Show simple item record

Large‐Amplitude Oscillatory Motion of Mercury’s Cross‐Tail Current Sheet

dc.contributor.authorPoh, Gangkai
dc.contributor.authorSun, Weijie
dc.contributor.authorClink, Kellyn M.
dc.contributor.authorSlavin, James A.
dc.contributor.authorDewey, Ryan M.
dc.contributor.authorJia, Xianzhe
dc.contributor.authorRaines, Jim M.
dc.contributor.authorDiBraccio, Gina A.
dc.contributor.authorEspley, Jared R.
dc.date.accessioned2020-08-10T20:55:56Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-08-10T20:55:56Z
dc.date.issued2020-07
dc.identifier.citationPoh, Gangkai; Sun, Weijie; Clink, Kellyn M.; Slavin, James A.; Dewey, Ryan M.; Jia, Xianzhe; Raines, Jim M.; DiBraccio, Gina A.; Espley, Jared R. (2020). "Large‐Amplitude Oscillatory Motion of Mercury’s Cross‐Tail Current Sheet." Journal of Geophysical Research: Space Physics 125(7): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/156232
dc.description.abstractWe surveyed 4 years of MESSENGER magnetic field data and analyzed intervals with observations of large‐amplitude oscillatory motions of Mercury’s cross‐tail current sheet, or flapping waves, characterized by a decrease in magnetic field intensity and multiple reversals of BX, oscillating with a period on the order of ~4 – 25 seconds. We performed minimum variance analysis (MVA) on each flapping wave event to determine the current sheet normal. Statistical results showed that the flapping motion of the current sheet caused it to warp and tilt in the y‐z plane, which suggests that these flapping waves are kink‐type waves propagating in the cross‐tail direction of Mercury’s magnetotail. The occurrence of flapping waves shows a strong preference in Mercury’s duskside plasma sheet. We compared our results with the magnetic double‐gradient instability model and examined possible flapping wave excitation mechanism theories from internal (e.g., finite gyroradius effects of planetary sodium ions Na+ on magnetosonic waves) and external (e.g., solar wind variations and K‐H waves) sources.Key PointsLarge‐amplitude oscillations of Mercury’s cross‐tail current sheet (or flapping waves) with period of ~4 – 25 s were observedFlapping motion of Mercury’s cross‐tail current sheet warped and tilted the current sheet in the y‐z planeFlapping waves preferentially occur in Mercury’s duskside current sheet
dc.publisherWiley Periodicals, Inc.
dc.publisherHolden‐Day
dc.subject.otherMercury
dc.subject.othercross‐tail current sheet
dc.subject.othermagnetotail
dc.subject.otherflapping waves
dc.titleLarge‐Amplitude Oscillatory Motion of Mercury’s Cross‐Tail Current Sheet
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156232/2/jgra55803.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156232/1/jgra55803_am.pdfen_US
dc.identifier.doi10.1029/2020JA027783
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSlavin, J. A., DiBraccio, G. A., Gershman, D. J., Imber, S. M., Poh, G. K., Raines, J. M., Zurbuchen, T. H., Jia, X., Baker, D. N., Glassmeier, K. ‐H., Livi, S. A., Boardsen, S. A., Cassidy, T. A., Sarantos, M., Sundberg, T., Masters, A., Johnson, C. L., Winslow, R. M., Anderson, B. J., Korth, H., McNutt, R. L. Jr., & Solomon, S. C. ( 2014 ). MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions. Journal of Geophysical Research: Space Physics, 119, 8087 – 8116. https://doi.org/10.1002/2014JA020319
