Show simple item record

Four Theories of the Madden‐Julian Oscillation

dc.contributor.authorZhang, C.
dc.contributor.authorAdames, Á. F.
dc.contributor.authorKhouider, B.
dc.contributor.authorWang, B.
dc.contributor.authorYang, D.
dc.date.accessioned2020-08-10T20:56:11Z
dc.date.availableWITHHELD_14_MONTHS
dc.date.available2020-08-10T20:56:11Z
dc.date.issued2020-09
dc.identifier.citationZhang, C.; Adames, Á. F. ; Khouider, B.; Wang, B.; Yang, D. (2020). "Four Theories of the Madden‐Julian Oscillation." Reviews of Geophysics 58(3): n/a-n/a.
dc.identifier.issn8755-1209
dc.identifier.issn1944-9208
dc.identifier.urihttps://hdl.handle.net/2027.42/156240
dc.description.abstractStudies of the Madden‐Julian Oscillation (MJO) have progressed considerably during the past decades in observations, numerical modeling, and theoretical understanding. Many theoretical attempts have been made to identify the most essential processes responsible for the existence of the MJO. Criteria are proposed to separate a hypothesis from a theory (based on the first principles with quantitative and testable assumptions, able to predict quantitatively the fundamental scales and eastward propagation of the MJO). Four MJO theories are selected to be summarized and compared in this article: the skeleton theory, moisture‐mode theory, gravity‐wave theory, and trio‐interaction theory of the MJO. These four MJO theories are distinct from each other in their key assumptions, parameterized processes, and, particularly, selection mechanisms for the zonal spatial scale, time scale, and eastward propagation of the MJO. The comparison of the four theories and more recent development in MJO dynamical approaches lead to a realization that theoretical thinking of the MJO is diverse and understanding of MJO dynamics needs to be further advanced.Plain Language SummaryThe Madden‐Julian Oscillation (MJO) is a tropical phenomenon that includes heavy rainfall and stiff wind over an area of roughly 1,500 km in latitude and 4,500 km in longitude. It starts over the Indian Ocean and moves eastward to the Pacific Ocean in about a month. As it moves eastward, it influences weather and climate phenomena in many parts of the world. Understanding the fundamental physics of the MJO forms the base for forecasting it and its global influences. This article reviews four theories of the MJO and compares their similarities and differences. Future studies needed to further our understanding of the MJO are recommended.Key PointsA theory for the Madden‐Julian Oscillation (MJO) must explain its most fundamental features of temporal‐spatial scales and eastward propagationFour theories provide contrasting explanations for the MJO based on different assumptions and treatment of physical processesThese MJO theories represent a general progress toward understanding the MJO and also the need to further advance such understanding
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othertrio‐interaction model
dc.subject.othermoisture‐mode model
dc.subject.otherskeleton model
dc.subject.othergravity‐wave model
dc.subject.othertheory
dc.subject.otherMadden‐Julian Oscillation
dc.titleFour Theories of the Madden‐Julian Oscillation
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156240/2/rog20228.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156240/1/rog20228_am.pdfen_US
dc.identifier.doi10.1029/2019RG000685
dc.identifier.sourceReviews of Geophysics
dc.identifier.citedreferenceSperber, K. R., Slingo, J. M., Inness, P. M., & Lau, K. M. ( 1997 ). On the maintenance and initiation of the intraseasonal oscillation in the NCEP/NCAR reanalysis and the GLA and UKMO AMIP simulations. Climate Dynamics, 13, 769 – 795. https://doi.org/10.1007/s003820050197
dc.identifier.citedreferenceWolding, B. O., Maloney, E. D., Henderson, S., & Branson, M. ( 2017 ). Climate change and the Madden‐Julian Oscillation: A vertically resolved weak temperature gradient analysis. Journal of Advances in Modeling Earth Systems, 9, 307 – 331. https://doi.org/10.1002/2016MS000843
dc.identifier.citedreferenceWoolnough, S. J., Slingo, J. M., & Hoskins, B. J. ( 2001 ). The organization of tropical convection by intraseasonal sea surface temperature anomalies. Quarterly Journal of the Royal Meteorological Society, 127, 887 – 908. https://doi.org/10.1002/qj.49712757310
dc.identifier.citedreferenceYamagata, T., & Hayashi, Y. ( 1984 ). A simple diagnostic model for the 30–50 day oscillation in the tropics. Journal of the Meteorological Society of Japan, 62, 709 – 717. https://doi.org/10.2151/jmsj1965.62.5_709
dc.identifier.citedreferenceYanai, M., Esbensen, S., & Chu, J.‐H. ( 1973 ). Determination of bulk properties of tropical cloud clusters from large‐scale heat and moisture budgets. Journal of the Atmospheric Sciences, 30, 611 – 627. https://doi.org/10.1175/1520-0469(1973)030%3C0611:dobpot%3E2.0.co;2
dc.identifier.citedreferenceYang, D. ( 2018a ). Boundary layer diabatic processes, the virtual effect, and convective self‐aggregation. Journal of Advances in Modeling Earth Systems, 10, 2163 – 2176. https://doi.org/10.1029/2017ms001261
dc.identifier.citedreferenceYang, D. ( 2018b ). Boundary layer height and buoyancy determine the horizontal scale of convective self‐aggregation. Journal of the Atmospheric Sciences, 75, 469 – 478. https://doi.org/10.1175/jas-d-17-0150.1
dc.identifier.citedreferenceYang, D. ( 2019 ). Convective heating leads to self‐aggregation by generating available potential energy. Geophysical Research Letters, 46, 10,687 – 10,696. https://doi.org/10.1029/2019GL083805
dc.identifier.citedreferenceYang, D. ( 2020 ). A shallow water model for convective self‐aggregation. Journal of the Atmospheric Sciences. Submitted https://doi.org/10.31223/osf.io/rtc2y
dc.identifier.citedreferenceYang, D., & Ingersoll, A. P. ( 2011 ). Testing the hypothesis that the MJO is a mixed Rossby–Gravity wave packet. Journal of the Atmospheric Sciences, 68, 226 – 239. https://doi.org/10.1175/2010jas3563.1
dc.identifier.citedreferenceYang, D., & Ingersoll, A. P. ( 2013 ). Triggered convection, gravity waves, and the MJO: A shallow‐water model. Journal of the Atmospheric Sciences, 70, 2476 – 2486. https://doi.org/10.1175/jas-d-12-0255.1
dc.identifier.citedreferenceYang, D., & Ingersoll, A. P. ( 2014 ). A theory of the MJO horizontal scale. Geophysical Research Letters, 41, 1059 – 1064. https://doi.org/10.1002/2013GL058542
dc.identifier.citedreferenceYang, Y.‐M., & Wang, B. ( 2018 ). Improving MJO simulation by enhancing the interaction between boundary layer convergence and lower tropospheric heating. Climate Dynamics, 52. https://doi.org/10.1007/s00382-018-4407-9
dc.identifier.citedreferenceYano, J. I., & Tribbia, J. J. ( 2017 ). Tropical atmospheric Madden–Julian Oscillation: A strongly nonlinear free solitary Rossby wave? Journal of the Atmospheric Sciences, 74 ( 10 ), 3473 – 3489. https://doi.org/10.1175/jas-d-16-0319.1
dc.identifier.citedreferenceYoneyama, K., Zhang, C., & Long, C. N. ( 2013 ). Tracking pulses of the Madden‐Julian oscillation. Bulletin of the American Meteorological Society, 94, 1871 – 1891. https://doi.org/10.1175/bams-d-12-00157.1
dc.identifier.citedreferenceYoo, C., & Son, S. W. ( 2016 ). Modulation of the boreal wintertime Madden‐Julian oscillation by the stratospheric quasi‐biennial oscillation. Geophysical Research Letters, 43, 1392 – 1398. https://doi.org/10.1002/2016GL067762
dc.identifier.citedreferenceYu, J.‐Y., & Neelin, J. D. ( 1994 ). Modes of tropical variability under convective adjustment and the Madden‐Julian Oscillation. Part II: Numerical results. Journal of the Atmospheric Sciences, 51, 1895 – 1914. https://doi.org/10.1175/1520-0469(1994)051%3C1895:motvuc%3E2.0.co;2
