Show simple item record

IL‐1β prevents ILC2 expansion, type 2 cytokine secretion, and mucus metaplasia in response to early‐life rhinovirus infection in mice

dc.contributor.authorHan, Mingyuan
dc.contributor.authorIshikawa, Tomoko
dc.contributor.authorBermick, Jennifer R.
dc.contributor.authorRajput, Charu
dc.contributor.authorLei, Jing
dc.contributor.authorGoldsmith, Adam M.
dc.contributor.authorJarman, Caitlin R.
dc.contributor.authorLee, Julie
dc.contributor.authorBentley, J. Kelley
dc.contributor.authorHershenson, Marc B.
dc.date.accessioned2020-08-10T20:54:59Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-08-10T20:54:59Z
dc.date.issued2020-08
dc.identifier.citationHan, Mingyuan; Ishikawa, Tomoko; Bermick, Jennifer R.; Rajput, Charu; Lei, Jing; Goldsmith, Adam M.; Jarman, Caitlin R.; Lee, Julie; Bentley, J. Kelley; Hershenson, Marc B. (2020). "IL‐1β prevents ILC2 expansion, type 2 cytokine secretion, and mucus metaplasia in response to early‐life rhinovirus infection in mice." Allergy 75(8): 2001-2015.
dc.identifier.issn0105-4538
dc.identifier.issn1398-9995
dc.identifier.urihttps://hdl.handle.net/2027.42/156197
dc.description.abstractBackgroundEarly‐life wheezing‐associated respiratory infection with human rhinovirus (RV) is associated with asthma development. RV infection of 6‐day‐old immature mice causes mucous metaplasia and airway hyperresponsiveness which is associated with the expansion of IL‐13‐producing type 2 innate lymphoid cells (ILC2s) and dependent on IL‐25 and IL‐33. We examined regulation of this asthma‐like phenotype by IL‐1β.MethodsSix‐day‐old wild‐type or NRLP3−/− mice were inoculated with sham or RV‐A1B. Selected mice were treated with IL‐1 receptor antagonist (IL‐1RA), anti‐IL‐1β, or recombinant IL‐1β.ResultsRhinovirus infection induced Il25, Il33, Il4, Il5, Il13, muc5ac, and gob5 mRNA expression, ILC2 expansion, mucus metaplasia, and airway hyperresponsiveness. RV also induced lung mRNA and protein expression of pro‐IL‐1β and NLRP3 as well as cleavage of caspase‐1 and pro‐IL‐1β, indicating inflammasome priming and activation. Lung macrophages were a major source of IL‐1β. Inhibition of IL‐1β signaling with IL‐1RA, anti‐IL‐1β, or NLRP3 KO increased RV‐induced type 2 cytokine immune responses, ILC2 number, and mucus metaplasia, while decreasing IL‐17 mRNA expression. Treatment with IL‐1β had the opposite effect, decreasing IL‐25, IL‐33, and mucous metaplasia while increasing IL‐17 expression. IL‐1β and IL‐17 each suppressed Il25, Il33, and muc5ac mRNA expression in cultured airway epithelial cells. Finally, RV‐infected 6‐day‐old mice showed reduced IL‐1β mRNA and protein expression compared to mature mice.ConclusionMacrophage IL‐1β limits type 2 inflammation and mucous metaplasia following RV infection by suppressing epithelial cell innate cytokine expression. Reduced IL‐1β production in immature animals provides a mechanism permitting asthma development after early‐life viral infection.Early‐life rhinovirus infection increases epithelial expression of the innate cytokines IL‐25 and IL‐33, expands (type 2 innate lymphoid cells) ILC2s, and enhances development of an asthma‐like phenotype. Rhinovirus causes macrophage (NLR family, pyrin domain containing 3) NLRP3 inflammasome activation and bioactive IL‐1β production. IL‐1β production, which is deficient in immature mice, attenuates production of IL‐25 and IL‐33, thereby protecting against rhinovirus‐induced asthma development.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherIL‐1β
dc.subject.othertype 2 innate lymphoid cell
dc.subject.otherasthma
dc.subject.otherIL‐33
dc.subject.otherIL‐25
dc.titleIL‐1β prevents ILC2 expansion, type 2 cytokine secretion, and mucus metaplasia in response to early‐life rhinovirus infection in mice
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156197/3/all14241_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156197/2/all14241.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156197/1/all14241-sup-0001-FigS1.pdfen_US
dc.identifier.doi10.1111/all.14241
dc.identifier.sourceAllergy
dc.identifier.citedreferenceSchneider D, Hong JY, Popova AP, et al. Neonatal rhinovirus infection induces mucous metaplasia and airways hyperresponsiveness. J Immunol. 2012; 188 ( 6 ): 2894 ‐ 2904.