dc.identifier.citedreferenceRong, Z. J., Ding, Y., Slavin, J. A., Zhong, J., Poh, G., Sun, W. J., Wei, Y., Chai, L. H., Wan, W. X., & Shen, C. ( 2018 ). The magnetic field structure of Mercury’s magnetotail. Journal of Geophysical Research: Space Physics, 123, 548 – 566. https://doi.org/10.1002/2017JA024923
dc.identifier.citedreferenceRunov, A., Sergeev, V. A., Baumjohann, W., Nakamura, R., Apatenkov, S., Asano, Y., Volwerk, M., Vörös, Z., Zhang, T. L., Petrukovich, A., Balogh, A., Sauvaud, J.‐A., Klecker, B., & Reme, H. ( 2005 ). Electric current and magnetic field geometry in flapping magnetotail current sheets. Annales Geophysicae, 23 ( 4 ), 1391 – 1403. https://doi.org/10.5194/angeo-23-1391-2005
dc.identifier.citedreferenceSergeev, V., Angelopoulos, V., Carlson, C., & Sutcliffe, P. ( 1998 ). Current sheet measurements within a flapping plasma sheet. Journal of Geophysical Research, 103 ( A5 ), 9177 – 9187. https://doi.org/10.1029/97JA02093
dc.identifier.citedreferenceSergeev, V. A., Tanskanen, P., Mursula, K., Korth, A., & Elphic, R. C. ( 1990 ). Current sheet thickness in the near Earth plasma sheet during substorm growth phase. Journal of Geophysical Research, 95 ( A4 ), 3819 – 3828. https://doi.org/10.1029/JA095iA04p03819
dc.identifier.citedreferenceSergeev, V., Runov, A., Baumjohann, W., Nakamura, R., Zhang, T. L., Volwerk, M., Balogh, A., Rème, H., Sauvaud, J. A., André, M., & Klecker, B. ( 2003 ). Current sheet flapping motion and structure observed by Cluster. Geophysical Research Letters, 30 ( 6 ), 1327. https://doi.org/10.1029/2002GL016500
dc.identifier.citedreferenceSergeev, V., Sormakov, D. A., Apatenkov, S. V., Baumjohann, W., Nakamura, R., Runov, A. V., Mukai, T., & Nagai, T. ( 2006 ). Survey of large‐amplitude flapping motions in the midtail current sheet. Annales de Geophysique, 24 ( 7 ), 2015 – 2024. https://doi.org/10.5194/angeo-24-2015-2006
dc.identifier.citedreferenceSergeev, V. A., Tsyganenko, N. A., & Angelopoulos, V. ( 2008 ). Dynamical response of the magnetotail to changes of the solar wind direction: An MHD modeling perspective. Annales de Geophysique, 26 ( 8 ), 2395 – 2402. https://doi.org/10.5194/angeo-26-2395-2008
dc.identifier.citedreferenceShen, C., Rong, Z. J., Li, X., Dunlop, M., Liu, Z. X., Malova, H. V., Lucek, E., & Carr, C. ( 2008 ). Magnetic configurations of tail tilted current sheet. Annales de Geophysique, 26 ( 11 ), 3525 – 3543. https://doi.org/10.5194/angeo-26-3525-2008
dc.identifier.citedreferenceSlavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gold, R. E., Ho, G. C., Imber, S. M., Korth, H., Krimigis, S. M., McNutt, R. L. Jr., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., Trávníček, P., & Zurbuchen, T. H. ( 2012 ). MESSENGER and Mariner 10 flyby observations of magnetotail structure and dynamics at Mercury. Journal of Geophysical Research, 117, A01215. https://doi.org/10.1029/2011JA016900
dc.identifier.citedreferenceSlavin, J. A., Middleton, H. R., Raines, J. M., Jia, X., Zhong, J., Sun, W.‐J., Livi, S., Imber, S. M., Poh, G. K., Akhavan‐Tafti, M., Jasinski, J. M., DiBraccio, G. A., Dong, C., Dewey, R. M., & Mays, M. L. ( 2019 ). MESSENGER observations of disappearing dayside magnetosphere events at Mercury. Journal of Geophysical Research: Space Physics, 124, 6613 – 6635. https://doi.org/10.1029/2019JA026892
dc.identifier.citedreferenceSonnerup, B. U. Ö., & Scheible, M. ( 1998 ). Minimum and maximum variance analysis. In G. Paschmann, & P. Daly (Eds.), Analysis methods for multi‐spacecraft data, (pp. 185 – 220 ). Noordwijk, Netherlands: Eur. Space Agency.
