Show simple item record

High‐Performance Zinc Tin Oxide TFTs with Active Layers Deposited by Atomic Layer Deposition

dc.contributor.authorAllemang, Christopher R.
dc.contributor.authorCho, Tae H.
dc.contributor.authorTrejo, Orlando
dc.contributor.authorRavan, Shantam
dc.contributor.authorRodríguez, Robin E.
dc.contributor.authorDasgupta, Neil P.
dc.contributor.authorPeterson, Rebecca L.
dc.date.accessioned2020-08-10T20:55:47Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-08-10T20:55:47Z
dc.date.issued2020-07
dc.identifier.citationAllemang, Christopher R.; Cho, Tae H.; Trejo, Orlando; Ravan, Shantam; Rodríguez, Robin E. ; Dasgupta, Neil P.; Peterson, Rebecca L. (2020). "High‐Performance Zinc Tin Oxide TFTs with Active Layers Deposited by Atomic Layer Deposition." Advanced Electronic Materials 6(7): n/a-n/a.
dc.identifier.issn2199-160X
dc.identifier.issn2199-160X
dc.identifier.urihttps://hdl.handle.net/2027.42/156226
dc.description.abstractNew deposition techniques for amorphous oxide semiconductors compatible with silicon back end of line manufacturing are needed for 3D monolithic integration of thin‐film electronics. Here, three atomic layer deposition (ALD) processes are compared for the fabrication of amorphous zinc tin oxide (ZTO) channels in bottom‐gate, top‐contact n‐channel transistors. As‐deposited ZTO films, made by ALD at 150–200 °C, exhibit semiconducting, enhancement‐mode behavior with electron mobility as high as 13 cm2 V−1 s−1, due to a low density of oxygen‐related defects. ZTO deposited at 200 °C using a hybrid thermal‐plasma ALD process with an optimal tin composition of 21%, post‐annealed at 400 °C, shows excellent performance with a record high mobility of 22.1 cm2 V–1 s–1 and a subthreshold slope of 0.29 V dec–1. Increasing the deposition temperature and performing post‐deposition anneals at 300–500 °C lead to an increased density of the X‐ray amorphous ZTO film, improving its electrical properties. By optimizing the ZTO active layer thickness and using a high‐k gate insulator (ALD Al2O3), the transistor switching voltage is lowered, enabling electrical compatibility with silicon integrated circuits. This work opens the possibility of monolithic integration of ALD ZTO‐based thin‐film electronics with silicon integrated circuits or onto large‐area flexible substrates.Three atomic layer deposition (ALD) processes are investigated for the deposition of zinc tin oxide (ZTO) as the active layer in thin‐film transistors (TFTs). With a low density of oxygen vacancies, as‐deposited films exhibit semiconducting, enhancement‐mode behavior. Post‐deposition anneals result in increased film density and record high electron mobility for ALD ZTO TFTs using process temperatures within the back‐end‐of‐line thermal budget.
dc.publisherIEEE
dc.publisherWiley Periodicals, Inc.
dc.subject.otheramorphous oxide semiconductors
dc.subject.otherzinc tin oxide
dc.subject.otherthin‐film transistors
dc.subject.otheratomic layer deposition
dc.titleHigh‐Performance Zinc Tin Oxide TFTs with Active Layers Deposited by Atomic Layer Deposition
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156226/3/aelm202000195-sup-0001-SuppMat.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156226/2/aelm202000195.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156226/1/aelm202000195_am.pdfen_US
dc.identifier.doi10.1002/aelm.202000195
dc.identifier.sourceAdvanced Electronic Materials
dc.identifier.citedreferenceS.‐J. Seo, Y. H. Hwang, B.‐S. Bae, Electrochem. Solid‐State Lett. 2010, 13, H357.
dc.identifier.citedreferenceH. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, D. A. Keszler, Appl. Phys. Lett. 2005, 86, 013503.
dc.identifier.citedreferenceD.‐W. Choi, W. J. Maeng, J.‐S. Park, Appl. Surf. Sci. 2014, 313, 585.
dc.identifier.citedreferenceJ. K. Jeong, H. W. Yang, J. H. Jeong, Y.‐G. Mo, H. D. Kim, Appl. Phys. Lett. 2008, 93, 123508.
