Show simple item record

Spatial variation in diet–microbe associations across populations of a generalist North American carnivore

dc.contributor.authorColborn, A. Shawn
dc.contributor.authorKuntze, Corbin C.
dc.contributor.authorGadsden, Gabriel I.
dc.contributor.authorHarris, Nyeema C.
dc.date.accessioned2020-08-10T20:56:04Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-08-10T20:56:04Z
dc.date.issued2020-08
dc.identifier.citationColborn, A. Shawn; Kuntze, Corbin C.; Gadsden, Gabriel I.; Harris, Nyeema C. (2020). "Spatial variation in diet–microbe associations across populations of a generalist North American carnivore." Journal of Animal Ecology 89(8): 1952-1960.
dc.identifier.issn0021-8790
dc.identifier.issn1365-2656
dc.identifier.urihttps://hdl.handle.net/2027.42/156237
dc.description.abstractGeneralist species, by definition, exhibit variation in niche attributes that promote survival in changing environments. Increasingly, phenotypes previously associated with a species, particularly those with wide or expanding ranges, are dissolving and compelling greater emphasis on population‐level characteristics.In the present study, we assessed spatial variation in diet characteristics, gut microbiome and associations between these two ecological traits across populations of coyotes Canis latrans. We highlight the influence of the carnivore community in shaping these relationships, as the coyote varied from being an apex predator to a subordinate, mesopredator across sampled populations.We implemented a scat survey across three distinct coyote populations in Michigan, USA. We used carbon (δ13C) and nitrogen (δ15N) isotopic values to reflect consumption patterns and trophic level, respectively. Corresponding samples were also paired with 16S rRNA sequencing to describe the microbial community and correlate with isotopic values.Although consumption patterns were comparable, we found spatial variation in trophic level among coyote populations. Specifically, δ15N was highest where coyotes were the apex predator and lowest where coyotes co‐occurred with grey wolves Canis lupus.The gut microbial community exhibited marked spatial variation across populations with the lowest operational taxonomic units diversity found where coyotes occurred at their lowest trophic level. Bacteriodes and Fusobacterium dominated the microbiome and were positively correlated across all populations. We found no correlation between δ13C and microbial community attributes. However, positive associations between δ15N and specific microbial genera increased as coyotes ascended trophic levels.Coyotes provide a model for exploring implications of niche plasticity because they are a highly adaptable, wide‐ranging omnivore. As coyotes continue to vary in trophic position and expand their geographic range, we might expect increased divergence within their microbial community, changes in physiology and alterations in behaviour.Coyotes are among the most ubiquitous carnivore in North America. The authors found that the spatial variation in diet, gut microbes and associations between the two across populations were dependent on the trophic position of coyotes within their community. Positive associations between δ15N and specific microbial genera increased as coyotes ascended trophic levels.
dc.publisherWildlife Conservation Society
dc.publisherWiley Periodicals, Inc.
dc.subject.otherbacteria
dc.subject.otherstable isotope
dc.subject.othertrophic
dc.subject.othernitrogen
dc.subject.otherniche
dc.subject.otherMichigan
dc.subject.otherCanis latrans
dc.titleSpatial variation in diet–microbe associations across populations of a generalist North American carnivore
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156237/2/jane13266_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156237/1/jane13266.pdfen_US
dc.identifier.doi10.1111/1365-2656.13266
dc.identifier.sourceJournal of Animal Ecology
dc.identifier.citedreferencePeterson, B. J., & Fry, B. ( 1987 ). Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics, 18, 293 – 320. https://doi.org/10.1146/annurev.es.18.110187.001453
dc.identifier.citedreferenceLey, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., Bircher, J. S., … Gordon, J. I. ( 2008 ). Evolution of mammals and their gut microbes. Science, 320, 1647 – 1651. https://doi.org/10.1126/science.1155725
dc.identifier.citedreferenceManlick, P. J., Petersen, S. M., Moriarty, K. M., & Pauli, J. N. ( 2019 ). Stable isotopes reveal limited Eltonian niche conservatism across carnivore populations. Functional Ecology, 33, 335 – 345. https://doi.org/10.1111/1365‐2435.13266
dc.identifier.citedreferenceMazel, F., Wüest, R. O., Gueguen, M., Renaud, J., Ficetola, G. F., Lavergne, S., & Thuiller, W. ( 2017 ). The geography of ecological niche evolution in mammals. Current Biology, 27, 1369 – 1374. https://doi.org/10.1016/j.cub.2017.03.046
dc.identifier.citedreferenceMcVey, J. M., Cobb, D. T., Powell, R. A., Stoskopf, M. K., Bohling, J. H., Waits, L. P., & Moorman, C. E. ( 2013 ). Diets of sympatric red wolves and coyotes in northeastern North Carolina. Journal of Mammalogy, 94, 1141 – 1148. https://doi.org/10.1644/13‐mamm‐a‐109.1
dc.identifier.citedreferenceMerkle, J. A., Stahler, D. R., & Smith, D. W. ( 2009 ). Interference competition between gray wolves and coyotes in Yellowstone National Park. Canadian Journal of Zoology, 87, 56 – 63. https://doi.org/10.1139/z08‐136
dc.identifier.citedreferenceMiller, B. J., Harlow, H. J., Harlow, T. S., Biggins, D., & Ripple, W. J. ( 2012 ). Trophic cascades linking wolves ( Canis lupus ), coyotes ( Canis latrans ), and small mammals. Canadian Journal of Zoology, 90, 70 – 78.