dc.identifier.citedreferenceSpeiser, T. W., & Ness, N. F. ( 1967 ). The neutral sheet in the geomagnetic tail: Its motion, equivalent currents, and field line connection through it. Journal of Geophysical Research, 72 ( 1 ), 131 – 141. https://doi.org/10.1029/JZ072i001p00131
dc.identifier.citedreferenceSun, W., Fu, S., Shi, Q., Zong, Q., Yao, Z., Xiao, T., & Parks, G. ( 2014 ). THEMIS observation of a magnetotail current sheet flapping wave. Chinese Science Bulletin, 59 ( 2 ), 154 – 161. https://doi.org/10.1007/s11434-013-0056-x
dc.identifier.citedreferenceSun, W.‐J., Slavin, J. A., Fu, S., Raines, J. M., Sundberg, T., Zong, Q.‐G., Jia, X., Shi, Q., Shen, X., Poh, G., Pu, Z., & Zurbuchen, T. H. ( 2015 ). MESSENGER observations of Alfvénic and compressional waves during Mercury’s substorms. Geophysical Research Letters, 42, 6189 – 6198. https://doi.org/10.1002/2015GL065452
dc.identifier.citedreferenceSun, W. J., Fu, S. Y., Slavin, J. A., Raines, J. M., Zong, Q. G., Poh, G. K., & Zurbuchen, T. H. ( 2016 ). Spatial distribution of Mercury’s flux ropes and reconnection fronts: MESSENGER observations. Journal of Geophysical Research: Space Physics, 121, 7590 – 7607. https://doi.org/10.1002/2016JA022787
dc.identifier.citedreferenceSun, W. J., Fu, S. Y., Wei, Y., Yao, Z. H., Rong, Z. J., Zhou, X. Z., Slavin, J. A., Wan, W. X., Zong, Q. G., Pu, Z. Y., Shi, Q. Q., & Shen, X. C. ( 2017 ). Plasma sheet pressure variations in the near‐Earth magnetotail during substorm growth phase: THEMIS observations. Journal of Geophysical Research: Space Physics, 122, 12,212 – 12,228. https://doi.org/10.1002/2017JA024603
dc.identifier.citedreferenceSun, W. J., Raines, J. M., Fu, S. Y., Slavin, J. A., Wei, Y., Poh, G. K., Pu, Z. Y., Yao, Z. H., Zong, Q. G., & Wan, W. X. ( 2017 ). MESSENGER observations of the energization and heating of protons in the near‐Mercury magnetotail. Geophysical Research Letters, 44, 8149 – 8158. https://doi.org/10.1002/2017GL074276
dc.identifier.citedreferenceSun, W. J., Shi, Q. Q., Fu, S. Y., Zong, Q. G., Pu, Z. Y., Xie, L., Xiao, T., Li, L., Liu, Z. X., Reme, H., & Lucek, E. ( 2010 ). Statistical research on the motion properties of the magnetotail current sheet: Cluster observations. Science China Technological Sciences, 53 ( 6 ), 1732 – 1738. https://doi.org/10.1007/s11431-010-3153-y
dc.identifier.citedreferenceSun, W. J., Slavin, J. A., Dewey, R. M., Chen, Y., DiBraccio, G. A., Raines, J. M., Jasinski, J. M., Jia, X., & Akhavan‐Tafti, M. ( 2020 ). MESSENGER observations of Mercury’s nightside magnetosphere under extreme solar wind conditions: Reconnection‐generated structures and steady convection. Journal of Geophysical Research: Space Physics, 125, e2019JA027490. https://doi.org/10.1029/2019JA027490
dc.identifier.citedreferenceSundberg, T., Boardsen, S. A., Slavin, J. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., Raines, J. M., & Solomon, S. C. ( 2012 ). MESSENGER orbital observations of large‐amplitude Kelvin‐Helmholtz waves at Mercury’s magnetopause. Journal of Geophysical Research, 117, A04216. https://doi.org/10.1029/2011JA017268
dc.identifier.citedreferenceSundberg, T., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., Ho, G. C., Schriver, D., Uritsky, V. M., Zurbuchen, T. H., Raines, J. M., Baker, D. N., Krimigis, S. M., McNutt, R. L. Jr., & Solomon, S. C. ( 2012 ). MESSENGER observations of dipolarization events in Mercury’s magnetotail. Journal of Geophysical Research, 117, A00M03. https://doi.org/10.1029/2012JA017756
dc.identifier.citedreferenceTsyganenko, N. A. ( 1995 ). Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause. Journal of Geophysical Research, 100 ( A4 ), 5599 – 5612. https://doi.org/10.1029/94JA03193
