Show simple item record

Ultrasonography for chairside evaluation of periodontal structures: A pilot study

dc.contributor.authorTattan, Mustafa
dc.contributor.authorSinjab, Khaled
dc.contributor.authorLee, Eunjee
dc.contributor.authorArnett, Michelle
dc.contributor.authorOh, Tae‐ju
dc.contributor.authorWang, Hom‐lay
dc.contributor.authorChan, Hsun‐liang
dc.contributor.authorKripfgans, Oliver D.
dc.date.accessioned2020-08-10T20:55:16Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-08-10T20:55:16Z
dc.date.issued2020-07
dc.identifier.citationTattan, Mustafa; Sinjab, Khaled; Lee, Eunjee; Arnett, Michelle; Oh, Tae‐ju ; Wang, Hom‐lay ; Chan, Hsun‐liang ; Kripfgans, Oliver D. (2020). "Ultrasonography for chairside evaluation of periodontal structures: A pilot study." Journal of Periodontology 91(7): 890-899.
dc.identifier.issn0022-3492
dc.identifier.issn1943-3670
dc.identifier.urihttps://hdl.handle.net/2027.42/156207
dc.description.abstractBackgroundThe crestal bone level and soft tissue dimension are essential for periodontal diagnosis and phenotype determination; yet, existing measurement methods have limitations. The aim of this clinical study was to evaluate the correlation and accuracy of ultrasound in measuring periodontal dimensions, compared to direct clinical and cone- beam computed tomography (CBCT) methods.MethodsA 24- MHz ultrasound probe prototype, specifically designed for intraoral use, was employed. Periodontal soft tissue dimensions and crestal bone levels were measured at 40 teeth and 20 single missing tooth gaps from 20 patients scheduled to receive a dental implant surgery. The ultrasound images were interpreted by two calibrated examiners. Inter- rater agreement was calculated by using inter- rater correlation coefficient (ICC). Ultrasound readings were compared with direct clinical and CBCT readings by using ICC and Bland- Altman analysis.ResultsThe following six parameters were measured: 1) interdental papilla height (tooth), 2) mid- facial soft tissue height (tooth), 3) mucosal thickness (tooth), 4) soft tissue height (edentulous ridge), 5) mucosal thickness (edentulous ridge), and 6) crestal bone level (tooth). Intra- examiner calibrations were exercised to achieve an agreement of at least 0.8. ICC between the two readers ranged from 0.482 to 0.881. ICC between ultrasound and direct readings ranged from 0.667 to 0.957. The mean difference in mucosal thickness (tooth) between the ultrasound and direct readings was - 0.015 mm (95% CI: - 0.655 to 0.624 mm) without statistical significance. ICC between ultrasound and CBCT ranged from 0.654 to 0.849 among the measured parameters. The mean differences between ultrasound and CBCT range from - 0.213 to 0.455 mm, without statistical significance.ConclusionUltrasonic imaging can be valuable for accurate and real- time periodontal diagnosis without concerns about ionizing radiation.
dc.publisherWiley Periodicals, Inc.
dc.subject.othercone- beam computed tomography, dental implants, periodontium, ultrasonography
dc.subject.otheralveolar ridge, bone
dc.titleUltrasonography for chairside evaluation of periodontal structures: A pilot study
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156207/2/jper10483_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156207/1/jper10483.pdfen_US
dc.identifier.doi10.1002/JPER.19-0342
dc.identifier.sourceJournal of Periodontology
dc.identifier.citedreferenceBhaskar V, Chan HL, MacEachern M, Kripfgans OD. Updates on ultrasound research in implant dentistry: a systematic review of potential clinical indications. Dentomaxillofac Radiol. 2018; 47: 20180076.
dc.identifier.citedreferenceChan HL, Sinjab K, Li J, Chen Z, Wang HL, Kripfgans OD. Ultrasonography for noninvasive and real- time evaluation of peri- implant tissue dimensions. J Clin Periodontol. 2018; 45: 986 - 995.
dc.identifier.citedreferenceHallgren KA. Computing inter- rater reliability for observational data: an overview and tutorial. Tutor Quant Methods Psychol. 2012; 8: 23 - 34.
dc.identifier.citedreferenceMorgan CJ, Aban I. Methods for evaluating the agreement between diagnostic tests. J Nucl Cardiol. 2016; 23: 511 - 513.
dc.identifier.citedreferenceBland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986; 1: 307 - 310.
dc.identifier.citedreferenceEghbali A, De Bruyn H, Cosyn J, Kerckaert I, Van Hoof T. Ultrasonic assessment of mucosal thickness around implants: validity, reproducibility, and stability of connective tissue grafts at the buccal aspect. Clin Implant Dent Relat Res. 2016; 18: 51 - 61.