dc.identifier.citedreferenceSutton C, Brereton C, Keogh B, Mills KHG, Lavelle EC. A crucial role for interleukin (IL)‐1 in the induction of IL‐17–producing T cells that mediate autoimmune encephalomyelitis. J Exp Med. 2006; 203 ( 7 ): 1685 ‐ 1691.
dc.identifier.citedreferenceKim HY, Lee HJ, Chang Y‐J, et al. Interleukin‐17–producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity‐associated airway hyperreactivity. Nature Med. 2013; 20: 54.
dc.identifier.citedreferenceMortha A, Chudnovskiy A, Hashimoto D, et al. Microbiota‐dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science. 2014; 343 ( 6178 ): 1249288.
dc.identifier.citedreferenceSeo S‐U, Kuffa P, Kitamoto S, et al. Intestinal macrophages arising from CCR2+ monocytes control pathogen infection by activating innate lymphoid cells. Nature Commun. 2015; 6: 8010.
dc.identifier.citedreferenceKobayashi T, Iijima K, Checkel JL, Kita H. IL‐1 family cytokines drive Th2 and Th17 cells to innocuous airborne antigens. Am J Respir Cell Mol Biol. 2013; 49 ( 6 ): 989 ‐ 998.
dc.identifier.citedreferenceMahmutovic Persson I, Menzel M, Ramu S, Cerps S, Akbarshahi H, Uller L. IL‐1β mediates lung neutrophilia and IL‐33 expression in a mouse model of viral‐induced asthma exacerbation. Respir Res. 2018; 19 ( 1 ): 16.
dc.identifier.citedreferenceOhne Y, Silver JS, Thompson‐Snipes L, et al. IL‐1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Nature Immunol. 2016; 17: 646.
dc.identifier.citedreferenceBal SM, Bernink JH, Nagasawa M, et al. IL‐1β, IL‐4 and IL‐12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nature Immunol. 2016; 17: 636.
dc.identifier.citedreferenceNewcomb DC, Sajjan U, Nanua S, et al. Phosphatidylinositol 3‐kinase is required for rhinovirus‐induced airway epithelial cell interleukin‐8 expression. J Biol Chem. 2005; 280 ( 44 ): 36952 ‐ 36961.
dc.identifier.citedreferenceNewcomb DC, Sajjan US, Nagarkar DR, et al. Human rhinovirus 1B exposure induces phosphatidylinositol 3‐kinase‐dependent airway inflammation in mice. Am J Respir Crit Care Med. 2008; 177 ( 10 ): 1111 ‐ 1121.
dc.identifier.citedreferenceFiala M, Kenny GE. Enhancement of rhinovirus plaque formation in human heteroploid cell cultures by magnesium and calcium. J Bacteriol. 1966; 92 ( 6 ): 1710 ‐ 1715.
dc.identifier.citedreferenceSeo SU, Kamada N, Munoz‐Planillo R, et al. Distinct commensals induce interleukin‐1 beta via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity. 2015; 42 ( 4 ): 744 ‐ 755.
dc.identifier.citedreferenceNagarkar DR, Bowman ER, Schneider D, et al. Rhinovirus infection of allergen‐sensitized and ‐challenged mice induces eotaxin release from functionally polarized macrophages. J Immunol. 2010; 185: 2525 ‐ 2535.
dc.identifier.citedreferenceSchneider D, Ganesan S, Comstock AT, et al. Increased cytokine response of rhinovirus‐infected airway epithelial cells in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010; 182: 332 ‐ 340.
dc.identifier.citedreferenceBernink JH, Ohne Y, Teunissen MBM, et al. c‐Kit‐positive ILC2s exhibit an ILC3‐like signature that may contribute to IL‐17‐mediated pathologies. Nature Immunol. 2019; 20 ( 8 ): 992 ‐ 1003.
dc.identifier.citedreferenceKotaniemi‐Syrjanen A, Vainionpaa R, Reijonen TM, Waris M, Korhonen K, Korppi M. Rhinovirus‐induced wheezing in infancy–the first sign of childhood asthma? J Allergy Clin Immunol. 2003; 111 ( 1 ): 66 ‐ 71.
dc.identifier.citedreferenceLemanske RF Jr, Jackson DJ, Gangnon RE, et al. Rhinovirus illnesses during infancy predict subsequent childhood wheezing. J Allergy Clin Immunol. 2005; 116 ( 3 ): 571 ‐ 577.