dc.identifier.citedreferenceD. W. Greve, Field Effect Devices and Applications : Devices for Portable, Low‐Power, and Imaging Systems, Prentice Hall, Upper Saddle River, NJ 1998.
dc.identifier.citedreferenceK.‐S. Son, T.‐S. Kim, J.‐S. Jung, M.‐K. Ryu, K.‐B. Park, B.‐W. Yoo, K. Park, J.‐Y. Kwon, S.‐Y. Lee, J.‐M. Kim, Electrochem. Solid‐State Lett. 2009, 12, H26.
dc.identifier.citedreferenceJ.‐S. Kim, M.‐K. Joo, M. X. Piao, S.‐E. Ahn, Y.‐H. Choi, H.‐K. Jang, G.‐T. Kim, J. Appl. Phys. 2014, 115, 114503.
dc.identifier.citedreferenceW. Hu, R. L. Peterson, Appl. Phys. Lett. 2014, 104, 192105.
dc.identifier.citedreferenceK. K. Banger, Y. Yamashita, K. Mori, R. L. Peterson, T. Leedham, J. Rickard, H. Sirringhaus, Nat. Mater. 2011, 10, 45.
dc.identifier.citedreferenceC. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, N. R. Armstrong, Langmuir 2002, 18, 450.
dc.identifier.citedreferenceY. Zhao, L. Duan, G. Dong, D. Zhang, J. Qiao, L. Wang, Y. Qiu, Langmuir 2013, 29, 151.
dc.identifier.citedreferenceC. Guerra‐Nuñez, M. Döbeli, J. Michler, I. Utke, Chem. Mater. 2017, 29, 8690.
dc.identifier.citedreferenceY. Son, A. Liao, R. L. Peterson, J. Mater. Chem. C 2017, 5, 8071.
dc.identifier.citedreferenceB. Yang, S. Oh, Y. J. Kim, S. J. Han, H. W. Lee, H. J. Kim, S. Kim, H. K. Park, J. Heo, J. K. Jeong, IEEE Trans. Electron Devices 2014, 61, 2071.
dc.identifier.citedreferenceJ. Provine, P. Schindler, Y. Kim, S. P. Walch, H. J. Kim, K.‐H. Kim, F. B. Prinz, AIP Adv. 2016, 6, 065012.
dc.identifier.citedreferenceH. B. Profijt, S. E. Potts, M. C. M. van de Sanden, W. M. M. Kessels, J. Vac. Sci. Technol., A 2011, 29, 050801.
dc.identifier.citedreferenceS. Y. Lee, S. Chang, J.‐S. Lee, Thin Solid Films 2010, 518, 3030.
dc.identifier.citedreferenceT.‐J. Ha, A. Dodabalapur, Appl. Phys. Lett. 2013, 102, 123506.
dc.identifier.citedreferenceA. Kumar, S. Mondal, K. S. R. K. Rao, J. Mater. Sci.: Mater. Electron. 2016, 27, 5264.
dc.identifier.citedreferenceY. Song, R. Xu, J. He, S. Siontas, A. Zaslavsky, D. C. Paine, IEEE Electron Device Lett. 2014, 35, 1251.
dc.identifier.citedreferenceS. F. Nelson, C. R. Ellinger, D. H. Levy, ACS Appl. Mater. Interfaces 2015, 7, 2754.
dc.identifier.citedreferenceL.‐C. Liu, J.‐S. Chen, J.‐S. Jeng, ECS Solid State Lett. 2015, 4, Q59.
dc.identifier.citedreferenceD. A. Mourey, M. S. Burberry, D. A. Zhao, Y. V. Li, S. F. Nelson, L. Tutt, T. D. Pawlik, D. H. Levy, T. N. Jackson, J. Soc. Inf. Disp. 2010, 18, 753.
dc.identifier.citedreferenceY. Wang, X. W. Sun, G. K. L. Goh, H. V. Demir, H. Y. Yu, IEEE Trans. Electron Devices 2011, 58, 480.
dc.identifier.citedreferenceC. R. Allemang, R. L. Peterson, IEEE Electron Device Lett. 2019, 40, 1120.