dc.identifier.citedreferenceZhang, C. ( 1996 ). Atmospheric intraseasonal variability at the surface in the western Pacific Ocean. Journal of the Atmospheric Sciences, 53, 739 – 785. https://doi.org/10.1175/1520-0469(1996)053%3C0739:aivats%3E2.0.co;2
dc.identifier.citedreferenceZhang, C. ( 2005 ). Madden‐Julian Oscillation. Reviews of Geophysics, 43, RG2003. https://doi.org/10.1029/2004RG000158
dc.identifier.citedreferenceZhang, C. ( 2013 ). Madden–Julian oscillation: Bridging weather and climate. Bulletin of the American Meteorological Society, 94, 1849 – 1870. https://doi.org/10.1175/bams-d-12-00026.1
dc.identifier.citedreferenceZhang, C., & Dong, M. ( 2004 ). Seasonality in the Madden–Julian oscillation. Journal of Climate, 17 ( 16 ), 3169 – 3180. https://doi.org/10.1175/1520-0442(2004)017%3C3169:sitmo%3E2.0.co;2
dc.identifier.citedreferenceZhang, C., Dong, M., Gualdi, S., Hendon, H. H., Maloney, E. D., Marshall, A., Sperber, K. R., & Wang, W. ( 2006 ). Simulations of the Madden‐Julian Oscillation in four pairs of coupled and uncoupled global models. Climate Dynamics, 27, 573 – 592. https://doi.org/10.1007/s00382-006-0148-2
dc.identifier.citedreferenceZhang, C., & Ling, J. ( 2017 ). Barrier effect of the Indo‐Pacific maritime continent on the MJO: Perspectives from tracking MJO precipitation. Journal of Climate, 30, 3439 – 3459. https://doi.org/10.1175/jcli-d-16-0614.1
dc.identifier.citedreferenceZhang, C., & McPhaden, M. J. ( 2000 ). Intraseasonal surface cooling in the equatorial western Pacific. Journal of Climate, 13, 2261 – 2276. https://doi.org/10.1175/1520-0442(2000)013%3C2261:iscite%3E2.0.co;2
dc.identifier.citedreferenceZhang, C., & Zhang, B. ( 2018 ). QBO‐MJO connection. Journal of Geophysical Research: Atmospheres, 123, 2957 – 2967. https://doi.org/10.1002/2017jd028171
dc.identifier.citedreferenceZhu, H., & Hendon, H. ( 2015 ). Role of large scale moisture advection for simulation of the MJO with increased entrainment. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.2510
dc.identifier.citedreferenceZuluaga, M. D., & Houze, R. A. Jr. ( 2013 ). Evolution of the population of precipitating convective systems over the equatorial Indian Ocean in active phases of the Madden–Julian Oscillation. Journal of the Atmospheric Sciences, 70, 2713 – 2725. https://doi.org/10.1175/jas-d-12-0311.1
dc.identifier.citedreferenceAdames, Á. F. ( 2017 ). Precipitation budget of the Madden‐Julian Oscillation. Journal of the Atmospheric Sciences, 74 ( 6 ), 1799 – 1817. https://doi.org/10.1175/jas-d-16-0242.1
dc.identifier.citedreferenceAdames, Á. F., & Kim, D. ( 2016 ). The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. Journal of the Atmospheric Sciences, 73 ( 3 ), 913 – 941. https://doi.org/10.1175/jas-d-15-0170.1
dc.identifier.citedreferenceAdames, Á. F., Kim, D., Sobel, A. H., Del Genio, A., & Wu, J. ( 2017a ). Changes in the structure and propagation of the MJO with increasing CO 2. Journal of Advances in Modeling Earth Systems, 9. https://doi.org/10.1002/2017MS000913
dc.identifier.citedreferenceAdames, Á. F., Kim, D., Sobel, A. H., Del Genio, A., & Wu, J. ( 2017b ). Characterization of moist processes associated with changes in the propagation of the MJO with increasing CO 2. Journal of Advances in Modeling Earth Systems, 9, 2946 – 2967. https://doi.org/10.1002/2017ms001040
dc.identifier.citedreferenceAdames, Á. F., & Wallace, J. M. ( 2014 ). Three‐dimensional structure and evolution of the vertical velocity and divergence fields in the MJO. Journal of the Atmospheric Sciences, 71, 4661 – 4681. https://doi.org/10.1175/jas-d-14-0091.1
dc.identifier.citedreferenceAdames, Á. F., & Wallace, J. M. ( 2015 ). Three‐dimensional structure and evolution of the moisture field in the MJO. Journal of the Atmospheric Sciences, 72 ( 10 ), 3733 – 3754. https://doi.org/10.1175/jas-d-15-0003.1
dc.identifier.citedreferenceAdames, Á. F., Wallace, J. M., & Monteiro, J. M. ( 2016 ). Seasonality of the structure and propagation characteristics of the MJO. Journal of the Atmospheric Sciences, 73, 3511 – 3526. https://doi.org/10.1175/jas-d-15-0232.1
dc.identifier.citedreferenceAhmed, F., & Neelin, J. D. ( 2018 ). Reverse engineering the tropical precipitation‐buoyancy relationship. Journal of the Atmospheric Sciences, 75. https://doi.org/10.1175/jas-d-17-0333.1
dc.identifier.citedreferenceAhmed, F., & Schumacher, C. ( 2015 ). Convective and stratiform components of the precipitation‐moisture relationship. Geophysical Research Letters, 42, 10,453 – 10,462. https://doi.org/10.1002/2015gl066957
dc.identifier.citedreferenceAhn, M.‐S., Kim, D., Sperber, K. R., Kang, I.‐S., Maloney, E., Waliser, D., Hendon, H., & on behalf of WGNE MJO Task Force ( 2017 ). MJO Simulation in CMIP5 Climate Models: MJO Skill Metrics and Process‐Oriented Diagnosis. Climate Dynamics, 49 ( 11 ), 4023 – 4045.
dc.identifier.citedreferenceAjayamohan, R. S., Khouider, B., & Majda, A. J. ( 2013 ). Realistic initiation and dynamics of the Madden‐Julian oscillation in a coarse resolution aquaplanet GCM. Geophysical Research Letters, 40, 6252 – 6257. https://doi.org/10.1002/2013gl058187
dc.identifier.citedreferenceAndersen, J. A., & Kuang, Z. ( 2012 ). Moist static energy budget of MJO‐like disturbances in the atmosphere of a zonally symmetric aquaplanet. Journal of Climate, 25 ( 8 ), 2782 – 2804. https://doi.org/10.1175/jcli-d-11-00168.1
dc.identifier.citedreferenceAnderson, J. R., & Stevens, D. E. ( 1987 ). The response of the tropical atmosphere to low frequency thermal forcing. Journal of the Atmospheric Sciences, 44, 676 – 686. https://doi.org/10.1175/1520-0469(1987)044%3C0676:trotta%3E2.0.co;2
dc.identifier.citedreferenceArnold, N. P., & Randall, D. A. ( 2015 ). Global‐scale convective aggregation: Implications for the Madden‐Julian Oscillation. Journal of Advances in Modeling Earth Systems, 7, 1499 – 1518. https://doi.org/10.1002/2015MS000498
dc.identifier.citedreferenceBack, L. E., & Bretherton, C. S. ( 2009 ). On the relationship between SST gradients, boundary layer winds, and convergence over the tropical oceans. J. Climate, 22, 4182 – 4196. https://doi.org/10.1175/2009JCLI2392.1
dc.identifier.citedreferenceBarenblatt, G. I. ( 2003 ). Scaling (Vol. 34 ). Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferenceBenedict, J. J., Maloney, E. D., Sobel, A. H., & Frierson, D. M. W. ( 2014 ). Gross moist stability and MJO simulation skill in three full‐physics GCMs. Journal of the Atmospheric Sciences, 71, 3327 – 3349. https://doi.org/10.1175/JAS-D-13-0240.1
dc.identifier.citedreferenceBenedict, J. J., & Randall, D. A. ( 2007 ). Observed characteristics of the MJO relative to maximum rainfall. Journal of the Atmospheric Sciences, 64 ( 7 ), 2332 – 2354. https://doi.org/10.1175/jas3968.1
dc.identifier.citedreferenceBetts, A., & Miller, M. ( 1986 ). A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air‐mass data sets. Quarterly Journal of the Royal Meteorological Society, 112 ( 473 ), 693 – 709. https://doi.org/10.1002/qj.49711247308
dc.identifier.citedreferenceBetts, A. K. ( 1986 ). A new convective adjustment scheme. Part I: Observational and theoretical basis. Quarterly Journal of the Royal Meteorological Society, 112 ( 473 ), 677 – 691. https://doi.org/10.1002/qj.49711247307
dc.identifier.citedreferenceBiello, J. A., & Majda, A. J. ( 2005 ). A new multiscale model for the Madden–Julian oscillation. Journal of the Atmospheric Sciences, 62, 1694 – 1721. https://doi.org/10.1175/jas3455.1
dc.identifier.citedreferenceBlade, I., & Hartmann, D. L. ( 1993 ). Tropical intraseasonal oscillation in a simple nonlinear model. Journal of the Atmospheric Sciences, 50, 2922 – 2939. https://doi.org/10.1175/1520-0469(1993)050%3C2922:tioias%3E2.0.co;2
dc.identifier.citedreferenceBretherton, C. S., Blossey, P. N., & Khairoutdinov, M. ( 2005 ). An energy‐balance analysis of deep convective self‐aggregation above uniform SST. Journal of the Atmospheric Sciences, 62 ( 12 ), 4273 – 4292.
