Models | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Geological Sciences | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/156196/3/jgrf21208.pdf | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/156196/2/2020JF005665-sup-0001-Data_Set_SI-S01.pdf | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/156196/1/jgrf21208_am.pdf | en_US |
dc.identifier.doi | 10.1029/2020JF005665 | |
dc.identifier.source | Journal of Geophysical Research: Earth Surface | |
dc.identifier.citedreference | Parise, M., & Jibson, R. ( 2000 ). A seismic landslide susceptibility rating of geologic units based on analysis of characterstics of landslides triggered by the 17 January, 1994 Northridge, California earthquake. Engineering Geology, 58 ( 3–4 ), 251 – 270. https://doi.org/10.1016/S0013-7952(00)00038-7 | |
dc.identifier.citedreference | Office for Coastal Management. ( 2016 ). 2002/2003 IfSAR data for Southern California: Digital elevation model (NAVD88). Charleston, SC: NOAA National Centers for Environmental Information. https://inport.nmfs.noaa.gov/inport/item/48381 | |
dc.identifier.citedreference | Prothero, D., & Vance, E. ( 1996 ). Magnetostratigraphy of the upper middle Eocene Coldwater Sandstone, central Ventura County, California. In D. Protherno, & R. Emry (Eds.), The terrestrial Eocene‐Oligocene transition in North America (pp. 155 – 170 ). Cambridge, U.K.: Cambridge University Press. | |
dc.identifier.citedreference | Riebe, C. S., Hahm, W. J., & Brantley, S. L. ( 2017 ). Controls on deep critical zone architecture: A historical review and four testable hypotheses. Earth Surface Processes and Landforms, 42 ( 1 ), 128 – 156. https://doi.org/10.1002/esp.4052 | |
dc.identifier.citedreference | Rockwell, T. ( 1988 ). Neotectonics of the San Cayetano fault, Transverse Ranges, California. Geological Society of America Bulletin, 100, 500 – 513. https://doi.org/10.1130/0016-7606(1988)100<0500:notscf>2.3.co;2 | |
dc.identifier.citedreference | Roering, J. J., Kirchner, J. W., & Dietrich, W. E. ( 1999 ). Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology. Water Resources Research, 35 ( 3 ), 853 – 870. https://doi.org/10.1029/1998WR900090 | |
dc.identifier.citedreference | Roering, J. J., Perron, J. T., & Kirchner, J. W. ( 2007 ). Functional relationships between denudation and hillslope form and relief. Earth and Planetary Science Letters, 264 ( 1–2 ), 245 – 258. https://doi.org/10.1016/j.epsl.2007.09.035 | |
dc.identifier.citedreference | Roy, S. G., Koons, P. O., Upton, P., & Tucker, G. E. ( 2015 ). The influence of crustal strength fields on the patterns and rates of fluvial incision. Journal of Geophysical Research: Earth Surface, 120, 275 – 299. https://doi.org/10.1002/2015JF003602 | |
dc.identifier.citedreference | Sarma, S. K. ( 1981 ). Seismic displacement analysis of earth dams. Journal of the Soil Mechanics and Foundations Division, 107 ( 2 ), 1735 – 1739. | |
dc.identifier.citedreference | Scheingross, J. S., Minchew, B. M., Mackey, B. H., Simons, M., Lamb, M. P., & Hensley, S. ( 2013 ). Fault‐zone controls on the spatial distribution of slow‐moving landslides. Geological Society of America Bulletin, 125 ( 3/4 ), 473 – 489. https://doi.org/10.1130/B30719.1 | |
dc.identifier.citedreference | Schmidt, K. M., & Montgomery, D. R. ( 1995 ). Limits to relief. Science, 270 ( 5236 ), 617 – 620. https://doi.org/10.1126/science.270.5236.617 | |
dc.identifier.citedreference | Selby, M. J. ( 1980 ). A rock mass strength classification for geomorphic purposes: With tests from Antarctica and New Zealand. Zeitschrift für Geomorphologie, 24, 31 – 51. | |
dc.identifier.citedreference | Selby, M. J. ( 1993 ). Hillslope materials and processes. Oxford: Oxford University Press. | |