dc.identifier.citedreferenceMuegge, B. D., Kuczynski, J., Knights, D., Clemente, J. C., Gonzalez, A., Fontana, L., … Gordon, J. I. ( 2011 ). Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science, 332, 970 – 974. https://doi.org/10.1126/science.1198719
dc.identifier.citedreferenceMurray, M., Cembrowski, A., Latham, A. D. M., Lukasik, V. M., Pruss, S., & St Clair, C. C. ( 2015 ). Greater consumption of protein‐poor anthropogenic food by urban relative to rural coyotes increases diet breadth and potential for human–wildlife conflict. Ecography, 38, 1235 – 1242. https://doi.org/10.1111/ecog.01128
dc.identifier.citedreferenceNewsome, S. D., del Rio, C. M., Bearhop, S., & Phillips, D. L. ( 2007 ). A niche for isotopic ecology. Frontiers in Ecology and the Environment, 5, 429 – 436. https://doi.org/10.1890/060150.01
dc.identifier.citedreferenceNewsome, S. D., Garbe, H. M., Wilson, E. C., & Gehrt, S. D. ( 2015 ). Individual variation in anthropogenic resource use in an urban carnivore. Oecologia, 178, 115 – 128. https://doi.org/10.1007/s00442‐014‐3205‐2
dc.identifier.citedreferencePrugh, L. R., Stoner, C. J., Epps, C. W., Bean, W. T., Ripple, W. J., Laliberte, A. S., & Brashares, J. S. ( 2009 ). The rise of the mesopredator. BioScience, 59, 779 – 791. https://doi.org/10.1525/bio.2009.59.9.9
dc.identifier.citedreferenceRanda, L. A., & Yunger, J. A. ( 2006 ). Carnivore occurence along and urban‐ rural gradient: A landscape‐ level analysis. Journal of Mammalogy, 87, 1154 – 1164.
dc.identifier.citedreferenceRashleigh, R. M., Krebs, R. A., & van Keulen, H. ( 2008 ). Population structure of coyote ( Canis latrans ) in the urban landscape of the Cleveland, Ohio Area. Ohio Journal of Science, 108, 54 – 59.