dc.identifier.citedreferenceVolwerk, M., André, N., Arridge, C. S., Jackman, C. M., Jia, X., Milan, S. E., Radioti, A., Vogt, M. F., Walsh, A. P., Nakamura, R., Masters, A., & Forsyth, C. ( 2013 ). Comparative magnetotail flapping: An overview of selected events at Earth, Jupiter and Saturn. Annales de Geophysique, 31 ( 5 ), 817 – 833. https://doi.org/10.5194/angeo-31-817-2013
dc.identifier.citedreferenceWang, G. Q., Zhang, T. L., Wu, M. Y., Schmid, D., Cao, J. B., & Volwerk, M. ( 2019 ). Solar wind directional change triggering flapping motions of the current sheet: MMS observations. Geophysical Research Letters, 46, 64 – 70. https://doi.org/10.1029/2018GL080023
dc.identifier.citedreferenceWinslow, R. M., Anderson, B. J., Johnson, C. L., Slavin, J. A., Korth, H., Purucker, M. E., Baker, D. N., & Solomon, S. C. ( 2013 ). Mercury’s magnetopause and bow shock from MESSENGER Magnetometer observations. Journal of Geophysical Research: Space Physics, 118, 2213 https://doi.org/10.1002/jgra.50237
dc.identifier.citedreferenceYagi, M., Seki, K., Matsumoto, Y., Delcourt, D. C, & Leblanc, F. ( 2010 ). Formation of a sodium ring in Mercury’s magnetosphere. Journal of Geophysical Research, 115, A10253. https://doi.org/10.1029/2009JA015226
dc.identifier.citedreferenceYagi, M., Seki, K., Matsumoto, Y., Delcourt, D. C., & Leblanc, F. ( 2017 ). Global structure and sodium ion dynamics in Mercury’s magnetosphere with the offset dipole. Journal of Geophysical Research: Space Physics, 122, 10,990 – 11,002. https://doi.org/10.1002/2017JA024082
dc.identifier.citedreferenceZhang, T. L., Baumjohann, W., Nakamura, R., Balogh, A., & Glassmeier, K.‐H. ( 2002 ). A wavy twisted neutral sheet observed by Cluster. Geophysical Research Letters, 29 ( 19 ), 1899. https://doi.org/10.1029/2002GL015544
dc.identifier.citedreferenceAnderson, B. J., Acuña, M. H., Lohr, D. A., Scheifele, J., Raval, A., Korth, H., & Slavin, J. A. ( 2007 ). The Magnetometer instrument on MESSENGER. Space Science Reviews, 131 ( 1–4 ), 417 – 450. https://doi.org/10.1007/s11214-007-9246-7
dc.identifier.citedreferenceAnderson, B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J. A., Solomon, S. C., McNutt, R. L. Jr., Raines, J. M., & Zurbuchen, T. H. ( 2011 ). The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333 ( 6051 ), 1859 – 1862. https://doi.org/10.1126/science.1211001
dc.identifier.citedreferenceBoardsen, S. A., Slavin, J. A., Anderson, B. J., Korth, H., Schriver, D., & Solomon, S. C. ( 2012 ). Survey of coherent ~1 Hz waves in Mercury’s inner magnetosphere from MESSENGER observations. Journal of Geophysical Research, 117, A00M05. https://doi.org/10.1029/2012JA017822
dc.identifier.citedreferenceBuchsbaum, S. J. ( 1960 ). Resonance in a plasma with two ion species. The Physics of Fluids, 3 ( 3 ), 418 – 420. https://doi.org/10.1063/1.1706052
dc.identifier.citedreferenceChen, Y., Tóth, G., Jia, X., Slavin, J. A., Sun, W., Markidis, S., Gombosi, T. I., & Raines, J. M. ( 2019 ). Studying dawn‐dusk asymmetries of Mercury’s magnetotail using MHD‐EPIC simulations. Journal of Geophysical Research: Space Physics, 124, 8954 – 8973. https://doi.org/10.1029/2019JA026840
dc.identifier.citedreferenceDavey, E. A., Lester, M., Milan, S. E., & Fear, R. C. ( 2012 ). Storm and substorm effects on magnetotail current sheet motion. Journal of Geophysical Research, 117, A02202. https://doi.org/10.1029/2011JA017112
dc.identifier.citedreferenceDelcourt, D. C. ( 2013 ). On the supply of heavy planetary material to the magnetotail of Mercury. Annales Geophysicae, 31, 163 – 1679.