dc.identifier.citedreference | Sklar, L. S., & Dietrich, W. E. ( 2001 ). Sediment and rock strength controls on river incision into bedrock. Geology, 29 ( 12 ), 1087 – 1090. https://doi.org/10.1130/0091-7613(2001)029<1087:SARSCO>2.0.CO | |
dc.identifier.citedreference | Stock, J., & Dietrich, W. E. ( 2003 ). Valley incision by debris flows: Evidence of a topographic signature. Water Resources Research, 39 ( 4 ), 1089. https://doi.org/10.1029/2001WR001057 | |
dc.identifier.citedreference | Tarboton, D., Bras, R., & Rodriguez‐Iturbe, I. ( 1991 ). On the extraction of channel networks from digital elevation data. Hydrological Processes, 5 ( 1 ), 81 – 100. https://doi.org/10.1002/hyp.3360050107 | |
dc.identifier.citedreference | U.S. Geological Survey. ( 1994 ). Advanced National Seismic System (ANSS), ShakeMap, Global Region, Maps of ground shaking and intensity for event 19940117123055, Northridge, California, v1. https://earthquake.usgs.gov/earthquakes/eventpage/ci3144585/shakemap/intensity | |
dc.identifier.citedreference | U.S. Geological Survey (and California Geological Survey). ( 2006 ). Quaternary fault and fold database for the United States, from USGS web site: http//earthquake.usgs.gov/hazards/qfaults | |
dc.identifier.citedreference | Whipple, K. X., Kirby, E., & Brocklehurst, S. H. ( 1999 ). Geomorphic limits to climate‐induced increases in topographic relief. Nature, 401, 39 – 43. https://doi.org/10.1038/43375 | |
dc.identifier.citedreference | Wieczorek, G. F., Wilson, R. C., & Harp, E. L. ( 1985 ). Map showing slope stability during earthquakes in San Mateo County, California (Map no 1257‐E, scale 1:62,500). Reston, VA: U.S. Geological Survey. | |
dc.identifier.citedreference | Willett, S. D., & Brandon, M. T. ( 2002 ). On steady state in mountain belts. Geology, 30 ( 2 ), 175 – 178. https://doi.org/10.1130/0091-7613(2002)030<0175 | |
dc.identifier.citedreference | Worden, R. H., & Burley, S. D. ( 2003 ). Sandstone diagenesis: The evolution of sand to stone. In Sandstone Diagenesis: Recent and Ancient (pp. 3 – 44 ). Malden, MA: Blackwell Publishing. | |
dc.identifier.citedreference | Wright, T. L. ( 1991 ). Structural geology and tectonic evolution of the Los Angeles Basin, California. In K. T. Biddle (Ed.), Active margins basins (pp. 35 – 135 ). Tulsa, OK: American Association of Petroleum Geologists Memoir 52. | |
dc.identifier.citedreference | Yeats, R. S., Huftile, G. J., & Stitt, L. T. ( 1994 ). Late Cenozoic tectonics of the east Ventura basin, Transverse Ranges, California. American Association of Petroleum Geologists Bulletin, 78. https://doi.org/10.1306/A25FE42D-171B-11D7-8645000102C1865D | |
dc.identifier.citedreference | Yeats, R. S., Mcdougal, J. W., & Stitt, L. T. ( 1986 ). Cenozoic structure of the Val Verde 7 1/2‐minute quadrangle and south half of the Whitaker Peak 7 1/2‐minute quadrangle California (United States Geological Survey Open File Report 85‐587, p. 24). Reston, VA | |
dc.identifier.citedreference | Atwater, T. M. ( 1998 ). Plate tectonic history of southern California with emphasis on the western Transverse Ranges and northern Channel Islands. In P. W. Weigand (Ed.), Contributions to the geology of the Northern Channel Islands, Southern California (pp. 1 – 8 ). Pacific Section: American Association of Petroleum Geologists. | |
dc.identifier.citedreference | Boggs Jr., S. ( 2011 ). Principles of sedimentology and stratigraphy. London, UK: Pearson. | |
dc.identifier.citedreference | Bramlette, M. N. ( 1946 ). The Monterey Formation of California and the origin of its siliceous rocks (Report 212). Washington, DC: US Government Printing Office. | |
dc.identifier.citedreference | Bursztyn, N., Pederson, J. L., Tressler, C., Mackley, R. D., & Mitchell, K. J. ( 2015 ). Rock strength along a fluvial transect of the Colorado Plateau—Quantifying a fundamental control on geomorphology. Earth and Planetary Science Letters, 429, 90 – 100. https://doi.org/10.1016/j.epsl.2015.07.042 | |