dc.identifier.citedreferenceReid, R. E. B., & Koch, P. L. ( 2017 ). Isotopic ecology of coyotes from scat and road kill carcasses: A complementary approach to feeding experiments. PLoS ONE, 12 ( 4 ), e0174897. https://doi.org/10.1371/journal.pone.0174897
dc.identifier.citedreferenceResasco, J., Tuff, K. T., Cunningham, S. A., Melbourne, B. A., Hicks, A. L., Newsome, S. D., & Davies, K. F. ( 2018 ). Generalist predator’s niche shifts reveal ecosystem changes in an experimentally fragmented landscape. Ecography, 41, 1209 – 1219. https://doi.org/10.1111/ecog.03476
dc.identifier.citedreferenceRich, M., Thompson, C., Prange, S., & Popescu, V. D. ( 2018 ). Relative importance of habitat characteristics and interspecific relations in determining terrestrial carnivore occurrence. Frontiers in Ecology and Evolution, 6, 78. https://doi.org/10.3389/fevo.2018.00078
dc.identifier.citedreferenceRipple, W. J., Estes, J. A., Schmitz, O. J., Constant, V., Kaylor, M. J., Lenz, A., … Wolf, C. ( 2016 ). What is a trophic cascade? Trends in Ecology & Evolution, 31, 842 – 849. https://doi.org/10.1016/j.tree.2016.08.010
dc.identifier.citedreferenceRipple, W. J., Wirsing, A. J., Wilmers, C. C., & Letnic, M. ( 2013 ). Widespread mesopredator effects after wolf extirpation. Biological Conservation, 160, 70 – 79. https://doi.org/10.1016/j.biocon.2012.12.033
dc.identifier.citedreferenceSlatyer, R. A., Hirst, M., & Sexton, J. P. ( 2013 ). Niche breadth predicts geographical range size: A general ecological pattern. Ecology Letters, 16, 1104 – 1114. https://doi.org/10.1111/ele.12140
dc.identifier.citedreferenceSteffan, S. A., Dharampal, P. S., Danforth, B. N., Gaines‐Day, H. R., Takizawa, Y., & Chikaraishi, Y. ( 2019 ). Omnivory in bees: Elevated trophic positions among all major bee families. The American Naturalist, 194, 414 – 421. https://doi.org/10.1086/704281
dc.identifier.citedreferenceThornton, D. H., & Murray, D. L. ( 2014 ). Influence of hybridization on niche shifts in expanding coyote populations. Diversity and Distributions, 20, 1355 – 1364. https://doi.org/10.1111/ddi.12253
dc.identifier.citedreferenceTrevelline, B. K., Fontaine, S. S., Hartup, B. K., & Kohl, K. D. ( 2019 ). Conservation biology needs a microbial renaissance: A call for the consideration of host‐associated microbiota in wildlife management practices. Proceedings of the Royal Society B: Biological Sciences, 286, 20182448. https://doi.org/10.1098/rspb.2018.2448
dc.identifier.citedreferenceWang, Y. W., Allen, M. L., & Wilmers, C. C. ( 2015 ). Mesopredator spatial and temporal responses to large predators and human development in the Santa Cruz Mountains of California. Biological Conservation, 190, 23 – 33. https://doi.org/10.1016/j.biocon.2015.05.007
dc.identifier.citedreferenceWheeldon, T., Patterson, B., & Beyer, D. ( 2012 ). Coyotes in wolves’ clothing. The American Midland Naturalist, 167, 416 – 420. https://doi.org/10.1674/0003‐0031‐167.2.416
dc.identifier.citedreferenceYoungblut, N. D., Reischer, G. H., Walters, W., Schuster, N., Walzer, C., Stalder, G., … Farnleitner, A. H. ( 2019 ). Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nature Communications, 10, 2200. https://doi.org/10.1038/s41467‐019‐10191‐3
dc.identifier.citedreferenceAlberti, M. ( 2015 ). Eco‐evolutionary dynamics in an urbanizing planet. Trends in Ecology & Evolution, 30, 114 – 126. https://doi.org/10.1016/j.tree.2014.11.007
dc.identifier.citedreferenceAmato, K. R., Yeoman, C. J., Kent, A., Righini, N., Carbonero, F., Estrada, A., … Leigh, S. R. ( 2013 ). Habitat degradation impacts black howler monkey ( Alouatta pigra ) gastrointestinal microbiomes. The ISME Journal, 7, 1344 – 1353. Retrieved from http://www.nature.com/ismej/journal/vaop/ncurrent/suppinfo/ismej201316s1.html