dc.identifier.citedreferenceS.‐J. Yoon, N.‐J. Seong, K. Choi, W.‐C. Shin, S.‐M. Yoon, RSC Adv. 2018, 8, 25014.
dc.identifier.citedreferenceN. P. Dasgupta, J. F. Mack, M. C. Langston, A. Bousetta, F. B. Prinz, Rev. Sci. Instrum. 2010, 81, 044102.
dc.identifier.citedreferenceM. N. Mullings, C. Hägglund, J. T. Tanskanen, Y. Yee, S. Geyer, S. F. Bent, Thin Solid Films 2014, 556, 186.
dc.identifier.citedreferenceJ. T. Tanskanen, C. Hägglund, S. F. Bent, Chem. Mater. 2014, 26, 2795.
dc.identifier.citedreferenceK. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 2004, 432, 488.
dc.identifier.citedreferenceH. Hosono, in 2017 75th Annual Device Research Conf. (DRC), IEEE, Piscataway, NJ 2017, pp. 1 – 2.
dc.identifier.citedreferenceL. Petti, N. Münzenrieder, C. Vogt, H. Faber, L. Büthe, G. Cantarella, F. Bottacchi, T. D. Anthopoulos, G. Tröster, Appl. Phys. Rev. 2016, 3, 021303.
dc.identifier.citedreferenceY. Son, B. Frost, Y. Zhao, R. L. Peterson, Nat. Electron. 2019, 2, 540.
dc.identifier.citedreferenceS. Sedky, A. Witvrouw, H. Bender, K. Baert, IEEE Trans. Electron Devices 2001, 48, 377.
dc.identifier.citedreferenceE. Fortunato, P. Barquinha, R. Martins, Adv. Mater. 2012, 24, 2945.
dc.identifier.citedreferenceP. Schlupp, F.‐L. Schein, H. von Wenckstern, M. Grundmann, Adv. Electron. Mater. 2015, 1, 1400023.
dc.identifier.citedreferenceC. Kim, N.‐H. Lee, Y.‐K. Kwon, B. Kang, Thin Solid Films 2013, 544, 129.
dc.identifier.citedreferenceH. Frenzel, A. Lajn, M. Grundmann, Phys. Status Solidi RRL 2013, 7, 605.
dc.identifier.citedreferenceS. Weng, R. Chen, W. Zhong, S. Deng, G. Li, F. S. Y. Yeung, L. Lan, Z. Chen, H. Kwok, IEEE J. Electron Devices Soc. 2019, 7, 632.
dc.identifier.citedreferenceO. Lahr, Z. Zhang, F. Grotjahn, P. Schlupp, S. Vogt, H. von Wenckstern, A. Thiede, M. Grundmann, IEEE Trans. Electron Devices 2019, 66, 3376.
dc.identifier.citedreferenceO. Lahr, S. Vogt, H. von Wenckstern, M. Grundmann, Adv. Electron. Mater. 2019, 5, 1900548.
dc.identifier.citedreferenceB. D. Ahn, D.‐W. Choi, C. Choi, J.‐S. Park, Appl. Phys. Lett. 2014, 105, 092103.
dc.identifier.citedreferenceJ. Heo, S. Bok Kim, R. G. Gordon, Appl. Phys. Lett. 2012, 101, 113507.
dc.identifier.citedreferenceS. M. George, Chem. Rev. 2010, 110, 111.
dc.identifier.citedreferenceN. P. Dasgupta, H.‐B.‐R. Lee, S. F. Bent, P. S. Weiss, Chem. Mater. 2016, 28, 1943.
dc.identifier.citedreferenceR. W. Johnson, A. Hultqvist, S. F. Bent, Mater. Today 2014, 17, 236.
dc.identifier.citedreferenceE. Kazyak, K.‐H. Chen, K. N. Wood, A. L. Davis, T. Thompson, A. R. Bielinski, A. J. Sanchez, X. Wang, C. Wang, J. Sakamoto, N. P. Dasgupta, Chem. Mater. 2017, 29, 3785.