dc.identifier.citedreference | California Department of Conservation. ( 2002a ). Seismic hazard zone report for the Piru 7.5‐minute quadrangle, Ventura County, California. In California Division of Mines and Geology Seismic Hazard Zone Report 074 (Vol. 54 ). Sacramento, CA. https://gmw.conservation.ca.gov/SHP/EZRIM/Reports/SHZR/SHZR_074_Piru.pdf | |
dc.identifier.citedreference | California Department of Conservation. ( 2002b ). Seismic hazard zone report for the Val Verde 7.5‐minute quadrangle, Los Angeles and Ventura Counties, California. In California Division of Mines and Geology Seismic Hazard Zone Report 076 (Vol. 52, pp. 1 – 49 ). Sacramento, CA. | |
dc.identifier.citedreference | California Department of Conservation. ( 2018 ). Borehole database. Sacramento, CA: California Geological Survey. https://www.conservation.ca.gov/cgs/maps-data/borehole-database | |
dc.identifier.citedreference | Collins, B. D., & Sitar, N. ( 2008 ). Processes of coastal bluff erosion in weakly lithified sands, Pacifica, California, USA. Geomorphology, 97 ( 3–4 ), 483 – 501. https://doi.org/10.1016/j.geomorph.2007.09.004 | |
dc.identifier.citedreference | Culmann, C. ( 1875 ). Die Graphische Statik. Zurich: Meyer and Zeller. | |
dc.identifier.citedreference | Davis, W. M. ( 1899 ). The geographical cycle. The Geographical Journal, 14 ( 5 ), 481 – 504. https://doi.org/10.2307/1774538 | |
dc.identifier.citedreference | DeVecchio, D. E., Heermance, R. V., Fuchs, M., & Owen, L. a. ( 2012 ). Climate‐controlled landscape evolution in the Western Transverse Ranges, California: Insights from Quaternary geochronology of the Saugus Formation and strath terrace flights. Lithosphere, 4, 110 – 130. https://doi.org/10.1130/L176.1 | |
dc.identifier.citedreference | Dibblee, T. W. ( 1991 ). Geologic map of the Piru Quadrangle, Ventura County, California (Map DF‐34, scale 1:24,000). Santa Barbara, CA: Dibblee Geological Foundation. | |
dc.identifier.citedreference | Dibblee, T. W. ( 1993 ). Geologic map of the Val Verde Quadrangle, Los Angeles and Ventura counties, California (Map DF‐50, scale 1:24,000). Santa Barbara, CA: Dibblee Geological Foundation. | |
dc.identifier.citedreference | Dibblee, T. W. ( 1996 ). Geologic map of the Newhall Quadrangle (Map DF‐56, scale 1:24,000). Santa Barbara, CA: Dibblee Geological Foundation. | |
dc.identifier.citedreference | Dibblee, T. W., & Ehrenspeck, H. E. ( 1996 ). Geologic map of the Cobblestone Mountain Quadrangle, Ventura and Los Angeles counties, California (Map DF‐62, scale 1:24,000). Santa Barbara, CA: Dibblee Geological Foundation. | |
dc.identifier.citedreference | Dibblee, T. W., & Ehrenspeck, H. E. ( 1997 ). Geologic map of the Whitaker Peak quadrangle, Los Angeles and Ventura counties, California (Map DF‐63, scale 1:24,000). Santa Barbara, CA: Dibblee Geological Foundation. | |
dc.identifier.citedreference | DiBiase, R. A., Rossi, M. W., & Neely, A. B. ( 2018 ). Fracture density and grain size controls on the relief structure of bedrock landscapes. Geology, 46 ( 5 ), 399 – 402. https://doi.org/10.1130/G40006.1 | |
dc.identifier.citedreference | Dietrich, W. E., Bellugi, D. G., Heimsath, A. M., Roering, J. J., Sklar, L. S., & Stock, J. D. ( 2003 ). Geomorphic transport laws for predicting landscape form and dynamics. Geophysical Monograph, 135 ( D24 ), 1 – 30. https://doi.org/10.1029/135GM09 | |
dc.identifier.citedreference | Dolan, J. F., & Rockwell, T. K. ( 2001 ). Paleoseismologic evidence for a very large (Mw >7), Post‐A.D. 1660 surface rupture on the Eastern San Cayetano fault, Ventura county, California: Was this the elusive source of the damaging 21 December 1812 earthquake? Bulletin of the Seismological Society of America, 91 ( 6 ), 1417 – 1432. https://doi.org/10.1785/0120000602 | |