dc.identifier.citedreferenceDewey, R. M., Raines, J. M., Sun, W., Slavin, J. A., & Poh, G. ( 2018 ). MESSENGER observations of fast plasma flows in Mercury’s magnetotail. Geophysical Research Letters, 45, 10,110 – 10,118. https://doi.org/10.1029/2018GL079056
dc.identifier.citedreferenceDewey, R. M., Slavin, J. A., Raines, J. M., Baker, D. N., & Lawrence, D. J. ( 2017 ). Energetic electron acceleration and injection during dipolarization events in Mercury’s magnetotail. Journal of Geophysical Research: Space Physics, 122, 12,170 – 12,188. https://doi.org/10.1002/2017JA024617
dc.identifier.citedreferenceDiBraccio, G. A., Dann, J., Espley, J. R., Gruesbeck, J. R., Soobiah, Y., Connerney, J. E. P., Halekas, J. S., Harada, Y., Bowers, C. F., Brain, D. A., Ruhunusiri, S., Hara, T., & Jakosky, B. M. ( 2017 ). MAVEN observations of tail current sheet flapping at Mars. Journal of Geophysical Research: Space Physics, 122, 4308 – 4324. https://doi.org/10.1002/2016JA023488
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., Raines, J. M., Baker, D. N., McNutt, R. L., & Solomon, S. C. ( 2013 ). MESSENGER observations of magnetopause structure and dynamics at Mercury. Journal of Geophysical Research: Space Physics, 118, 997 – 1008. https://doi.org/10.1002/jgra.50123
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Imber, S. M., Gershman, D. J., Raines, J. M., Jackman, C. M., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., McNutt, R. L. Jr., & Solomon, S. C. ( 2015 ). MESSENGER observations of flux ropes in Mercury’s magnetotail. Planetary and Space Science, 115, 77 – 89. https://doi.org/10.1016/j.pss.2014.12.016
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Raines, J. M., Gershman, D. J., Tracy, P. J., Boardsen, S. A., Zurbuchen, T. H., Anderson, B. J., Korth, H., McNutt, R. L. Jr., & Solomon, S. C. ( 2015 ). First observations of Mercury’s plasma mantle by MESSENGER. Geophysical Research Letters, 42, 9666 – 9675. https://doi.org/10.1002/2015GL065805
dc.identifier.citedreferenceDuan, A., Zhang, H., & Lu, H. ( 2018 ). 3D MHD simulation of the double‐gradient instability of the magnetotail current sheet. SCIENCE CHINA Technological Sciences, 61 ( 9 ), 1364 – 1371. https://doi.org/10.1007/s11431-017-9158-7
dc.identifier.citedreferenceErkaev, N. V., Semenov, V. S., & Biernat, H. K. ( 2007 ). Magnetic double gradient instability and flapping waves in a current sheet. Physical Review Letters, 99 ( 23 ), 235,003. https://doi.org/10.1103/PhysRevLett.99.235003
dc.identifier.citedreferenceErkaev, N. V., Semenov, V. S., & Biernat, H. K. ( 2008 ). Magnetic double gradient mechanism for flapping oscillations of a current sheet. Geophysical Research Letters, 35, L02111. https://doi.org/10.1029/2007GL032277
dc.identifier.citedreferenceErkaev, N. V., Semenov, V. S., & Biernat, H. K. ( 2010 ). Hall magnetohydrodynamic effects for current sheet flapping oscillations related to the magnetic double gradient mechanism. Physics of Plasmas, 17 ( 6 ), 060703. https://doi.org/10.1063/1.3439687
dc.identifier.citedreferenceErkaev, N. V., Semenov, V. S., Kubyshkin, I. V., Kubyshkina, M. V., & Biernat, H. K. ( 2009a ). MHD aspect of current sheet oscillations related to magnetic field gradient. Annales de Geophysique, 27 ( 1 ), 417 – 425. https://doi.org/10.5194/angeo-27-417-2009
dc.identifier.citedreferenceErkaev, N. V., Semenov, V. S., Kubyshkin, I. V., Kubyshkina, M. V., & Biernat, H. K. ( 2009b ). MHD model of the flapping motions in the magnetotail current sheet. Journal of Geophysical Research, 114, A03206. https://doi.org/10.1029/2008JA013728