dc.identifier.citedreferenceYang, D., & Seidel, S. D. ( 2020 ). The incredible lightness of water vapor. Journal of Climate, 33, 2841 – 2851. https://doi.org/10.1175/jcli-d-19-0260.1
dc.identifier.citedreferenceBretherton, C. S., Peters, M. E., & Back, L. E. ( 2004 ). Relationships between water vapor path and precipitation over the tropical oceans. Journal of Climate, 17, 1517 – 1528. https://doi.org/10.1175/1520-0442(2004)017%3C1517:rbwvpa%3E2.0.co;2
dc.identifier.citedreferenceBrown, R. G., & Zhang, C. ( 1997 ). Variability of midtropospheric moisture and its effect on cloud‐top height distribution during TOGA COARE. Journal of the Atmospheric Sciences, 54, 2760 – 2774. https://doi.org/10.1175/1520-0469(1997)054%3C2760:vommai%3E2.0.co;2
dc.identifier.citedreferenceChang, C. P. ( 1977 ). Viscous internal gravity waves and low‐frequency oscillations in the tropics. Journal of the Atmospheric Sciences, 34, 901 – 910. https://doi.org/10.1175/1520-0469(1977)034%3C0901:vigwal%3E2.0.co;2
dc.identifier.citedreferenceChang, C. P., & Lim, H. ( 1988 ). Kelvin wave‐CISK: A possible mechanism for the 30‐50 day oscillations. Journal of the Atmospheric Sciences, 45, 1709 – 1720. https://doi.org/10.1175/1520-0469(1988)045%3C1709:kwcapm%3E2.0.co;2
dc.identifier.citedreferenceChao, W. C. ( 1987 ). On the origin of the tropical intraseasonal oscillation. Journal of the Atmospheric Sciences, 44, 1940 – 1949. https://doi.org/10.1175/1520-0469(1987)044%3C1940:otoott%3E2.0.co;2
dc.identifier.citedreferenceChao, W. C., & Chen, B. ( 2001 ). The role of surface friction in tropical intraseasonal oscillation. Monthly Weather Review, 129, 896 – 904. https://doi.org/10.1175/1520-0493(2001)129%3C0896:trosfi%3E2.0.co;2
dc.identifier.citedreferenceCharney, J. G. ( 1963 ). A note on large‐scale motions in the tropics. Journal of the Atmospheric Sciences, 20 ( 6 ), 607 – 609. https://doi.org/10.1175/1520-0469(1963)020%3C0607:anolsm%3E2.0.co;2
dc.identifier.citedreferenceChen, G., & Wang, B. ( 2018a ). Does MJO have a westward group velocity? Journal of Climate, 31, 2435 – 2443. https://doi.org/10.1175/jcli-d-17-0446.1
dc.identifier.citedreferenceChen, G., & Wang, B. ( 2018b ). Dynamic moisture mode versus moisture mode in MJO dynamics: Importance of the wave feedback and boundary layer convergence feedback. Climate Dynamics, 52. https://doi.org/10.1007/s00382-018-4433-7
dc.identifier.citedreferenceChen, S. S., Kerns, B. W., Guy, N., Jorgensen, D. P., Delanoë, J., Viltard, N., Zappa, C. J., Judt, F., Lee, C. Y., & Savarin, A. ( 2016 ). Aircraft observations of dry air, the ITCZ, convective cloud systems, and cold pools in MJO during DYNAMO. Bulletin of the American Meteorological Society, 97 ( 3 ), 405 – 423. https://doi.org/10.1175/bams-d-13-00196.1
dc.identifier.citedreferenceChen, S. S., Mapes, B. E., & Houze, R. A. Jr. ( 1996 ). Multiscale variability of deep convection in relation to large‐scale circulation in TOGA COARE. Journal of the Atmospheric Sciences, 53, 1380 – 1409. https://doi.org/10.1175/1520-0469(1996)053%3C1380:mvodci%3E2.0.co;2
dc.identifier.citedreferenceChikira, M. ( 2014 ). Eastward‐propagating intraseasonal oscillation represented by Chikira‐Sugiyama cumulus parameterization. Part II: Understanding moisture variation under weak temperature gradient balance. Journal of the Atmospheric Sciences, 71 ( 2 ), 615 – 639. https://doi.org/10.1175/jas-d-13-038.1
dc.identifier.citedreferenceCrum, F. X., & Dunkerton, T. J. ( 1992 ). Analytic and numerical models of wave‐CISK with conditional heating. Journal of the Atmospheric Sciences, 49, 1693 – 1708. https://doi.org/10.1175/1520-0469(1992)049%3C1693:aanmow%3E2.0.co;2
dc.identifier.citedreferenceDel Genio, A. D., Chen, Y.‐H., Kim, D., & Yao, M.‐S. ( 2012 ). The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. Journal of Climate, 25, 3755 – 3770. https://doi.org/10.1175/JCLI-D-11-00384.1
dc.identifier.citedreferenceDel Genio, A. D., Wu, J., Wolf, A. B., Chen, Y. H., Yao, M.‐S., & Kim, D. ( 2015 ). Constraints on cumulus parameterization from simulations of observed MJO events. Journal of Climate, 28 ( 16 ), 6419 – 6442. https://doi.org/10.1175/JCLI-D-14-00832.1
dc.identifier.citedreferenceDeMott, C. A., Klingaman, N. P., & Woolnough, S. J. ( 2015 ). Atmosphere‐ocean coupled processes in the Madden‐Julian oscillation. Reviews of Geophysics, 53, 1099 – 1154. https://doi.org/10.1002/2014RG000478
dc.identifier.citedreferenceDias, J., Sakaeda, N., Kiladis, G.N., & Kikuchi, K. ( 2017 ). Influences of the MJO on the space‐time organization of tropical convection. Journal of Geophysical Research: Atmospheres, 122, 8012 – 8032. https://doi.org/10.1002/2017JD026526
dc.identifier.citedreferenceDerbyshire, S. H., Beau, I., Bechtold, P., Grandpeix, J. Y., Piriou, J. M., Redelsperger, J.‐L., & Soares, P. M. M. ( 2004 ). Sensitivity of moist convection to environmental humidity. Quarterly Journal of the Royal Meteorological Society, 130 ( 604 ), 3055 – 3079. https://doi.org/10.1256/qj.03.130
dc.identifier.citedreferenceDeser, C. ( 1993 ). Diagnosis of the surface momentum balance over the tropical Pacific Ocean. Journal of Climate, 6, 64 – 74. https://doi.org/10.1175/1520-0442(1993)006%3C0064:dotsmb%3E2.0.co;2
dc.identifier.citedreferenceDias, J., Leroux, S., Tulich, S. N., & Kiladis, G. N. ( 2013 ). How systematic is organized tropical convection within the MJO? Geophysical Research Letters, 40, 1420 – 1425. https://doi.org/10.1002/grl.50308
dc.identifier.citedreferenceEmanuel, K., Neelin, J. D., & Bretherton, C. ( 1994 ). On large‐scale circulations in convecting atmospheres. Quarterly Journal of the Royal Meteorological Society, 120, 1111 – 1143. https://doi.org/10.1002/qj.49712051902
dc.identifier.citedreferenceEmanuel, K. A. ( 1995 ). The behavior of a simple hurricane model using a convective scheme based on subcloud‐layer entropy equilibrium. Journal of the Atmospheric Sciences, 52 ( 22 ), 3960 – 3968.
dc.identifier.citedreferenceMatthews, A. J. ( 2000 ). Propagation mechanisms for the Madden‐Julian oscillation. Quarterly Journal of the Royal Meteorological Society, 126, 2637 – 2651. https://doi.org/10.1002/qj.49712656902
dc.identifier.citedreferenceEmanuel, K. A. ( 1987 ). An air‐sea interaction model of intraseasonal oscillations in the tropics. Journal of the Atmospheric Sciences, 44, 2324 – 2340. https://doi.org/10.1175/1520-0469(1987)044%3C2324:aasimo%3E2.0.co;2
dc.identifier.citedreferenceFeng, J., Li, T., & Zhu, W. ( 2015 ). Propagating and nonpropagating MJO events over Maritime Continent. Journal of Climate, 28, 8430 – 8449. https://doi.org/10.1175/jcli-d-15-0085.1
dc.identifier.citedreferenceFlatau, M., Flatau, P. J., Phoebus, P., & Niiler, P. P. ( 1997 ). The feedback between equatorial convection and local radiative and evaporative processes: The implications for intraseasonal oscillations. Journal of the Atmospheric Sciences, 54, 2373 – 2386. https://doi.org/10.1175/1520-0469(1997)054%3C2373:tfbeca%3E2.0.co;2
dc.identifier.citedreferenceFrederiksen, J. S. ( 2002 ). Genesis of intraseasonal oscillations and equatorial waves. Journal of the Atmospheric Sciences, 59, 2761 – 2781. https://doi.org/10.1175/1520-0469(2002)059%3C2761:goioae%3E2.0.co;2
dc.identifier.citedreferenceFrierson, D. M., Majda, A. J., & Pauluis, O. M. ( 2004 ). Large scale dynamics of precipitation fronts in the tropical atmosphere: A novel relaxation limit. Communications in Mathematical Sciences, 2, 591 – 626. https://doi.org/10.4310/cms.2004.v2.n4.a3
dc.identifier.citedreferenceFuchs, Ž., & Raymond, D. J. ( 2002 ). Large‐scale modes of a nonrotating atmosphere with water vapor and cloud–radiation feedbacks. Journal of the Atmospheric Sciences, 59, 1669 – 1679. https://doi.org/10.1175/1520-0469(2002)059%3C1669:lsmoan%3E2.0.co;2
dc.identifier.citedreferenceFuchs, Ž., & Raymond, D. J. ( 2005 ). Large‐scale modes in a rotating atmosphere with radiative–convective instability and WISHE. Journal of the Atmospheric Sciences, 62, 4084 – 4094. https://doi.org/10.1175/JAS3582.1
dc.identifier.citedreferenceFuchs, Ž., & Raymond, D. J. ( 2007 ). A simple, vertically resolved model of tropical disturbances with a humidity closure. Tellus, 59A, 344 – 354. https://doi.org/10.1111/j.1600-0870.2007.00230.x