dc.identifier.citedreference | Dolan, J. F., Sieh, K., Rockwell, T. K., Yeats, R. S., Shaw, J. H., Suppe, J., Huftile, G. J., & Gath, E. M. ( 1995 ). Prospects for larger or more frequent earthquakes in the Los Angeles metropolitan region. Science, 267 ( 5195 ), 199 – 205. https://doi.org/10.1126/science.267.5195.199 | |
dc.identifier.citedreference | Dreyfus, D., Rathje, E. M., & Jibson, R. W. ( 2013 ). The influence of different simplified sliding‐block models and input parameters on regional predictions of seismic landslides triggered by the Northridge earthquake. Engineering Geology, 163, 41 – 54. https://doi.org/10.1016/j.enggeo.2013.05.015 | |
dc.identifier.citedreference | Earle, P. S., Wald, D. J., Jaiswal, K. S., Allen, T. I., Marano, K. D., Hotovec, A. J., Hearne, M. G., & Fee, J. M. ( 2009 ). Prompt Assessment of Global Earthquakes for Response (PAGER): A system for rapidly determining the impact of global earthquakes worldwide. In U. S. Geological Survey Open‐File Report 2009‐1131 (pp. 1 – 15 ). Reston, VA. | |
dc.identifier.citedreference | Ehlers, T. A. ( 2005 ). Crustal thermal processes and the interpretation of thermochronometer data. Reviews in Mineralogy and Geochemistry, 58 ( 1 ), 315 – 350. https://doi.org/10.2138/rmg.2005.58.12 | |
dc.identifier.citedreference | Farley, K. A. ( 2002 ). (U‐Th)/He dating: Techniques, calibrations, and applications. Reviews in Mineralogy and Geochemistry, 47 ( 1 ), 819 – 844. https://doi.org/10.2138/rmg.2002.47.18 | |
dc.identifier.citedreference | Flowers, R. M., Ketcham, R. A., Shuster, D. L., & Farley, K. A. ( 2009 ). Apatite (U‐Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochimica et Cosmochimica Acta, 73 ( 8 ), 2347 – 2365. https://doi.org/10.1016/j.gca.2009.01.015 | |
dc.identifier.citedreference | Forte, A. M., Yanites, B. J., & Whipple, K. X. ( 2016 ). Complexities of landscape evolution during incision through layered stratigraphy with contrasts in rock strength. Earth Surface Processes and Landforms, 41 ( 12 ), 1736 – 1757. https://doi.org/10.1002/esp.3947 | |
dc.identifier.citedreference | Frattini, P., & Crosta, G. B. ( 2013 ). The role of material properties and landscape morphology on landslide size distributions. Earth and Planetary Science Letters, 361, 310 – 319. https://doi.org/10.1016/j.epsl.2012.10.029 | |
dc.identifier.citedreference | Gallen, S. F. ( 2018 ). Lithologic controls on landscape dynamics and aquatic species evolution in post‐orogenic mountains. Earth and Planetary Science Letters, 493, 150 – 160. https://doi.org/10.1016/j.epsl.2018.04.029 | |
dc.identifier.citedreference | Gallen, S. F., Clark, M. K., & Godt, J. W. ( 2015 ). Coseismic landslides reveal near‐surface rock strength in a high relief, tectonically active setting. Geology, 43 ( 1 ), 11 – 14. https://doi.org/10.1130/G36080.1 | |
dc.identifier.citedreference | Gallen, S. F., Clark, M. K., Godt, J. W., Roback, K., & Niemi, N. A. ( 2017 ). Application and evaluation of a rapid response earthquake‐triggered landslide model to the 25 April 2015 Mw 7.8 Gorkha earthquake, Nepal. Tectonophysics, 714, 173 – 187. https://doi.org/10.1016/j.tecto.2016.10.031 | |
dc.identifier.citedreference | Gilbert, G. K. ( 1877 ). Report on the geology of the Henry Mountains: Geographical and geological survey of the Rocky Mountain region. Washington, DC: U.S. Government Printing Office. | |
dc.identifier.citedreference | Godt, J. W., Baum, R. L., Savage, W. Z., Salciarini, D., Schulz, W. H., & Harp, E. L. ( 2008 ). Transient deterministic shallow landslide modeling: Requirements for susceptibility and hazard assessments in a GIS framework. Engineering Geology, 102 ( 3–4 ), 214 – 226. https://doi.org/10.1016/j.enggeo.2008.03.019 | |