dc.identifier.citedreferenceForsyth, C., Lester, M., Fear, R. C., Lucek, E., Dandouras, I., Fazakerley, A. N., Singer, H., & Yeoman, T. K. ( 2009 ). Solar wind and substorm excitation of the wavy current sheet. Annales de Geophysique, 27 ( 6 ), 2457 – 2474. https://doi.org/10.5194/angeo-27-2457-2009
dc.identifier.citedreferenceGao, J. W., Rong, Z. J., Cai, Y. H., Lui, A. T. Y., Petrukovich, A. A., Shen, C., Dunlop, M. W., Wei, Y., & Wan, W. X. ( 2018 ). The distribution of two flapping types of magnetotail current sheet: Implication for the flapping mechanism. Journal of Geophysical Research: Space Physics, 123, 7413 – 7423. https://doi.org/10.1029/2018JA025695
dc.identifier.citedreferenceGershman, D. J., Slavin, J. A., Raines, J. M., Zurbuchen, T. H., Anderson, B. J., Korth, H., Baker, D. N., & Solomon, S. C. ( 2014 ). Ion kinetic properties in Mercury’s pre‐midnight plasma sheet. Geophysical Research Letters, 41, 5740 – 5747. https://doi.org/10.1002/2014GL060468
dc.identifier.citedreferenceGolovchanskaya, I. V., & Maltsev, Y. P. ( 2005 ). On the identification of plasma sheet flapping waves observed by Cluster. Geophysical Research Letters, 32, L02102. https://doi.org/10.1029/2004GL021552
dc.identifier.citedreferenceHsieh, M.‐S., & Otto, A. ( 2015 ). Thin current sheet formation in response to the loading and the depletion of magnetic flux during the substorm growth phase. Journal of Geophysical Research: Space Physics, 120, 4264 – 4278. https://doi.org/10.1002/2014JA020925
dc.identifier.citedreferenceJenkins, G. M., & Watts, D. G. ( 1968 ). Spectral analysis and its applications, (p. 525 ). Boca Raton, Fla: Holden‐Day.
dc.identifier.citedreferenceJia, X., Slavin, J. A., Poh, G., DiBraccio, G. A., Toth, G., Chen, Y., Raines, J. M., & Gombosi, T. I. ( 2019 ). MESSENGER observations and global simulations of highly compressed magnetosphere events at Mercury. Journal of Geophysical Research: Space Physics, 124, 229 – 247. https://doi.org/10.1029/2018JA026166
dc.identifier.citedreferenceJuusola, L., Pfau‐Kempf, Y., Ganse, U., Battarbee, M., Brito, T., Grandin, M., Turc, L., & Palmroth, M. ( 2018 ). A possible source mechanism for magnetotail current sheet flapping. Annales de Geophysique, 36 ( 4 ), 1027 – 1035. https://doi.org/10.5194/angeo-36-1027-2018
dc.identifier.citedreferenceKorovinskiy, D. B., Erkaev, N. V., Semenov, V. S., Ivanov, I. B., Kiehas, S. A., & Ryzhkov, I. I. ( 2018 ). On the influence of the local maxima of total pressure on the current sheet stability to the kink‐like (flapping) mode. Physics of Plasmas, 25 ( 2 ), 022904. https://doi.org/10.1063/1.5016934
dc.identifier.citedreferenceKorovinskiy, D. B., Ivanov, I. B., Semenov, V. S., Erkaev, N. V., & Kiehas, S. A. ( 2016 ). Numerical linearized MHD model of flapping oscillations. Physics of Plasmas, 23 ( 6 ), 062905. https://doi.org/10.1063/1.4954388
dc.identifier.citedreferenceKhrabrov, A. V., & Sonnerup, B. U. ( 1998 ). Error estimates for minimum variance analysis. Journal of Geophysical Research: Space Physics, 103 ( A4 ), 6641 – 6651. https://doi.org/10.1029/97JA03731
dc.identifier.citedreferenceKubyshkina, D. I., Sormakov, D. A., Sergeev, V. A., Semenov, V. S., Erkaev, N. V., Kubyshkin, I. V., Ganushkina, N. Y., & Dubyagin, S. V. ( 2014 ). How to distinguish between kink and sausage modes in flapping oscillations? Journal of Geophysical Research: Space Physics, 119, 3002 – 3015. https://doi.org/10.1002/2013JA019477