dc.identifier.citedreferenceJackson DJ, Gangnon RE, Evans MD, et al. Wheezing rhinovirus illnesses in early life predict asthma development in high‐risk children. Am J Respir Crit Care Med. 2008; 178 ( 7 ): 667 ‐ 672.
dc.identifier.citedreferenceTaussig LM, Wright AL, Holberg CJ, Halonen M, Morgan WJ, Martinez FD. Tucson children’s respiratory study: 1980 to present. J Allergy Clin Immunol. 2003; 111 ( 4 ): 661 ‐ 675.
dc.identifier.citedreferenceZaiss MM, Maslowski KM, Mosconi I, Guenat N, Marsland BJ, Harris NL. IL‐1β suppresses innate IL‐25 and IL‐33 production and maintains helminth chronicity. PLoS Pathogen. 2013; 9 ( 8 ): e1003531.
dc.identifier.citedreferenceSchnyder‐Candrian S, Togbe D, Couillin I, et al. Interleukin‐17 is a negative regulator of established allergic asthma. J Exp Med. 2006; 203 ( 12 ): 2715 ‐ 2725.
dc.identifier.citedreferenceSutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KHG. Interleukin‐1 and IL‐23 induce innate IL‐17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity. 2009; 31 ( 2 ): 331 ‐ 341.
dc.identifier.citedreferenceRajput C, Han M, Bentley JK, et al. Enterovirus D68 infection induces IL‐17‐dependent neutrophilic airway inflammation and hyperresponsiveness. JCI Insight 2018; 3 ( 16 ): e121882.
dc.identifier.citedreferenceChung Y, Hong JY, Lei J, Chen Q, Bentley JK, Hershenson MB. Rhinovirus infection induces interleukin‐13 production from CD11b‐positive, M2‐polarized exudative macrophages. Am J Respir Cell Mol Biol. 2015; 52 ( 2 ): 205 ‐ 216.
dc.identifier.citedreferenceLin KL, Suzuki Y, Nakano H, Ramsburg E, Gunn MD. CCR2+ Monocyte‐derived dendritic cells and exudate macrophages produce influenza‐induced pulmonary immune pathology and mortality. J Immunol. 2008; 180 ( 4 ): 2562 ‐ 2572.
dc.identifier.citedreferenceDuan M, Li WC, Vlahos R, Maxwell MJ, Anderson GP, Hibbs ML. Distinct macrophage subpopulations characterize acute infection and chronic inflammatory lung disease. J Immunol. 2012; 189 ( 2 ): 946 ‐ 955.
dc.identifier.citedreferenceIchinohe T, Lee HK, Ogura Y, Flavell R, Iwasaki A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J Exp Med. 2009; 206 ( 1 ): 79 ‐ 87.
dc.identifier.citedreferenceBentley JK, Sajjan US, Dzaman MB, et al. Rhinovirus colocalizes with CD68‐ and CD11b‐positive macrophages following experimental infection in humans. J Allergy Clin Immunol. 2013; 132 ( 3 ): 758 ‐ 761.
dc.identifier.citedreferenceRubner FJ, Jackson DJ, Evans MD, et al. Early life rhinovirus wheezing, allergic sensitization, and asthma risk at adolescence. J Allergy Clin Immunol. 2017; 139 ( 2 ): 501 ‐ 507.
dc.identifier.citedreferencevan Meel ER, den Dekker HT, Elbert NJ, et al. A population‐based prospective cohort study examining the influence of early‐life respiratory tract infections on school‐age lung function and asthma. Thorax. 2018; 73 ( 2 ): 167 ‐ 173.
dc.identifier.citedreferenceMoraes TJ, Sears MR. Lower respiratory infections in early life are linked to later asthma. Thorax. 2018; 73 ( 2 ): 105 ‐ 106.
dc.identifier.citedreferenceMartorano LM, Grayson MH. Respiratory viral infections and atopic development: from possible mechanisms to advances in treatment. Eur J Immunol. 2018; 48 ( 3 ): 407 ‐ 414.
dc.identifier.citedreferenceHasegawa K, Hoptay CE, Harmon B, et al. Association of type 2 cytokines in severe rhinovirus bronchiolitis during infancy with risk of developing asthma: a multicenter prospective study. Allergy. 2019; 74 ( 7 ): 1374 ‐ 1377.
dc.identifier.citedreferenceSchneider D, Hong JY, Popova AP, et al. Neonatal rhinovirus infection induces persistent mucous metaplasia and airways hyperresponsiveness. J Immunol. 2012; 188: 2894 ‐ 2904.