dc.identifier.citedreferenceFuchs, Ž., & Raymond, D. J. ( 2017 ). A simple model of intraseasonal oscillations. Journal of Advances in Modeling Earth Systems, 9, 1195 – 1211. https://doi.org/10.1002/2017MS000963
dc.identifier.citedreferenceGill, A. E. ( 1980 ). Some simple solutions for heat‐induced tropical circulation. Quarterly Journal of the Royal Meteorological Society, 106 ( 449 ), 447 – 462. https://doi.org/10.1002/qj.49710644905
dc.identifier.citedreferenceGonzalez, A. O., & Jiang, X. ( 2017 ). Winter mean lower tropospheric moisture over the Maritime Continent as a climate model diagnostic metric for the propagation of the Madden‐Julian oscillation. Geophysical Research Letters, 44, 2588 – 2596. https://doi.org/10.1002/2016GL072430
dc.identifier.citedreferenceGottschalck, J., Wheeler, M., Weickmann, K., Vitart, F., Savage, N., Lin, H., Hendon, H., Waliser, D., Sperber, K., Nakagawa, M., Prestrelo, C., Flatau, M., & Higgins, W. ( 2010 ). A framework for assessing operational Madden‐Julian Oscillation forecasts: A CLIVAR MJO Working Group Project. Bulletin of the American Meteorological Society, 91, 1247 – 1258. https://doi.org/10.1175/2010BAMS2816.1
dc.identifier.citedreferenceHayashi, M., & Itoh, H. ( 2017 ). A new mechanism of the slow eastward propagation of unstable disturbances with convection in the tropics: Implications for the MJO. Journal of the Atmospheric Sciences, 74 ( 11 ), 3749 – 3769. https://doi.org/10.1175/jas-d-16-0300.1
dc.identifier.citedreferenceHayashi, Y., & Golder, D. G. ( 1986 ). Tropical intraseasonal oscillation appearing in the GFDL general circulation model and FGGE data. Part I: Phase propagation. Journal of the Atmospheric Sciences, 43, 3058 – 3067. https://doi.org/10.1175/1520-0469(1986)043%3C3058:tioaia%3E2.0.co;2
dc.identifier.citedreferenceHeld, I. M., Hemler, R. S., & Ramaswamy, V. ( 1993 ). Radiative‐convective equilibrium with explicit two‐dimensional moist convection. Journal of the Atmospheric Sciences, 50 ( 23 ), 3909 – 3927. https://doi.org/10.1175/1520-0469(1993)050h3909:RCEWETi2.0.CO;2
dc.identifier.citedreferenceHendon, H. H., & Liebmann, B. ( 1990 ). The intraseasonal (30–50 day) oscillation of the Australian summer monsoon. Journal of the Atmospheric Sciences, 47, 2909 – 2923. https://doi.org/10.1175/1520-0469(1990)047%3C2909:tidoot%3E2.0.co;2
dc.identifier.citedreferenceHendon, H. H., & Salby, M. L. ( 1994 ). The life cycle of the Madden‐Julian Oscillation. Journal of the Atmospheric Sciences, 51, 2225 – 2237. https://doi.org/10.1175/1520-0469(1994)051%3C2225:tlcotm%3E2.0.co;2
dc.identifier.citedreferenceHolloway, C. E., & Neelin, J. D. ( 2009 ). Moisture vertical structure, column water vapor, and tropical deep convection. Journal of the Atmospheric Sciences, 66, 1665 – 1683. https://doi.org/10.1175/2008JAS2806.1
dc.identifier.citedreferenceHood, L. L. ( 2017 ). QBO/solar modulation of the boreal winter Madden‐Julian oscillation: A prediction for the coming solar minimum. Geophysical Research Letters, 44, 3849 – 3857. https://doi.org/10.1002/2017gl072832
dc.identifier.citedreferenceHouze, R. A. Jr., Chen, S. S., Kingsmill, D. E., Serra, Y., & Yuter, S. E. ( 2000 ). Convection over the Pacific warm pool in relation to the atmospheric Kelvin‐Rossby wave. Journal of the Atmospheric Sciences, 57 ( 18 ), 3058 – 3089. https://doi.org/10.1175/1520-0469(2000)057%3C3058:cotpwp%3E2.0.co;2
dc.identifier.citedreferenceHsu, H.‐H., Hoskins, B. J., & Jin, F.‐F. ( 1990 ). The 1985/86 intraseasonal oscillation and the role of the extratropics. Journal of the Atmospheric Sciences, 47, 823 – 839. https://doi.org/10.1175/1520-0469(1990)047%3C0823:tioatr%3E2.0.co;2
dc.identifier.citedreferenceHsu, P.‐C., & Li, T. ( 2012 ). Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. Journal of Climate, 25, 4914 – 4931. https://doi.org/10.1175/jcli-d-11-00310.1
dc.identifier.citedreferenceHu, Q., & Randall, D. A. ( 1994 ). Low‐frequency oscillations in radiative‐convective systems. Journal of the Atmospheric Sciences, 51, 1089 – 1099. https://doi.org/10.1175/1520-0469(1994)051%3C1089:lfoirc%3E2.0.co;2
dc.identifier.citedreferenceHu, Q., & Randall, D. A. ( 1995 ). Low‐frequency oscillations in radiative‐convective systems. Part II: An idealized model. Journal of the Atmospheric Sciences, 52, 478 – 490. https://doi.org/10.1175/1520-0469(1995)052%3C0478:lfoirc%3E2.0.co;2
dc.identifier.citedreferenceHung, M. P., Lin, J. L., Wang, W. Q., Kim, D., Shinoda, T., & Weaver, S. J. ( 2013 ). MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. Journal of Climate, 26 ( 17 ), 6185 – 6214. https://doi.org/10.1175/Jcli-D-12-00541.1
dc.identifier.citedreferenceInoue, K., Adames, Á. F., & Yasunaga, K. ( 2020 ). Vertical velocity profiles in convectively coupled equatorial waves and MJO: New diagnoses of vertical velocity profiles in the wavenumber‐frequency domain. Journal of the Atmospheric Sciences, 77 ( 6 ), 2139 – 2162. https://doi.org/10.1175/JAS-D-19-0209.1
dc.identifier.citedreferenceInoue, K., & Back, L. E. ( 2015 ). Gross moist stability assessment during TOGA COARE: Various interpretations of gross moist stability. Journal of the Atmospheric Sciences, 72 ( 11 ), 4148 – 4166. https://doi.org/10.1175/jas-d-15-0092.1
dc.identifier.citedreferenceJaniga, M. A., & Zhang, C. ( 2016 ). MJO moisture budget during DYNAMO in a cloud‐permitting model. Journal of the Atmospheric Sciences, 73, 2257 – 2278. https://doi.org/10.1175/jas-d-14-0379.1
dc.identifier.citedreferenceJiang, X. ( 2017 ). Key processes for the eastward propagation of the Madden‐Julian Oscillation based on multi‐model simulations. Journal of Geophysical Research: Atmospheres, 122, 755 – 770. https://doi.org/10.1002/2016JD025955
dc.identifier.citedreferenceJiang, X., Adames, Á. F., Zhao, M., Waliser, D., & Maloney, E. ( 2018 ). A unified moisture mode framework for seasonality of the Madden–Julian Oscillation. Journal of Climate, 31, 4215 – 4224. https://doi.org/10.1175/JCLI-D-17-0671.1
dc.identifier.citedreferenceJiang, X., et al. ( 2015 ). Vertical structure and physical processes of the Madden‐Julian oscillation: Exploring key model physics in climate simulations. Journal of Geophysical Research: Atmospheres, 120, 4718 – 4748. https://doi.org/10.1002/2014JD022375
dc.identifier.citedreferenceJiang, X., Zhao, M., Maloney, E. D., & Waliser, D. E. ( 2016 ). Convective moisture adjustment time scale as a key factor in regulating model amplitude of the Madden‐Julian Oscillation. Geophysical Research Letters, 43, 10,412 – 10,419. https://doi.org/10.1002/2016GL070898
dc.identifier.citedreferenceJohnson, R., Ciesielski, P., Ruppert, J. Jr., & Katsumata, M. ( 2015 ). Sounding‐based thermodynamic budgets for DYNAMO. Journal of the Atmospheric Sciences, 72 ( 2 ), 598 – 622. https://doi.org/10.1175/jas-d-14-0202.1
dc.identifier.citedreferenceJones, C., & Weare, B. C. ( 1996 ). The role of low‐level moisture convergence and ocean latent heat flux in the Madden‐Julian Oscillation: An observational analysis using ISCCP data and ECMWF analyses. Journal of Climate, 9, 3086 – 3104. https://doi.org/10.1175/1520-0442(1996)009%3C3086:trollm%3E2.0.co;2
dc.identifier.citedreferenceKacimi, A., & Khouider, B. ( 2018 ). The transient response to an equatorial heat source and its convergence to steady state: Implications for MJO theory. Climate Dynamics, 50 ( 9‐10 ), 3315 – 3330. https://doi.org/10.1007/s00382-017-3807-6
dc.identifier.citedreferenceKemball‐Cook, S. R., & Weare, B. C. ( 2001 ). The onset of convection in the Madden Julian Oscillation. Journal of Climate, 14, 780 – 793. https://doi.org/10.1175/1520-0442(2001)014%3C0780:toocit%3E2.0.co;2
dc.identifier.citedreferenceKerns, B. W., & Chen, S. S. ( 2020 ). A 20‐year climatology of Madden‐Julian Oscillation convection: Large‐scale precipitation tracking from TRMM‐GPM rainfall. Journal of Geophysical Research: Atmospheres, 125, e2019JD032142. https://doi.org/10.1029/2019JD032142
dc.identifier.citedreferenceKhairoutdinov, M. F., & Emanuel, K. ( 2018 ). Intraseasonal variability in a cloud‐permitting near‐global equatorial aquaplanet model. Journal of the Atmospheric Sciences, 75, 4337 – 4355. https://doi.org/10.1175/jas-d-18-0152.1
dc.identifier.citedreferenceKhouider, B., & Majda, A.J. ( 2006 ). A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis.. Journal of the Atmospheric Sciences, 63 ( 4 ), 1308 – 1323.