dc.identifier.citedreferenceLiljeblad, E., Sundberg, T., Karlsson, T., & Kullen, A. ( 2015 ). Statistical investigation of Kelvin‐Helmholtz waves at the magnetopause of Mercury. Journal of Geophysical Research: Space Physics, 119, 9670 – 9683. https://doi.org/10.1002/2014JA020614
dc.identifier.citedreferenceLiu, Y.‐H., Li, T. C., Hesse, M., Sun, W.‐J., Liu, J., Burch, J., Slavin, J. A., & Huang, K. ( 2019 ). Three‐dimensional magnetic reconnection with a spatially confined X‐line extent: Implications for dipolarizing flux bundles and the dawn‐dusk asymmetry. Journal of Geophysical Research: Space Physics, 124, 2819 – 2830. https://doi.org/10.1029/2019JA026539
dc.identifier.citedreferenceMcComas, D. J., Russell, C. T., Elphic, R. C., & Bame, S. J. ( 1986 ). The near‐Earth cross‐tail current sheet: Detailed ISEE 1 and 2 case studies. Journal of Geophysical Research, 91 ( A4 ), 4287 – 4301. https://doi.org/10.1029/JA091iA04p04287
dc.identifier.citedreferencePoh, G., Slavin, J. A., Jia, X., Raines, J. M., Imber, S. M., Sun, W.‐J., Gershman, D. J., DiBraccio, G. A., Genestreti, K. J., & Smith, A. W. ( 2017a ). Mercury’s cross‐tail current sheet: Structure, X‐line location and stress balance. Geophysical Research Letters, 44, 678 – 686. https://doi.org/10.1002/2016GL071612
dc.identifier.citedreferencePoh, G., Slavin, J. A., Jia, X., Raines, J. M., Imber, S. M., Sun, W.‐J., Gershman, D. J., DiBraccio, G. A., Genestreti, K. J., & Smith, A. W. ( 2017b ). Coupling between Mercury and its nightside magnetosphere: Cross‐tail current sheet asymmetry and substorm current wedge formation. Journal of Geophysical Research: Space Physics, 122, 8419 – 8433. https://doi.org/10.1002/2017JA024266
dc.identifier.citedreferencePoh, G., Slavin, J. A., Jia, X., Sun, W.‐J., Raines, J. M., Imber, S. M., DiBraccio, G. A., & Gershman, D. J. ( 2018 ). Transport of mass and energy in Mercury’s plasma sheet. Geophysical Research Letters, 45, 12,163 – 12,170. https://doi.org/10.1029/2018GL080601
dc.identifier.citedreferencePritchett, P. L., & Coroniti, F. V. ( 2010 ). A kinetic ballooning/interchange instability in the magnetotail. Journal of Geophysical Research, 115, A06301. https://doi.org/10.1029/2009JA014752
dc.identifier.citedreferenceRaines, J. M., Gershman, D. J., Zurbuchen, T. H., Sarantos, M., Slavin, J. A., Gilbert, J. A., Korth, H., Anderson, B. J., Gloeckler, G., Krimigis, S. M., Baker, D. N., McNutt, R. L. Jr., & Solomon, S. C. ( 2012 ). Distribution and compositional variations of plasma ions in Mercury’s space environment: The first three Mercury years of MESSENGER observations. Journal of Geophysical Research, 118, 1604 – 1619. https://doi.org/10.1029/2012JA018073
dc.identifier.citedreferenceRaines, J. M., Slavin, J. A., Zurbuchen, T. H., Gloeckler, G., Anderson, B. J., Baker, D. N., Korth, H., Krimigis, S. M., & McNutt, R. L. Jr. ( 2011 ). MESSENGER observations of the plasma environment near Mercury. Planetary and Space Science, 59 ( 15 ), 2004 – 2015. https://doi.org/10.1016/pss.2011.02.004
dc.identifier.citedreferenceRong, Z. J., Barabash, S., Stenberg, G., Futaana, Y., Zhang, T. L., Wan, W. X., Wei, Y., & Wang, X.‐D. ( 2015 ). Technique for diagnosing the flapping motion of magnetotail current sheets based on single‐point magnetic field analysis. Journal of Geophysical Research: Space Physics, 120, 3462 – 3474. https://doi.org/10.1002/2014JA020973
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.