dc.identifier.citedreferenceClaffey N, Shanley D. Relationship of gingival thickness and bleeding to loss of probing attachment in shallow sites following nonsurgical periodontal therapy. J Clin Periodontol. 1986; 13: 654 - 657.
dc.identifier.citedreferenceOlsson M, Lindhe J. Periodontal characteristics in individuals with varying form of the upper central incisors. J Clin Periodontol. 1991; 18: 78 - 82.
dc.identifier.citedreferenceChan HL, Chun YH, MacEachern M, Oates TW. Does gingival recession require surgical treatment. Dent Clin North Am. 2015; 59: 981 - 996.
dc.identifier.citedreferenceFu JH, Yeh CY, Chan HL, Tatarakis N, Leong DJ, Wang HL. Tissue biotype and its relation to the underlying bone morphology. J Periodontol. 2010; 81: 569 - 574.
dc.identifier.citedreferenceChao YC, Chang PC, Fu JH, Wang HL, Chan HL. Surgical site assessment for soft tissue management in ridge augmentation procedures. Int J Periodontics Restorative Dent. 2015; 35: e75 - 83.
dc.identifier.citedreferenceFu JH, Lee A, Wang HL. Influence of tissue biotype on implant esthetics. Int J Oral Maxillofac Implants. 2011; 26: 499 - 508.
dc.identifier.citedreferenceLin GH, Chan HL, Wang HL. Effects of currently available surgical and restorative interventions on reducing midfacial mucosal recession of immediately placed single- tooth implants: a systematic review. J Periodontol. 2014; 85: 92 - 102.
dc.identifier.citedreferenceDe Rouck T, Eghbali R, Collys K, De Bruyn H, Cosyn J. The gingival biotype revisited: transparency of the periodontal probe through the gingival margin as a method to discriminate thin from thick gingiva. J Clin Periodontol. 2009; 36: 428 - 433.
dc.identifier.citedreferenceKan JY, Morimoto T, Rungcharassaeng K, Roe P, Smith DH. Gingival biotype assessment in the esthetic zone: visual versus direct measurement. Int J Periodontics Restorative Dent. 2010; 30: 237 - 243.
dc.identifier.citedreferenceTimock AM, Cook V, McDonald T, et al. Accuracy and reliability of buccal bone height and thickness measurements from cone- beam computed tomography imaging. Am J Orthod Dentofacial Orthop. 2011; 140: 734 - 744.
dc.identifier.citedreferenceBraut V, Bornstein MM, Belser U, Buser D. Thickness of the anterior maxillary facial bone wall- a retrospective radiographic study using cone beam computed tomography. Int J Periodontics Restorative Dent. 2011; 31: 125 - 131.
dc.identifier.citedreferenceVera C, De Kok IJ, Reinhold D, et al. Evaluation of buccal alveolar bone dimension of maxillary anterior and premolar teeth: a cone beam computed tomography investigation. Int J Oral Maxillofac Implants. 2012; 27: 1514 - 1519.
dc.identifier.citedreferenceWang HM, Shen JW, Yu MF, Chen XY, Jiang QH, He FM. Analysis of facial bone wall dimensions and sagittal root position in the maxillary esthetic zone: a retrospective study using cone beam computed tomography. Int J Oral Maxillofac Implants. 2014; 29: 1123 - 1129.
dc.identifier.citedreferenceFrost NA, Mealey BL, Jones AA, Huynh- Ba G. Periodontal biotype: gingival thickness as it relates to probe visibility and buccal plate thickness. J Periodontol. 2015; 86: 1141 - 1149.
dc.identifier.citedreferenceRubin JM, Adler RS, Fowlkes JB, et al. Fractional moving blood volume: estimation with power Doppler ultrasound. Radiology. 1995; 197: 183 - 190.
dc.identifier.citedreferenceZoellner H, Chapple CC, Hunter N. Microvasculature in gingivitis and chronic periodontitis: disruption of vascular networks with protracted inflammation. Microsc Res Tech. 2002; 56: 15 - 31.
dc.identifier.citedreferenceLin CY, Chen F, Hariri A, et al. Photoacoustic imaging for noninvasive periodontal probing depth measurements. J Dent Res. 2018; 97: 23 - 30.
dc.identifier.citedreferenceMoore C, Bai Y, Hariri A, et al. Photoacoustic imaging for monitoring periodontal health: a first human study. Photoacoustics. 2018; 12: 67 - 74.