dc.identifier.citedreferenceKhouider, B., Biello, J. A., & Majda, A. J. ( 2010 ). A stochastic multicloud model for tropical convection. Communications in Mathematical Sciences, 8, 187 – 216. https://doi.org/10.4310/cms.2010.v8.n1.a10
dc.identifier.citedreferenceKhouider, B., Han, Y., Majda, A. J., & Stechmann, S. N. ( 2012 ). Multiscale waves in an MJO background and convective momentum transport feedback. Journal of the Atmospheric Sciences, 69 ( 3 ), 915 – 933. https://doi.org/10.1175/jas-d-11-0152.1
dc.identifier.citedreferenceKikuchi, K. ( 2014 ). An introduction to combined Fourier–wavelet transform and its application to convectively coupled equatorial waves. Climate Dynamics, 43 ( 5‐6 ), 1339 – 1356. https://doi.org/10.1007/s00382-013-1949-8
dc.identifier.citedreferenceKikuchi, K., Kiladis, G. N., Dias, J., & Nasuno, T. ( 2017 ). Convectively coupled equatorial waves within the MJO during CINDY/DYNAMO: Slow Kelvin waves as building blocks. Climate Dynamics, 50, 1 – 20. https://doi.org/10.1007/s00382-017-3869-5
dc.identifier.citedreferenceKikuchi, K., & Takayabu, Y. N. ( 2004 ). The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophysical Research Letters, 31, L10101. https://doi.org/10.1029/2004GL019601
dc.identifier.citedreferenceKiladis, G. N., Dias, J., Straub, K. H., Wheeler, M. C., Tulich, S. N., Kikuchi, K., Weickmann, K. M., & Ventrice, M. J. ( 2014 ). A comparison of OLR and circulation‐based indices for tracking the MJO. Monthly Weather Review, 142, 1697 – 1715. https://doi.org/10.1175/MWR-D-13-00301.1
dc.identifier.citedreferenceKiladis, G. N., Straub, K. H., & Haertel, P. T. ( 2005 ). Zonal and vertical structure of the Madden‐Julian oscillation. Journal of the Atmospheric Sciences, 62, 2790 – 2809. https://doi.org/10.1175/jas3520.1
dc.identifier.citedreferenceKiladis, G. N., Wheeler, M. C., Haertel, P. T., Straub, K. H., & Roundy, P. E. ( 2009 ). Convectively coupled equatorial waves. Reviews of Geophysics, 47 ( RG2003 ). https://doi.org/10.1029/2008RG000266
dc.identifier.citedreferenceKim, D., Ahn, M.‐S., Kang, I.‐S., & Del Genio, A. D. ( 2015 ). Role of longwave cloud–radiation feedback in the simulation of the Madden–Julian Oscillation. Journal of Climate, 28 ( 17 ), 6979 – 6994. https://doi.org/10.1175/jcli-d-14-00767.1
dc.identifier.citedreferenceKim, D., Kim, H., & Lee, M.‐I. ( 2017 ). Why does the MJO detour the Maritime Continent during austral summer? Geophysical Research Letters, 44, 2579 – 2587. https://doi.org/10.1002/2017gl072643
dc.identifier.citedreferenceKim, D., Kug, J.‐S., & Sobel, A. H. ( 2014 ). Propagating versus nonpropagating Madden–Julian Oscillation events. Journal of Climate, 27 ( 1 ), 111 – 125. https://doi.org/10.1175/jcli-d-13-00084.1
dc.identifier.citedreferenceKim, D., & Maloney, E. D. ( 2017 ). Review: Simulation of the Madden‐Julian oscillation using general circulation models. In C.‐P. Chang, H.‐C. Kuo, N.‐C. Lau, R. H. Johnson, B. Wang, & M. C. Wheeler (Eds.), The Global Monsoon System ( 3rd ed., pp. 119 – 130 ). Hackensack, NJ: World Scientific.
dc.identifier.citedreferenceKim, D., Sobel, A. H., & Kang, I.‐S. ( 2011a ). A mechanism denial study on the Madden‐Julian Oscillation. Journal of Advances in Modeling Earth Systems, 3, M12007. https://doi.org/10.1029/2011MS000081
dc.identifier.citedreferenceKim, D., Sobel, A. H., Maloney, E. D., Frierson, D. M. W., & Kang, I.‐S. ( 2011b ). A systematic relationship between intraseasonal variability and mean state bias in AGCM simulations. Journal of Climate, 24, 5506 – 5520. https://doi.org/10.1175/2011JCLI4177.1
dc.identifier.citedreferenceKim, D., Sperber, K., Stern, W., Waliser, D., Kang, I.‐S., Maloney, E., Wang, W., Weickmann, K., Benedict, J., Khairoutdinov, M., Lee, M.‐I., Neale, R., Suarez, M., Thayer‐Calder, K., & Zhang, G. ( 2009 ). Application of MJO simulation diagnostics to climate models. Journal of Climate, 22, 6413 – 6436. https://doi.org/10.1175/2009jcli3063.1
dc.identifier.citedreferenceKim, H., Kim, D., Vitart, F., Toma, V. E., Kug, J., & Webster, P. J. ( 2016 ). MJO propagation across the maritime continent in the ECMWF ensemble prediction system. Journal of Climate, 29, 3973 – 3988. https://doi.org/10.1175/jcli-d-15-0862.1
dc.identifier.citedreferenceKim, H.‐M. ( 2017 ). The impact of the mean moisture bias on the key physics of MJO propagation in the ECMWF reforecast. Journal of Geophysical Research: Atmospheres, 122, 7772 – 7784. https://doi.org/10.1002/2017jd027005
dc.identifier.citedreferenceKim, H. M., Webster, P. J., Toma, V. E., & Kim, D. ( 2014 ). Predictability and prediction skill of the MJO in two operational forecasting systems. Journal of Climate, 27 ( 14 ), 5364 – 5378. https://doi.org/10.1175/jcli-d-13-00480.1
dc.identifier.citedreferenceKiranmayi, L., & Maloney, E. D. ( 2011 ). Intraseasonal moist static energy budget in reanalysis data. Journal of Geophysical Research, 116, D21117. https://doi.org/10.1029/2011jd016031
dc.identifier.citedreferenceKnutson, T. R., Weickmann, K. M., & Kutzbach, J. E. ( 1986 ). Global‐scale intraseasonal oscillations of outgoing longwave radiation and 250 mb zonal wind during Northern Hemisphere summer. Monthly Weather Review, 114 ( 3 ), 605 – 623. https://doi.org/10.1175/1520-0493(1986)114%3C0605:gsiooo%3E2.0.co;2
dc.identifier.citedreferenceKuang, Z. ( 2008 ). A moisture‐stratiform instability for convectively coupled waves. Journal of the Atmospheric Sciences, 65 ( 3 ), 834 – 854. https://doi.org/10.1175/2007jas2444.1
dc.identifier.citedreferenceKundu, P. K., Cohen, I. M., & Dowling, D. R. ( 2012 ). Fluid mechanics ( 5th ed.). Amsterdam, Netherlands: Elsevier.
dc.identifier.citedreferenceKuo, H. L. ( 1974 ). Further studies of the parameterization of the influence of cumulus convection on large‐scale flow. Journal of the Atmospheric Sciences, 31 ( 5 ), 1232 – 1240. https://doi.org/10.1175/1520-0469(1974)031%3C1232:fsotpo%3E2.0.co;2
dc.identifier.citedreferenceLau, K., & Peng, L. ( 1987 ). Origin of low‐frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: Basic theory. Journal of the Atmospheric Sciences, 44, 950 – 972. https://doi.org/10.1175/1520-0469(1987)044%3C0950:oolfoi%3E2.0.co;2
dc.identifier.citedreferenceLau, N. C., & Lau, K. M. ( 1986 ). The structure and propagation of intraseasonal oscillations appearing in a GFDL general circulation model. Journal of the Atmospheric Sciences, 43 ( 19 ), 2023 – 2047. https://doi.org/10.1175/1520-0469(1986)043%3C2023:tsapoi%3E2.0.co;2
dc.identifier.citedreferenceLee, M.‐I., Kang, I.‐S., & Mapes, B. E. ( 2003 ). Impacts of cumulus convection parameterization on aqua‐planet AGCM simulations of tropical intraseasonal variability. Journal of the Meteorological Society of Japan, 81, 963 – 992. https://doi.org/10.2151/jmsj.81.963
dc.identifier.citedreferenceLee, S.‐S., Wang, B., Waliser, D. E., Neena, J. M., & Lee, J.‐Y. ( 2015 ). Predictability and prediction skill of the boreal summer intraseasonal oscillation in the Intraseasonal Variability Hindcast Experiment. Climate Dynamics, 45 ( 7‐8 ), 2123 – 2135. https://doi.org/10.1007/s00382-014-2461-5
dc.identifier.citedreferenceLin, J., & Mapes, B. E. ( 2004 ). Radiation Budget of the Tropical Intraseasonal Oscillation. Journal of the Atmospheric Sciences, 61, 2050 – 2062. https://doi.org/10.1175/1520-0469(2004)061%3C2050:rbotti%3E2.0.co;2
dc.identifier.citedreferenceLin, J. W.‐B., Neelin, J. D., & Zeng, N. ( 2000 ). Maintenance of tropical intraseasonal variability: Impact of evaporation‐wind feedback and midlatitude storms. Journal of the Atmospheric Sciences, 57, 2793 – 2823. https://doi.org/10.1175/1520-0469(2000)057%3C2793:motivi%3E2.0.co;2
dc.identifier.citedreferenceLin, X., & Johnson, R. H. ( 1996 ). Heating, moistening, and rainfall over the western Pacific warm pool during TOGA COARE. Journal of the Atmospheric Sciences, 53, 3367 – 3383. https://doi.org/10.1175/1520-0469(1996)053%3C3367:hmarot%3E2.0.co;2
dc.identifier.citedreferenceLindzen, R. S. ( 1974 ). Wave‐CISK in the tropics. Journal of the Atmospheric Sciences, 31, 156 – 179. https://doi.org/10.1175/1520-0469(1974)031%3C0156:wcitt%3E2.0.co;2
dc.identifier.citedreferenceLing, J., Li, C., Li, T., Jia, X., Khouider, B., Maloney, E., Vitart, F., Xiao, Z., & Zhang, C. ( 2017 ). Challenges and opportunities in MJO studies. Bulletin of the American Meteorological Society, 98 ( 2 ), 53 – 56. https://doi.org/10.1175/bams-d-16-0283.1
dc.identifier.citedreferenceLing, J., Zhang, C., Wang, S., & Li, C. ( 2017 ). A new interpretation of the ability of global models to simulate the MJO. Geophysical Research Letters, 44, 5798 – 5806. https://doi.org/10.1002/2017GL073891
dc.identifier.citedreferenceLiu, C., Tian, B., Li, K. F., Manney, G. L., Livesey, N. J., Yung, Y. L., & Waliser, D. E. ( 2014 ). Northern Hemisphere mid‐winter vortex‐displacement and vortex‐split stratospheric sudden warmings: Influence of the Madden‐Julian Oscillation and Quasi‐Biennial Oscillation. Journal of Geophysical Research: Atmospheres, 119, 12,599 – 12,620. https://doi.org/10.1002/2014jd021876