dc.identifier.citedreferenceAnderson, K. E., Russell, J. A., Moreau, C. S., Kautz, S., Sullam, K. E., Hu, Y. I., … Wheeler, D. E. ( 2012 ). Highly similar microbial communities are shared among related and trophically similar ant species. Molecular Ecology, 21, 2282 – 2296. https://doi.org/10.1111/j.1365‐294X.2011.05464.x
dc.identifier.citedreferenceAstudillo‐Garcia, C., Bell, J. J., Webster, N. S., Glasl, B., Jompa, J., Montoya, J. M., & Taylor, M. W. ( 2017 ). Evaluating the core microbiota in complex communities: A systematic investigation. Environmental Microbiology, 19, 1450 – 1462. https://doi.org/10.1111/1462‐2920.13647
dc.identifier.citedreferenceBearhop, S., Adams, C. E., Waldron, S., Fuller, R. A., & Macleod, H. ( 2004 ). Determining trophic niche width: A novel approach using stable isotope analysis. Journal of Animal Ecology, 73, 1007 – 1012. https://doi.org/10.1111/j.0021‐8790.2004.00861.x
dc.identifier.citedreferenceBen‐David, M., & Flaherty, E. A. ( 2012 ). Stable isotopes in mammalian research: A beginner’s guide. Journal of Mammalogy, 93, 312 – 328. https://doi.org/10.1644/11‐MAMM‐S‐166.1
dc.identifier.citedreferenceBolnick, D. I., Amarasekare, P., Araújo, M. S., Bürger, R., Levine, J. M., Novak, M., … Vasseur, D. A. ( 2011 ). Why intraspecific trait variation matters in community ecology. Trends in Ecology & Evolution, 26, 183 – 192. https://doi.org/10.1016/j.tree.2011.01.009
dc.identifier.citedreferenceBrickner, K. M., Grenier, M. B., Crosier, A. E., & Pauli, J. N. ( 2014 ). Foraging plasticity in a highly specialized carnivore, the endangered black‐footed ferret. Biological Conservation, 169, 1 – 5. https://doi.org/10.1016/j.biocon.2013.10.010
dc.identifier.citedreferenceBritton, J. R., & Andreou, D. ( 2016 ). Parasitism as a driver of trophic niche specialisation. Trends in Parasitology, 32, 437 – 445. https://doi.org/10.1016/j.pt.2016.02.007
dc.identifier.citedreferenceBrucker, R. M., & Bordenstein, S. R. ( 2012 ). Speciation by symbiosis. Trends in Ecology & Evolution, 27, 443 – 451. https://doi.org/10.1016/j.tree.2012.03.011
dc.identifier.citedreferenceChaves, P. B., Graeff, V. G., Lion, M. B., Oliveira, L. R., & Eizirik, E. ( 2012 ). DNA barcoding meets molecular scatology: Short mtDNA sequences for standardized species assignment of carnivore noninvasive samples. Molecular Ecology Resources, 12, 18 – 35. https://doi.org/10.1111/j.1755‐0998.2011.03056.x
dc.identifier.citedreferenceCodron, J., Duffy, K. J., Avenant, N. L., Sponheimer, M., Leichliter, J., Paine, O., … Codron, D. ( 2015 ). Stable isotope evidence for trophic niche partitioning in a South African savanna rodent community. Current Zoology, 61, 397 – 411. https://doi.org/10.1093/czoolo/61.3.397
dc.identifier.citedreferenceColborn, A. S., Kuntze, C. C., Gadsden, G. I., & Harris, N. C. ( 2020 ). Data from: Spatial variation in diet–microbe associations across populations of a generalist North American carnivore. Dryad Digital Repository, https://doi.org/10.5061/dryad.cnp5hqc2h
dc.identifier.citedreferenceCrooks, K. R., & Soule, M. E. ( 1999 ). Mesopredator release and avifaunal extinctions in a fragmented system. Nature, 400, 563 – 566. https://doi.org/10.1038/23028
dc.identifier.citedreferenceDavid, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., … Turnbaugh, P. J. ( 2014 ). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505, 559 – 563. https://doi.org/10.1038/nature12820
dc.identifier.citedreferenceEllington, E. H., & Gehrt, S. D. ( 2019 ). Behavioral responses by an apex predator to urbanization. Behavioral Ecology, 30, 821 – 829. https://doi.org/10.1093/beheco/arz019
dc.identifier.citedreferenceEstes, J. A., Terborgh, J., Brashares, J. S., Power, M. E., Berger, J., Bond, W. J., … Wardle, D. A. ( 2011 ). Trophic downgrading of planet earth. Science, 333, 301 – 306. https://doi.org/10.1126/science.1205106
dc.identifier.citedreferenceFlagel, D. G., Belovsky, G. E., Cramer, M. J., Beyer, J. D. E., & Robertson, K. E. ( 2017 ). Fear and loathing in a Great Lakes forest: Cascading effects of competition between wolves and coyotes. Journal of Mammalogy, 98, 77 – 84. https://doi.org/10.1093/jmammal/gyw162