dc.identifier.citedreferenceGhorayeb SR, Bertoncini CA, Hinders MK. Ultrasonography in dentistry. IEEE Trans Ultrason Ferroelectr Freq Control. 2008; 55: 1256 - 1266.
dc.identifier.citedreferenceMuller HP, Barrieshi- Nusair KM, Kononen E. Repeatability of ultrasonic determination of gingival thickness. Clin Oral Investig. 2007; 11: 439 - 442.
dc.identifier.citedreferenceMuller HP, Kononen E. Variance components of gingival thickness. J Periodontal Res. 2005; 40: 239 - 244.
dc.identifier.citedreferenceTzoumpas M, Mohr B, Kurtulus- Waschulewski I, Wahl G. The use of high- frequency ultrasound in the measurement of thickness of the maxillary attached gingiva. Int J Prosthodont. 2015; 28: 374 - 382.
dc.identifier.citedreferenceFurtak A, Leszczynska E, Sender- Janeczek A, Bednarz W. The repeatability and reproducibility of gingival thickness measurement with an ultrasonic device. Dent Med Probl. 2018; 55: 281 - 288.
dc.identifier.citedreferenceRajpoot N, Nayak A, Nayak R, Bankur PK. Evaluation of variation in the palatal gingival biotypes using an ultrasound device. J Clin Diagn Res. 2015; 9: ZC56 - 60.
dc.identifier.citedreferenceLynch JE, Hinders MK. Ultrasonic device for measuring periodontal attachment levels. Rev Sci Instrum. 2002; 73: 2686 - 2693.
dc.identifier.citedreferenceDe Bruyckere T, Eghbali A, Younes F, De Bruyn H, Cosyn J. Horizontal stability of connective tissue grafts at the buccal aspect of single implants: a 1- year prospective case series. J Clin Periodontol. 2015; 42: 876 - 882.
dc.identifier.citedreferenceChifor R, Badea ME, Hedesiu M, Chifor I. Identification of the anatomical elements used in periodontal diagnosis on 40 MHz periodontal ultrasonography. Rom J Morphol Embryol. 2015; 56: 149 - 153.
dc.identifier.citedreferenceChifor R, Badea ME, Vesa SC, Chifor I. The utility of 40 MHz periodontal ultrasonography in the assessment of gingival inflammation evolution following professional teeth cleaning. Med Ultrason. 2015; 17: 34 - 38.
dc.identifier.citedreferencePalou ME, McQuade MJ, Rossmann JA. The use of ultrasound for the determination of periodontal bone morphology. J Periodontol. 1987; 58: 262 - 265.
dc.identifier.citedreferenceTsiolis FI, Needleman IG, Griffiths GS. Periodontal ultrasonography. J Clin Periodontol. 2003; 30: 849 - 854.
dc.identifier.citedreferenceChifor R, Hedesiu M, Bolfa P, et al. The evaluation of 20 MHz ultrasonography, computed tomography scans as compared to direct microscopy for periodontal system assessment. Med Ultrason. 2011; 13: 120 - 126.
dc.identifier.citedreferenceNguyen KC, Le LH, Kaipatur NR, Major PW. Imaging the cemento- enamel junction using a 20- mhz ultrasonic transducer. Ultrasound Med Biol. 2016; 42: 333 - 338.
dc.identifier.citedreferenceNguyen KT, Le LH, Kaipatur NR, Zheng R, Lou EH, Major PW. High- resolution ultrasonic imaging of dento- periodontal tissues using a multi- element phased array system. Ann Biomed Eng. 2016; 44: 2874 - 2886.
dc.identifier.citedreferenceMahmoud AM, Ngan P, Crout R, Mukdadi OM. High- resolution 3D ultrasound jawbone surface imaging for diagnosis of periodontal bony defects: an in vitro study. Ann Biomed Eng. 2010; 38: 3409 - 3422.
dc.identifier.citedreferenceChan HL, Wang HL, Fowlkes JB, Giannobile WV, Kripfgans OD. Non- ionizing real- time ultrasonography in implant and oral surgery: a feasibility study. Clin Oral Implants Res. 2017; 28: 341 - 347.
dc.identifier.citedreferenceChan HL, Sinjab K, Chung MP, et al. Non- invasive evaluation of facial crestal bone with ultrasonography. PLoS One. 2017; 12: e0171237.
dc.identifier.citedreferenceNguyen KT, Pacheco- Pereira C, Kaipatur NR, Cheung J, Major PW, Le LH. Comparison of ultrasound imaging and cone- beam computed tomography for examination of the alveolar bone level: a systematic review. PLoS One. 2018; 13: e0200596.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.