dc.identifier.citedreferenceLiu, F., & Wang, B. ( 2012 ). A model for the interaction between 2‐day waves and moist Kelvin waves. Journal of the Atmospheric Sciences, 69, 611 – 625. https://doi.org/10.1175/JAS-D-11-0116
dc.identifier.citedreferenceLiu, F., & Wang, B. ( 2013 ). Impacts of upscale heat and momentum transfer by moist Kelvin waves on the Madden‐Julian oscillation: A theoretical model study. Climate Dynamics, 40 ( 1‐2 ), 213 – 224. https://doi.org/10.1007/s00382-011-1281-0
dc.identifier.citedreferenceLiu, F., & Wang, B. ( 2017 ). Effects of moisture feedback in a frictional coupled Kelvin‐Rossby wave model and implication in the Madden‐Julian oscillation dynamics. Climate Dynamics, 48 ( 1‐2 ), 513 – 522. https://doi.org/10.1007/s00382-016-3090-y
dc.identifier.citedreferenceMa, D., & Kuang, Z. ( 2016 ). A mechanism‐denial study on the Madden‐Julian Oscillation with reduced interference from mean state changes. Geophysical Research Letters, 43, 2989 – 2997. https://doi.org/10.1002/2016gl067702
dc.identifier.citedreferenceMadden, R. A., & Julian, P. R. ( 1971 ). Detection of a 40–50‐day oscillation in zonal wind in tropical Pacific. Journal of the Atmospheric Sciences, 28, 702 – 708. https://doi.org/10.1175/1520-0469(1971)028,0702:DOADOI.2.0.CO;2
dc.identifier.citedreferenceMadden, R. A., & Julian, P. R. ( 1972 ). Description of global‐scale circulation cells in tropics with a 40–50 day period. Journal of the Atmospheric Sciences, 29, 1109 – 1123. https://doi.org/10.1175/1520-0469(1972)029,1109:DOGSCC.2.0.CO;2
dc.identifier.citedreferenceMajda, A. J., & Biello, J. A. ( 2004 ). A multiscale model for tropical intraseasonal oscillations. Proceedings of the National Academy of Sciences of the United States of America, 101, 4736 – 4741. https://doi.org/10.1073/pnas.0401034101
dc.identifier.citedreferenceMajda, A. J., Franzke, C., & Khouider, B. ( 2008 ). An applied mathematics perspective on stochastic modelling for climate. Philosophical Transactions of the Royal Society, A366, 2427 – 2453. https://doi.org/10.1098/rsta.2008.0012
dc.identifier.citedreferenceMajda, A. J., & Stechmann, S. N. ( 2009 ). The skeleton of tropical intraseasonal oscillations. Proceedings of the National Academy of Sciences, 106, 8417 – 8422. https://doi.org/10.1073/pnas.0903367106
dc.identifier.citedreferenceMajda, A. J., & Stechmann, S. N. ( 2011 ). Nonlinear dynamics and regional variations in the MJO skeleton. Journal of the Atmospheric Sciences, 68, 3053 – 3071. https://doi.org/10.1175/jas-d-11-053.1
dc.identifier.citedreferenceMaloney, E. D. ( 2009 ). The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. Journal of Climate, 22 ( 3 ), 711 – 729. https://doi.org/10.1175/2008jcli2542.1
dc.identifier.citedreferenceMaloney, E. D., Adames, Á. F., & Bui, H. X. ( 2019 ). Madden–Julian Oscillation changes under anthropogenic warming. Nature Climate Change, 9 ( 1 ), 26 – 33. https://doi.org/10.1038/s41558-018-0331-6
dc.identifier.citedreferenceMaloney, E. D., & Hartmann, D. L. ( 1998 ). Frictional moisture convergence in a composite life cycle of the Madden‐Julian Oscillation. Journal of Climate, 11, 2387 – 2403. https://doi.org/10.1175/1520-0442(1998)011%3C2387:fmciac%3E2.0.co;2
dc.identifier.citedreferenceMartin, Z., Wang, S., Nie, J., & Sobel, A. ( 2019 ). The impact of the QBO on MJO convection in cloud‐resolving simulations. Journal of the Atmospheric Sciences, 76, 669 – 688. https://doi.org/10.1175/jas-d-18-0179.1
dc.identifier.citedreferenceMasunaga, H. ( 2012 ). Short‐term versus climatological relationship between precipitation and tropospheric humidity. Journal of Climate, 25 ( 22 ), 7983 – 7990. https://doi.org/10.1175/jcli-d-12-00037.1
dc.identifier.citedreferenceMatsuno, T. ( 1966 ). Quasi‐geostrophic motions in the equatorial area. Journal of the Meteorological Society of Japan, 44, 25 – 43. https://doi.org/10.2151/jmsj1965.44.1_25
dc.identifier.citedreferenceMatthews, A. J. ( 2008 ). Primary and successive events in the Madden‐Julian Oscillation. Quarterly Journal of the Royal Meteorological Society, 134, 439 – 453. https://doi.org/10.1002/qj.224
dc.identifier.citedreferenceMatthews, A. J., Slingo, J. M., Hoskins, B. J., & Inness, P. M. ( 1999 ). Fast and slow kelvin waves in the Madden‐Julian Oscillation of a GCM. Quarterly Journal of the Royal Meteorological Society, 125, 1473 – 1498. https://doi.org/10.1002/qj.49712555702
dc.identifier.citedreferenceMoskowitz, B. M., & Bretherton, C. S. ( 2000 ). An analysis of frictional feedback on a moist equatorial Kelvin mode. Journal of the Atmospheric Sciences, 57, 2188 – 2206. https://doi.org/10.1175/1520-0469(2000)057%3C2188:aaoffo%3E2.0.co;2
dc.identifier.citedreferenceMuller, C. J., Back, L. E., O’Gorman, P. A., & Emanuel, K. A. ( 2009 ). A model for the relationship between tropical precipitation and column water vapor. Geophysical Research Letters, 36, L16804. https://doi.org/10.1029/2009GL039667
dc.identifier.citedreferenceMurakami, T., Wang, B., & Lyons, S. W. ( 1992 ). Summer monsoons over the Bay of Bengal and the eastern North Pacific. Journal of the Meteorological Society of Japan, 70, 191 – 210. https://doi.org/10.2151/jmsj1965.70.1b_191
dc.identifier.citedreferenceMurphree, T., & van den Dool, H. ( 1988 ). Calculating winds from time mean sea level pressure fields. Journal of the Atmospheric Sciences, 45, 3269 – 3281. https://doi.org/10.1175/1520-0469(1988)045%3C3269:ctwftm%3E2.0.co;2
dc.identifier.citedreferenceMyers, D. S., & Waliser, D. E. ( 2003 ). Three‐dimensional water vapor and cloud variations associated with the Madden‐Julian Oscillation during Northern Hemisphere winter. Journal of Climate, 16, 929 – 950. https://doi.org/10.1175/1520-0442(2003)016%3C0929:tdwvac%3E2.0.co;2
dc.identifier.citedreferenceNakazawa, T. ( 1988 ). Tropical super clusters within intraseasonal variations over the western Pacific. Journal of the Meteorological Society of Japan, 66, 823 – 836. https://doi.org/10.2151/jmsj1965.66.6_823
dc.identifier.citedreferenceNational Academies of Sciences, Engineering, and Medicine ( 2016 ). Next generation Earth System prediction: Strategies for subseasonal to seasonal forecasts. Washington, DC: The National Academies Press. https://doi.org/10.17226/21873
dc.identifier.citedreferenceNeelin, J. D., & Held, I. M. ( 1987 ). Modeling tropical convergence based on the moist static energy budget. Monthly Weather Review, 115 ( 1 ), 3 – 12. https://doi.org/10.1175/1520-0493(1987)115%3C0003:mtcbot%3E2.0.co;2
dc.identifier.citedreferenceNeelin, J. D., Held, I. M., & Cook, K. H. ( 1987 ). Evaporation‐wind feedback and low‐frequency variability in the tropical atmosphere. Journal of the Atmospheric Sciences, 44, 2341 – 2348. https://doi.org/10.1175/1520-0469(1987)044%3C2341:ewfalf%3E2.0.co;2
dc.identifier.citedreferenceNeelin, J. D., & Yu, J.‐Y. ( 1994 ). Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part I: Analytical theory. Journal of the Atmospheric Sciences, 51, 1876 – 1894. https://doi.org/10.1175/1520-0469(1994)051%3C1876:motvuc%3E2.0.co;2
dc.identifier.citedreferenceNeena, J. M., Lee, J.‐Y., Waliser, D. E., Wang, B., & Xianan, J. ( 2014 ). Predictability of the Madden‐Julian Oscillation in the Intraseasonal Variability Hindcast Experiment (ISVHE). Journal of Climate, 27, 4531 – 4543. https://doi.org/10.1175/jcli-d-13-00624.1
dc.identifier.citedreferenceNishimoto, E., & Yoden, S. ( 2017 ). Influence of the stratospheric Quasi‐Biennial Oscillation on the Madden–Julian Oscillation during austral summer. Journal of the Atmospheric Sciences, 74 ( 4 ), 1105 – 1125. https://doi.org/10.1175/jas-d-16-0205.1
dc.identifier.citedreferenceOgrosky, H. R., & Stechmann, S. N. ( 2015 ). The MJO skeleton model with observation‐based background state and forcing. Quarterly Journal of the Royal Meteorological Society, 141. https://doi.org/10.1002/qj.2552
dc.identifier.citedreferencePalmer, T. N. ( 2012 ). Towards the probabilistic Earth‐system simulator: A vision for the future of climate and weather prediction. Quarterly Journal of the Royal Meteorological Society, 138, 841 – 861. https://doi.org/10.1002/qj.1923
dc.identifier.citedreferencePeters, M. E., & Bretherton, C. S. ( 2005 ). A simplified model of the walker circulation with an interactive ocean mixed layer and cloud‐radiative feedbacks. Journal of Climate, 18, 4216 – 4234. https://doi.org/10.1175/jcli3534.1
dc.identifier.citedreferencePowell, S. W. ( 2016 ). Updraft buoyancy within and moistening by cumulonimbi prior to mjo convective onset in a regional model. Journal of the Atmospheric Sciences, 73. https://doi.org/10.1175/JAS-D-15-0326.1
dc.identifier.citedreferencePowell, S. W., & Houze, R. A. Jr. ( 2015 ). Effect of dry large‐scale vertical motions on initial MJO convective onset. Journal of Geophysical Research: Atmospheres, 120, 4783 – 4805. https://doi.org/10.1002/2014jd022961
dc.identifier.citedreferencePritchard, M. S., & Bretherton, C. S. ( 2014 ). Causal evidence that rotational moisture advection is critical to the superparameterized Madden‐Julian Oscillation. Journal of the Atmospheric Sciences, 71 ( 2 ), 800 – 815. https://doi.org/10.1175/jas-d-13-0119.1