dc.identifier.citedreference | Gordon, G. ( 2014 ). Stratigraphic evolution and architectural analysis of structurally confined submarine fans: A tripartite outcrop‐based study (Doctoral dissertation). Golden, CO: Colorado School of Mines. Retrieved from Mountain Scholar ( https://mountainscholar.org/handle/11124/278 ) | |
dc.identifier.citedreference | Grieve, S. W. D., Mudd, S. M., & Hurst, M. D. ( 2016 ). How long is a hillslope? Earth Surface Processes and Landforms, 41 ( 8 ), 1039 – 1054. https://doi.org/10.1002/esp.3884 | |
dc.identifier.citedreference | Hack, J. T. ( 1975 ). Dynamic equilibrium and landscape evolution. In W. N. Melhorn & R. C. Flemal (Eds.), Theories of landscape evolution (pp. 87 – 102 ). Boston, MA. | |
dc.identifier.citedreference | Harp, E. L., & Jibson, R. W. ( 1995 ). Inventory of landslides triggered by the 1994 Northridge, California earthquake. In U. S. Geological Survey Open‐File Report 95‐213 (pp. 1 – 18 ). Reston, VA. | |
dc.identifier.citedreference | Harp, E. L., & Jibson, R. W. ( 1996 ). Landslides triggered by the 1994 Northridge, California, earthquake. Bulletin of the Seismological Society of America, 86 ( 1B ), 319 – 332. https://doi.org/10.3133/ofr95213 | |
dc.identifier.citedreference | Hoek, E., & Brown, E. ( 1980 ). Empirical strength criterion for rock masses. Journal of the Geotechnical Engineering Division, 106. https://doi.org/10.1016/0148-9062(81)90766-X | |
dc.identifier.citedreference | Hoek, E., & Brown, E. ( 1997 ). Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences, 34 ( 8 ), 1165 – 1186. https://doi.org/10.1016/S1365-1609(97)80069-X | |
dc.identifier.citedreference | Hornafius, J. S., Luyendyk, B. P., Terres, R. R., & Kamerling, M. J. ( 1986 ). Timing and extent of Neogene tectonic rotation in the western Transverse Ranges, California (USA). Geological Society of America Bulletin, 97 ( 12 ), 1476 – 1487. https://doi.org/10.1130/0016-7606(1986)97<1476:TAEONT>2.0.CO;2 | |
dc.identifier.citedreference | Hovius, N., Stark, C. P., Tutton, M. A., & Abbott, L. D. ( 1998 ). Landslide‐driven drainage network evolution in a pre‐steady‐state mountain belt: Finisterre Mountains, Papua New Guinea. Geology, 26 ( 12 ), 1071 – 1074. https://doi.org/10.1130/0091-7613(1998)026<1071:LDDNEI>2.3.CO;2 | |
dc.identifier.citedreference | Huftile, G. J., & Yeats, R. S. ( 1996 ). Deformation rates across the Placerita (Northridge Mw = 6.7 aftershock zone) and Hopper Canyon segments of the western transverse ranges deformation belt. Bulletin of the Seismological Society of America, 86 ( 1B ), 3 – 18. | |
dc.identifier.citedreference | Jibson, R. W. ( 1993 ). Predicting earthquake‐induced landslide displacements using Newmark’s sliding block analysis. Transportation Research Record, 1411, 9 – 17. | |
dc.identifier.citedreference | Jibson, R. W. ( 2007 ). Regression models for estimating coseismic landslide displacement. Engineering Geology, 91 ( 2–4 ), 209 – 218. https://doi.org/10.1016/j.enggeo.2007.01.013 | |
dc.identifier.citedreference | Jibson, R. W., Harp, E. L., & Michael, J. A. ( 2000 ). A method for producing digital probabilistic seismic landslide hazard maps. Engineering Geology, 58 ( 3–4 ), 271 – 289. https://doi.org/10.1016/S0013-7952(00)00039-9 | |
dc.identifier.citedreference | Keefer, D. K. ( 1994 ). Landslides caused by earthquakes. Bulletin of the Seismological Society of America, 95, 406 – 421. https://doi.org/10.1130/0016-7606(1984)95<406:lcbe>2.0.co;2 | |
dc.identifier.citedreference | Korup, O. ( 2004 ). Geomorphic implications of fault zone weakening: Slope instability along the alpine fault, South Westland to Fiordland. New Zealand Journal of Geology and Geophysics, 47, 257 – 267. https://doi.org/10.1080/00288306.2004.9515052 | |