dc.identifier.citedreferenceGaletti, M., Rodarte, R. R., Neves, C. L., Moreira, M., & Costa‐Pereira, R. ( 2016 ). Trophic niche differentiation in rodents and marsupials revealed by stable isotopes. PLoS ONE, 11, e0152494. https://doi.org/10.1371/journal.pone.0152494
dc.identifier.citedreferenceGese, E. M., Morey, P. S., & Gehrt, S. D. ( 2012 ). Influence of the urban matrix on space use of coyotes in the Chicago metropolitan area. Journal of Ethology, 30, 413 – 425. https://doi.org/10.1007/s10164‐012‐0339‐8
dc.identifier.citedreferenceGhoul, M., & Mitri, S. ( 2016 ). The ecology and evolution of microbial competition. Trends in Microbiology, 24, 833 – 845. https://doi.org/10.1016/j.tim.2016.06.011
dc.identifier.citedreferenceGomez, A., Petrzelkova, K., Yeoman, C. J., Vlckova, K., Mrázek, J., Koppova, I., … Leigh, S. R. ( 2015 ). Gut microbiome composition and metabolomic profiles of wild western lowland gorillas ( Gorilla gorilla gorilla ) reflect host ecology. Molecular Ecology, 24, 2551 – 2565. https://doi.org/10.1111/mec.13181
dc.identifier.citedreferenceGompper, M. E. ( 2002 ). The ecology of northeast coyotes: Current knowledge and priorities for future research. Issue 17 of WCS Working Paper. Bronx, NY: Wildlife Conservation Society.
dc.identifier.citedreferenceHamady, M., & Knight, R. ( 2009 ). Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome Research, 19, 1141 – 1152. https://doi.org/10.1101/gr.085464.108
dc.identifier.citedreferenceHarris, N. C., & Dunn, R. R. ( 2013 ). Species loss on spatial patterns and composition of zoonotic parasites. Proceedings of the Royal Society B: Biological Sciences, 280, 1847. https://doi.org/10.1098/rspb.2013.1847
dc.identifier.citedreferenceHarris, N. C., Garshong, R. A., & Gray, M. ( 2018 ). Distinct isotopic signatures reveal effect of ecoregion on small mammals of Ghana. Journal of Mammalogy, 99, 117 – 123. https://doi.org/10.1093/jmammal/gyx158
dc.identifier.citedreferenceHe, Y., Caporaso, J. G., Jiang, X.‐T., Sheng, H.‐F., Huse, S. M., Rideout, J. R., … Zhou, H.‐W. ( 2015 ). Stability of operational taxonomic units: An important but neglected property for analyzing microbial diversity. Microbiome, 3, 20. https://doi.org/10.1186/s40168‐015‐0081‐x
dc.identifier.citedreferenceJahren, A. H., & Kraft, R. A. ( 2008 ). Carbon and nitrogen stable isotopes in fast food: Signatures of corn and confinement. Proceedings of the National Academy of Sciences of the United States of America, 105, 17855 – 17860. https://doi.org/10.1073/pnas.0809870105
dc.identifier.citedreferenceKohl, K. D., Varner, J., Wilkening, J. L., & Dearing, M. D. ( 2018 ). Gut microbial communities of American pikas ( Ochotona princeps ): Evidence for phylosymbiosis and adaptations to novel diets. Journal of Animal Ecology, 87, 323 – 330. https://doi.org/10.1111/1365‐2656.12692
dc.identifier.citedreferenceKozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. ( 2013 ). Development of a dual‐index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq illumina sequencing platform. Applied and Environmental Microbiology, 79, 5112 – 5120. https://doi.org/10.1128/aem.01043‐13
dc.identifier.citedreferenceLayman, C. A., Arrington, D. A., Montaña, C. G., & Post, D. M. ( 2007 ). Can stable isotope ratios provide for community‐wide measures of trophic structure? Ecology, 88, 42 – 48. https://doi.org/10.1890/0012‐9658(2007)88[42:CSIRPF]2.0.CO;2
dc.identifier.citedreferenceLevi, T., Kilpatrick, A. M., Mangel, M., & Wilmers, C. C. ( 2012 ). Deer, predators, and the emergence of Lyme disease. Proceedings of the National Academy of Sciences of the United States of America, 109, 10942 – 10947. https://doi.org/10.1073/pnas.1204536109
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.