dc.identifier.citedreferencePritchard, M. S., & Yang, D. ( 2016 ). Response of the superparameterized Madden–Julian oscillation to extreme climate and basic‐state variation challenges a moisture mode view. Journal of Climate, 29 ( 13 ), 4995 – 5008. https://doi.org/10.1175/jcli-d-15-0790.1
dc.identifier.citedreferenceRandall, D. A. ( 2013 ). Beyond deadlock. Geophysical Research Letters, 40, 1 – 7. https://doi.org/10.1002/2013gl057998
dc.identifier.citedreferenceRay, P., Zhang, C., Dudhia, J., & Chen, S. S. ( 2009 ). A numerical case study on the initiation of the Madden‐Julian Oscillation. Journal of the Atmospheric Sciences, 66, 310 – 331. https://doi.org/10.1175/2008jas2701.1
dc.identifier.citedreferenceRaymond, D. J. ( 1995 ). Regulation of Moist Convection over the West Pacific Warm Pool. Journal of the Atmospheric Sciences, 52 ( 22 ), 3945 – 3959. https://doi.org/10.1175/1520-0469(1995)052%3C3945:ROMCOT%3E2.0.CO;2
dc.identifier.citedreferenceRaymond, D. J. ( 2000 ). Thermodynamic control of tropical rainfall. Quarterly Journal of the Royal Meteorological Society, 126, 889 – 898. https://doi.org/10.1002/qj.49712656406
dc.identifier.citedreferenceRaymond, D. J. ( 2001 ). A new model of the Madden‐Julian Oscillation. Journal of the Atmospheric Sciences, 58 ( 18 ), 2807 – 2819. https://doi.org/10.1175/1520-0469(2001)058%3C2807:anmotm%3E2.0.co;2
dc.identifier.citedreferenceRaymond, D. J., & Fuchs, Z. ( 2007 ). Convectively coupled gravity and moisture modes in a simple atmospheric model. Tellus Series A, 59, 627 – 640. https://doi.org/10.1111/j.1600-0870.2007.00268.x
dc.identifier.citedreferenceRaymond, D. J., & Fuchs, Z. ( 2009 ). Moisture modes and the Madden‐Julian Oscillation. Journal of Climate, 22 ( 11 ), 3031 – 3046. https://doi.org/10.1175/2008jcli2739.1
dc.identifier.citedreferenceRaymond, D. J., Sessions, S. L., Sobel, A. H., & Fuchs, Z. ( 2009 ). The mechanics of gross moist stability. Journal of Advances in Modeling Earth Systems, 1. https://doi.org/10.3894/james.2009.1.9
dc.identifier.citedreferenceRoundy, P. E. ( 2008 ). Analysis of convectively coupled Kelvin waves in the Indian Ocean MJO. Journal of the Atmospheric Sciences, 65, 1342 – 1359. https://doi.org/10.1175/2007jas2345.1
dc.identifier.citedreferenceRoundy, P. E. ( 2012 ). Observed structure of convectively coupled waves as a function of equivalent depth: Kelvin waves and the Madden–Julian oscillation. Journal of the Atmospheric Sciences, 69, 2097 – 2106. https://doi.org/10.1175/JAS-D-12-03.1
dc.identifier.citedreferenceRushley, S. S., Kim, D., & Adames, Á. F. ( 2019 ). Changes in the MJO under greenhouse gas–induced warming in CMIP5 models. Journal of Climate, 32, 803 – 821. https://doi.org/10.1175/jcli-d-18-0437.1
dc.identifier.citedreferenceSalby, M. L., & Garcia, R. R. ( 1987 ). Transient response to localized episodic heating in the tropics. Part I: Excitation and short‐ time, near‐field behavior. Journal of the Atmospheric Sciences, 44, 458 – 498. https://doi.org/10.1175/1520-0469(1987)044%3C0458:trtleh%3E2.0.co;2
dc.identifier.citedreferenceSalby, M. L., Garcia, R. R., & Hendon, H. H. ( 1994 ). Planetary‐scale circulations in the presence of climatological and wave‐induced heating. Journal of the Atmospheric Sciences, 51, 2344 – 2367. https://doi.org/10.1175/1520-0469(1994)051%3C2344:pscitp%3E2.0.co;2
dc.identifier.citedreferenceSalby, M. L., & Hendon, H. H. ( 1994 ). Intraseasonal behavior of clouds, temperature, and motion in the tropics. Journal of the Atmospheric Sciences, 51 ( 15 ), 2207 – 2224. https://doi.org/10.1175/1520-0469(1994)051%3C2207:ibocta%3E2.0.co;2
dc.identifier.citedreferenceShi, X., Kim, D., Adames, Á. F., & Sukhatme, J. ( 2018 ). WISHE‐moisture mode in an aquaplanet simulation. Journal of Advances in Modeling Earth Systems, 10 ( 10 ), 2393 – 2407. https://doi.org/10.1029/2018ms001441
dc.identifier.citedreferenceSlingo, J. M., Sperber, K. R., Boyle, J. S., Ceron, J.‐P., Dix, M., Dugas, B., Ebisuzaki, W., Fyfe, J., Gregory, D., Gueremy, J.‐F., Hack, J., Harzallah, A., Inness, P., Kitoh, A., Lau, W. K.‐M., McAvaney, B., Madden, R., Matthews, A., Palmer, T. N., Park, C.‐K., Randall, D., & Renno, N. ( 1996 ). Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dynamics, 12, 325 – 357. https://doi.org/10.1007/s003820050112
dc.identifier.citedreferenceSobel, A., & Maloney, E. ( 2012 ). An idealized semi‐empirical framework for modeling the Madden‐Julian oscillation. Journal of the Atmospheric Sciences, 69 ( 5 ), 1691 – 1705. https://doi.org/10.1175/jas-d-11-0118.1
dc.identifier.citedreferenceSobel, A., Maloney, E., Bellon, G., & Frierson, D. ( 2008 ). The role of surface fluxes in tropical intraseasonal oscillations. Nature Geoscience, 1, 653 – 657. https://doi.org/10.1038/ngeo312
dc.identifier.citedreferenceSobel, A., Maloney, E., & E. ( 2013 ). Moisture modes and the eastward propagation of the MJO. Journal of the Atmospheric Sciences, 70 ( 1 ), 187 – 192. https://doi.org/10.1175/jas-d-12-0189.1
dc.identifier.citedreferenceSobel, A., Wang, S., & Kim, D. ( 2014 ). Moist static energy budget of the MJO during DYNAMO. Journal of the Atmospheric Sciences, 71 ( 11 ), 4276 – 4291. https://doi.org/10.1175/jas-d-14-0052.1
dc.identifier.citedreferenceSobel, A. H., & Bretherton, C. S. ( 2000 ). Modeling tropical precipitation in a single column. Journal of Climate, 13 ( 24 ), 4378 – 4392. https://doi.org/10.1175/1520-0442(2000)013%3C4378:mtpias%3E2.0.co;2
dc.identifier.citedreferenceSobel, A. H., Nilsson, J., & Polvani, L. M. ( 2001 ). The weak temperature gradient approximation and balanced tropical moisture waves. Journal of the Atmospheric Sciences, 58 ( 23 ), 3650 – 3665. https://doi.org/10.1175/1520-0469(2001)058%3C3650:twtgaa%3E2.0.co;2
dc.identifier.citedreferenceSon, S.‐W., Lim, Y., Yoo, C., Hendon, H. H., & Kim, J. ( 2017 ). Stratospheric Control of the Madden–Julian Oscillation. Journal of Climate, 30 ( 6 ), 1909 – 1922. https://doi.org/10.1175/jcli-d-16-0620.1
dc.identifier.citedreferenceSperber, K. R. ( 2003 ). Propagation and the vertical structure of the Madden‐Julian Oscillation. Monthly Weather Review, 131, 3018 – 3037. https://doi.org/10.1175/1520-0493(2003)131%3C3018:patvso%3E2.0.co;2
dc.identifier.citedreferenceStachnik, J. P., Waliser, D. E., & Majda, A. J. ( 2015 ). Precursor environmental conditions associated with the termination of Madden‐Julian oscillation events. Journal of the Atmospheric Sciences, 72 ( 5 ), 1908 – 1931. https://doi.org/10.1175/JAS-D-14-0254.1
dc.identifier.citedreferenceStachnik, J. P., Waliser, D. E., Majda, A. J., Stechmann, S. N., & Thual, S. ( 2015 ). Evaluating MJO event initiation and decay in the skeleton model using an RMM‐like index. Journal of Geophysical Research: Atmospheres, 120, 11,486 – 11,508. https://doi.org/10.1002/2015JD023916
dc.identifier.citedreferenceStechmann, S. N., & Hottovy, S. ( 2017 ). Unified spectrum of tropical rainfall and waves in a simple stochastic model. Geophysical Research Letters, 44, 10,713 – 10,724. https://doi.org/10.1002/2017gl075754
dc.identifier.citedreferenceStechmann, S. N., & Majda, A. J. ( 2015 ). Identifying the skeleton of the Madden–Julian Oscillation in observational data. Monthly Weather Review, 143, 395 – 416. https://doi.org/10.1175/mwr-d-14-00169.1
dc.identifier.citedreferenceStechmann, S. N., Majda, A. J., & Skjorshammer, D. ( 2013 ). Convectively coupled wave environment interactions. Theoretical and Computational Fluid Dynamics, 27 ( 34 ), 513 – 532. https://doi.org/10.1007/s00162-012-0268-8
dc.identifier.citedreferenceStevens, B., Duan, J., McWilliams, J. C., Münnich, M., & Neelin, J. D. ( 2002 ). Entrainment, Rayleigh friction, and boundary layer winds over the tropical Pacific. Journal of Climate, 15 ( 1 ), 30 – 44. https://doi.org/10.1175/1520-0442(2002)015%3C0030:erfabl%3E2.0.co;2
dc.identifier.citedreferenceSugiyama, M. ( 2009 ). The moisture mode in the quasi‐equilibrium tropical circulation model. Part I: Analysis based on the weak temperature gradient approximation. Journal of the Atmospheric Sciences, 66 ( 6 ), 1507 – 1523. https://doi.org/10.1175/2008jas2690.1
dc.identifier.citedreferenceSukhatme, J. ( 2014 ). Low‐frequency modes in an equatorial shallow‐water model with moisture gradients. Quarterly Journal of the Royal Meteorological Society, 140, 1838 – 1846. https://doi.org/10.1002/qj.2264
dc.identifier.citedreferenceThual, S., & Majda, A. J. ( 2015 ). A suite of skeleton models for the MJO with refined vertical structure. Mathematics of Climate and Weather Forecasting, 1, 70 – 95. https://doi.org/10.1515/mcwf-2015-0004
dc.identifier.citedreferenceThual, S., & Majda, A. J. ( 2016 ). A skeleton model for the MJO with refined vertical structure. Climate Dynamics, 46, 2773. https://doi.org/10.1007/s00382-015-2731-x
dc.identifier.citedreferenceThual, S., Majda, A.J., & Chen, N. ( 2018 ). A Tropical Stochastic Skeleton Model for the MJO, El Niño, and Dynamic Walker Circulation: A Simplified GCM.. Journal of Climate, 31 ( 22 ), 9261 – 9282.