dc.identifier.citedreference | Korup, O. ( 2008 ). Rock type leaves topographic signature in landslide‐dominated mountain ranges. Geophysical Research Letters, 35, L11402. https://doi.org/10.1029/2008GL034157 | |
dc.identifier.citedreference | Larsen, I. J., Montgomery, D. R., & Korup, O. ( 2010 ). Landslide erosion controlled by hillslope material. Nature Geoscience, 3 ( 4 ), 247 – 251. https://doi.org/10.1038/ngeo776 | |
dc.identifier.citedreference | Levi, S., & Yeats, R. S. ( 1993 ). Paleomagnetic constraints on the initiation of uplift on the Santa Susana Fault, Western Transverse Ranges, California. Tectonics, 12 ( 3 ), 688 – 702. https://doi.org/10.1029/93tc00133 | |
dc.identifier.citedreference | Ling, H. I., Mohri, Y., & Kawabata, T. ( 1999 ). Seismic analysis of sliding wedge: Extended Francais Culmann’s analysis. Soil Dynamics and Earthquake Engineering, 18, 387 – 393. https://doi.org/10.1016/s0267-7261(99)00005-6 | |
dc.identifier.citedreference | Los Angeles Almanac. Monthly Precipitation ( 2019 ) Retrieved from http://www.laalmanac.com/weather/we08aa.php | |
dc.identifier.citedreference | Lu, N., & Godt, J. W. ( 2013 ). Failure surface based stability analysis. In Hillslope hydrology and stability ( 1st ed., pp. 313 – 363 ). Cambridge, UK: Cambridge University Press. | |
dc.identifier.citedreference | Marc, O., & Hovius, N. ( 2015 ). Amalgamation in landslide maps: Effects and automatic detection. Natural Hazards and Earth System Sciences, 15 ( 4 ), 723 – 733. https://doi.org/10.5194/nhess-15-723-2015 | |
dc.identifier.citedreference | Marc, O., Stumpf, A., Malet, J.‐P., Gosset, M., Uchida, T., & Chiang, S.‐H. ( 2018 ). Initial insights from a global database of rainfall‐induced landslide inventories: The weak influence of slope and strong influence of total storm rainfall. Earth Surface Dynamics, 6 ( 4 ), 903 – 922. https://doi.org/10.5194/esurf-6-903-2018 | |
dc.identifier.citedreference | Molnar, P., Anderson, R. S., & Anderson, S. P. ( 2007 ). Tectonics, fracturing of rock, and erosion. Journal of Geophysical Research, 112, F03014. https://doi.org/10.1029/2005JF000433 | |
dc.identifier.citedreference | Montgomery, D. R. ( 2001 ). Slope distributions, threshold hillslopes, and steady‐state topography. American Journal of Science, 301, 432 – 454. https://doi.org/10.2475/ajs.301.4-5.432 | |
dc.identifier.citedreference | Montgomery, D. R., & Brandon, M. T. ( 2002 ). Topographic controls on erosion rates in tectonically active mountain ranges. Earth and Planetary Science Letters, 201 ( 3–4 ), 481 – 489. https://doi.org/10.1016/S0012-821X(02)00725-2 | |
dc.identifier.citedreference | Montgomery, D. R., & Foufoula‐Georgiou, E. ( 1993 ). Channel network source representation using digital elevation models. Water Resources Research, 29 ( 12 ), 3925 – 3934. https://doi.org/10.1029/93WR02463 | |
dc.identifier.citedreference | Namson, J. S., & Davis, T. L. ( 1988 ). Structural transect of the western Transverse Ranges, California: Implications for lithospheric kinematics and seismic risk evaluation. Geology, 16, 675 – 679. https://doi.org/10.1130/0091-7613(1988)016<0675:stotwt>2.3.co;2 | |
dc.identifier.citedreference | Natural Resources Conservation Service, United States Department of Agriculture. Web soil survey. https://websoilsurvey.sc.egov.usda.gov/ | |
dc.identifier.citedreference | Nicholson, C., Sorlien, C. C., Atwater, T., Crowell, J. C., & Luyendyk, B. P. ( 1994 ). Microplate capture, rotation of the western Transverse Ranges, and initiation of the San Andreas transform as a low‐angle fault system. Geology, 22 ( 6 ), 491 – 495. https://doi.org/10.1130/0091-7613(1994)022<0491:MCROTW>2.3.CO;2 | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.