dc.identifier.citedreferenceHan M, Hong JY, Jaipalli S, et al. IFN‐γ blocks development of an asthma phenotype in rhinovirus‐infected baby mice by inhibiting type 2 innate lymphoid cells. Am J Respir Cell Mol Biol. 2017; 56 ( 2 ): 242 ‐ 251.
dc.identifier.citedreferenceRajput C, Cui T, Han MY, et al. ROR alpha‐dependent type 2 innate lymphoid cells are required and sufficient for mucous metaplasia in immature mice. Am J Physiol‐Lung Cell Mol Physiol. 2017; 312 ( 6 ): L983 ‐ L993.
dc.identifier.citedreferenceHong JY, Bentley JK, Chung Y, et al. Neonatal rhinovirus induces mucous metaplasia and airways hyperresponsiveness through IL‐25 and type 2 innate lymphoid cells. J Allergy Clin Immunol. 2014; 134 ( 2 ): 429 ‐ 439.
dc.identifier.citedreferenceHan M, Rajput C, Hong JY, et al. The innate cytokines IL‐25, IL‐33, and TSLP cooperate in the induction of type 2 innate lymphoid cell expansion and mucous metaplasia in rhinovirus‐infected immature mice. J Immunol. 2017; 199 ( 4 ): 1308 ‐ 1318.
dc.identifier.citedreferenceTerajima M, Yamaya M, Sekizawa K, et al. Rhinovirus infection of primary cultures of human tracheal epithelium: role of ICAM‐1 and IL‐1beta. Am J Physiol. 1997; 273 ( 4 Pt 1 ): 749 ‐ 759.
dc.identifier.citedreferencePiper SC, Ferguson J, Kay L, et al. The role of interleukin‐1 and interleukin‐18 in pro‐inflammatory and anti‐viral responses to rhinovirus in primary bronchial epithelial cells. PLoS One. 2013; 8 ( 5 ): e63365.
dc.identifier.citedreferenceSimpson JL, Carroll M, Yang IA, et al. Reduced antiviral interferon production in poorly controlled asthma is associated with neutrophilic inflammation and high‐dose inhaled corticosteroids. Chest. 2016; 149 ( 3 ): 704 ‐ 713.
dc.identifier.citedreferenceProud D, Gwaltney JM, Hendley JO, Dinarello CA, Gillis S, Schleimer RP. Increased levels of interleukin‐1 are detected in nasal secretions of volunteers during experimental rhinovirus colds. J Infect Dis. 1994; 169 ( 5 ): 1007 ‐ 1013.
dc.identifier.citedreferenceYoon HJ, Zhu Z, Gwaltney JM, Elias JA. Rhinovirus regulation of IL‐1 receptor antagonist in vivo and in vitro: a potential mechanism of symptom resolution. J Immunol. 1999; 162 ( 12 ): 7461 ‐ 7469.
dc.identifier.citedreferenceKluijver JD, Grünberg K, Pons D, et al. Interleukin‐1β and interleukin‐1ra levels in nasal lavages during experimental rhinovirus infection in asthmatic and non‐asthmatic subjects. Clin Exp Allergy. 2003; 33 ( 10 ): 1415 ‐ 1418.
dc.identifier.citedreferenceHe Y, Hara H, Núñez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 2016; 41 ( 12 ): 1012 ‐ 1021.
dc.identifier.citedreferenceTriantafilou K, Kar S, van Kuppeveld FJM, Triantafilou M. Rhinovirus‐induced calcium flux triggers NLRP3 and NLRC5 activation in bronchial cells. Am J Respir Cell Mol Biol. 2013; 49 ( 6 ): 923 ‐ 934.
dc.identifier.citedreferenceShi L, Manthei DM, Guadarrama AG, Lenertz LY, Denlinger LC. Rhinovirus‐induced IL‐1β release from bronchial epithelial cells is independent of functional P2X7. Am J Respir Cell Mol Biol. 2012; 47 ( 3 ): 363 ‐ 371.
dc.identifier.citedreferenceHan M, Bentley JK, Rajput C, et al. Inflammasome activation is required for human rhinovirus‐induced airway inflammation in naive and allergen‐sensitized mice. Mucosal Immunol. 2019; 12 ( 4 ): 958 ‐ 968.
dc.identifier.citedreferenceWilson NJ, Boniface K, Chan JR, et al. Development, cytokine profile and function of human interleukin 17–producing helper T cells. Nat Immunol. 2007; 8: 950.
dc.identifier.citedreferenceAcosta‐Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1β and 6 but not transforming growth factor‐β are essential for the differentiation of interleukin 17–producing human T helper cells. Nature Immunol. 2007; 8: 942.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.