dc.identifier.citedreferenceThual, S., Majda, A. J., & Stechmann, S. N. ( 2014 ). A stochastic skeleton model for the MJO. Journal of the Atmospheric Sciences, 71, 697 – 715. https://doi.org/10.1175/jas-d-13-0186.1
dc.identifier.citedreferenceThual, S., Majda, A. J., & Stechmann, S. N. ( 2015 ). Asymmetric intraseasonal events in the stochastic skeleton MJO model with seasonal cycle. Climate Dynamics, 45, 603 – 618. https://doi.org/10.1007/s00382-014-2256-8
dc.identifier.citedreferenceTian, B., Waliser, D. E., Fetzer, E. J., Lambrigtsen, B. H., Yung, Y. L., & Wang, B. ( 2006 ). Vertical moist thermodynamic structure and spatial–temporal evolution of the MJO in AIRS observations. Journal of the Atmospheric Sciences, 63 ( 10 ), 2462 – 2485. https://doi.org/10.1175/jas3782.1
dc.identifier.citedreferenceTokioka, T., Yamazaki, K., Kitoh, A., & Ose, T. ( 1988 ). The equatorial 30–60‐day oscillation and the Arakawa–Schubert penetrative cumulus parameterization. Journal of the Meteorological Society of Japan, 66, 883 – 901. https://doi.org/10.2151/jmsj1965.66.6_883
dc.identifier.citedreferenceVitart, F., & Molteni, F. ( 2010 ). Simulation of the Madden–Julian Oscillation and its teleconnections in the ECMWF forecast system. Quarterly Journal of the Royal Meteorological Society, 136, 842 – 855. https://doi.org/10.1002/qj.623
dc.identifier.citedreferenceWaliser, D. E., Lau, K. M., Stern, W., & Jones, C. ( 2003 ). Potential predictability of the Madden–Julian oscillation. Bulletin of the American Meteorological Society, 84, 33 – 50. https://doi.org/10.1175/BAMS-84-1-33
dc.identifier.citedreferenceWang, B. ( 1988a ). Dynamics of tropical low‐frequency waves: An analysis of the moist Kelvin wave. Journal of the Atmospheric Sciences, 45, 2051 – 2065. https://doi.org/10.1175/1520-0469(1988)045%3C2051:dotlfw%3E2.0.co;2
dc.identifier.citedreferenceWang, B. ( 1988b ). Comments on “An air‐sea interaction model of intraseasonal oscillation in the tropics”. Journal of the Atmospheric Sciences, 45, 3521 – 3525. https://doi.org/10.1175/1520-0469(1988)045%3C3521:coaimo%3E2.0.co;2
dc.identifier.citedreferenceWang, B. ( 2012 ). Theory. In W. K. M. Lau, & D. E. Waliser (Eds.), Intraseasonal variability in the atmosphere‐ocean climate system ( 2nd ed., pp. 335 – 398 ). Berlin, Germany: Springer. https://doi.org/10.1007/978-3-642-13914-7_10
dc.identifier.citedreferenceWang, B., & Chen, G. ( 2017 ). A general theoretical framework for understanding essential dynamics of Madden‐Julian Oscillation. Climate Dynamics, 49 ( 7‐8 ), 2309 – 2328. https://doi.org/10.1007/s00382-016-3448-1
dc.identifier.citedreferenceWang, B., & Chen, J. ( 1989 ). On the zonal‐scale selection and vertical structure of equatorial intraseasonal waves. Quarterly Journal of the Royal Meteorological Society, 115, 1301 – 1323. https://doi.org/10.1002/qj.49711549007
dc.identifier.citedreferenceWang, B., & Lee, S. S. ( 2017 ). MJO propagation shaped by zonal asymmetric structures: Results from 24 GCM simulations. Journal of Climate, 30 ( 19 ), 7933 – 7952. https://doi.org/10.1175/jcli-d-16-0873.1
dc.identifier.citedreferenceWang, B., Lee, S.‐S., Waliser, D. E., Zhang, C., Sobel, A., Maloney, E., Li, T., Jiang, X., & Ha, K.‐J. ( 2018 ). Dynamics‐oriented diagnostics for the Madden‐Julian Oscillation. Journal of Climate, 31 ( 8 ), 3117 – 3135. https://doi.org/10.1175/jcli-d-17-0332.1
dc.identifier.citedreferenceWang, B., & Li, T. ( 1994 ). Convective interaction with boundary‐layer dynamics in the development of a tropical intraseasonal system. Journal of the Atmospheric Sciences, 51, 1386 – 1400. https://doi.org/10.1175/1520-0469(1994)051%3C1386:ciwbld%3E2.0.co;2
dc.identifier.citedreferenceWang, B., & Liu, F. ( 2011 ). A model for scale interaction in the Madden‐Julian Oscillation. Journal of the Atmospheric Sciences, 68, 2524 – 2536. https://doi.org/10.1175/2011jas3660.1
dc.identifier.citedreferenceWang, B., Liu, F., & Chen, G. ( 2016 ). A trio‐interaction theory for Madden–Julian oscillation. Geoscience Letters, 3, 34. https://doi.org/10.1186/s40562-016-0066-z
dc.identifier.citedreferenceWang, B., & Rui, H. ( 1990 ). Dynamics of the coupled moist Kelvin‐Rossby wave on an equatorial β ‐plane. Journal of the Atmospheric Sciences, 47, 397 – 413. https://doi.org/10.1175/1520-0469(1990)047%3C0397:dotcmk%3E2.0.co;2
dc.identifier.citedreferenceWang, B., & Xie, X. ( 1997 ). A model for the boreal summer Intraseasonal Oscillation. Journal of the Atmospheric Sciences, 54, 72 – 86. https://doi.org/10.1175/1520-0469(1997)054%3C0072:amftbs%3E2.0.co;2
dc.identifier.citedreferenceWang, B., & Xie, X. ( 1998 ). Coupled modes of the warm pool climate system Part I: The role of air‐sea interaction in maintaining Madden‐Julian Oscillation. Journal of Climate, 11, 2116 – 2135. https://doi.org/10.1175/1520-0442-11.8.2116
dc.identifier.citedreferenceWang, W., & Schlesinger, M. E. ( 1999 ). The dependence on convective parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11‐layer atmospheric GCM. Journal of Climate, 12, 1423 – 1457. https://doi.org/10.1175/1520-0442(1999)012%3C1423:tdocpo%3E2.0.co;2
dc.identifier.citedreferenceWheeler, M., & Kiladis, G. N. ( 1999 ). Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber‐frequency domain. Journal of the Atmospheric Sciences, 56, 37 – 399. https://doi.org/10.1175/1520-0469(1999)056%3C0374:ccewao%3E2.0.co;2
dc.identifier.citedreferenceWheeler, M. C., & Hendon, H. H. ( 2004 ). An all‐season real‐time multivariate MJO index: Development of an index for monitoring and prediction. Monthly Weather Review, 132, 1917 – 1932. https://doi.org/10.1175/1520-0493(2004)132%3C1917:aarmmi%3E2.0.co;2
dc.identifier.citedreferenceWolding, B. O., & Maloney, E. D. ( 2015 ). Objective diagnostics and the Madden‐Julian Oscillation. Part II: Application to moist static energy and moisture budgets. Journal of Climate, 28 ( 19 ), 7786 – 7808. https://doi.org/10.1175/jcli-d-14-00689.1
dc.identifier.citedreferenceWolding, B. O., Maloney, E. D., & Branson, M. ( 2016 ). Vertically resolved weak temperature gradient analysis of the Madden‐Julian Oscillation in SP‐CESM. Journal of Advances in Modeling Earth Systems, 8, 1586 – 1619. https://doi.org/10.1002/2016ms000724
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.