dc.identifier.citedreferenceA. R. Bielinski, S. Lee, J. J. Brancho, S. L. Esarey, A. J. Gayle, E. Kazyak, K. Sun, B. M. Bartlett, N. P. Dasgupta, Chem. Mater. 2019, 31, 3221.
dc.identifier.citedreferenceM. H. Cho, H. Seol, A. Song, S. Choi, Y. Song, P. S. Yun, K.‐B. Chung, J. U. Bae, K.‐S. Park, J. K. Jeong, IEEE Trans. Electron Devices 2019, 66, 1783.
dc.identifier.citedreferenceJ. Sheng, T. Hong, H.‐M. Lee, K. Kim, M. Sasase, J. Kim, H. Hosono, J.‐S. Park, ACS Appl. Mater. Interfaces 2019, 11, 40300.
dc.identifier.citedreferenceJ. Sheng, J.‐H. Lee, W.‐H. Choi, T. Hong, M. Kim, J.‐S. Park, J. Vac. Sci. Technol., A 2018, 36, 060801.
dc.identifier.citedreferenceI.‐H. Baek, J. J. Pyeon, S. H. Han, G.‐Y. Lee, B. J. Choi, J. H. Han, T.‐M. Chung, C. S. Hwang, S. K. Kim, ACS Appl. Mater. Interfaces 2019, 11, 14892.
dc.identifier.citedreferenceI. M. Choi, M. J. Kim, N. On, A. Song, K.‐B. Chung, H. Jeong, J. K. Park, J. K. Jeong, IEEE Trans. Electron Devices 2020, 67, 1014.
dc.identifier.citedreferenceA. Hultqvist, C. Platzer‐Björkman, U. Zimmermann, M. Edoff, T. Törndahl, Prog. Photovoltaics 2012, 20, 883.
dc.identifier.citedreferenceM. Kapilashrami, C. X. Kronawitter, T. Törndahl, J. Lindahl, A. Hultqvist, W.‐C. Wang, C.‐L. Chang, S. S. Mao, J. Guo, Phys. Chem. Chem. Phys. 2012, 14, 10154.
dc.identifier.citedreferenceJ. Lindahl, C. Hägglund, J. T. Wätjen, M. Edoff, T. Törndahl, Thin Solid Films 2015, 586, 82.
dc.identifier.citedreferenceC. Hägglund, T. Grehl, J. T. Tanskanen, Y. S. Yee, M. N. Mullings, A. J. M. Mackus, C. MacIsaac, B. M. Clemens, H. H. Brongersma, S. F. Bent, J. Vac. Sci. Technol., A 2016, 34, 021516.
dc.identifier.citedreferenceA. J. M. Mackus, C. MacIsaac, W.‐H. Kim, S. F. Bent, J. Chem. Phys. 2017, 146, 052802.
dc.identifier.citedreferenceS. Lee, S. Kim, S. Shin, Z. Jin, Y.‐S. Min, J. Ind. Eng. Chem. 2018, 58, 328.
dc.identifier.citedreferenceC. N. Ginestra, R. Sreenivasan, A. Karthikeyan, S. Ramanathan, P. C. McIntyre, Electrochem. Solid‐State Lett. 2007, 10, B161.
dc.identifier.citedreferenceA. J. M. Mackus, J. R. Schneider, C. MacIsaac, J. G. Baker, S. F. Bent, Chem. Mater. 2019, 31, 1142.
dc.identifier.citedreferenceW. Hu, R. L. Peterson, J. Mater. Res. 2012, 27, 2286.
dc.identifier.citedreferenceM. G. McDowell, R. J. Sanderson, I. G. Hill, Appl. Phys. Lett. 2008, 92, 013502.
dc.identifier.citedreferenceW. M. Haynes, in CRC Handbook of Chemistry and Physics, 97th Edition (Internet Version 2017) (Eds: W. M. Haynes ), Taylor & Francis, Boca Raton, FL 2017.
dc.identifier.citedreferenceD. L. Young, H. Moutinho, Y. Yan, T. J. Coutts, J. Appl. Phys. 2002, 92, 310.
dc.identifier.citedreferenceT. Tynell, M. Karppinen, Semicond. Sci. Technol. 2014, 29, 043001.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.