SMARCB1 loss induces druggable cyclin D1 deficiency via upregulation of MIR17HG in atypical teratoid rhabdoid tumors
dc.contributor.author | Xue, Yibo | |
dc.contributor.author | Zhu, Xianbing | |
dc.contributor.author | Meehan, Brian | |
dc.contributor.author | Venneti, Sriram | |
dc.contributor.author | Martinez, Daniel | |
dc.contributor.author | Morin, Geneviève | |
dc.contributor.author | Maïga, Rayelle I | |
dc.contributor.author | Chen, Hongbo | |
dc.contributor.author | Papadakis, Andreas I | |
dc.contributor.author | Johnson, Radia M | |
dc.contributor.author | O’Sullivan, Maureen J | |
dc.contributor.author | Erdreich‐epstein, Anat | |
dc.contributor.author | Gotlieb, Walter H | |
dc.contributor.author | Park, Morag | |
dc.contributor.author | Judkins, Alexander R | |
dc.contributor.author | Pelletier, Jerry | |
dc.contributor.author | Foulkes, William D | |
dc.contributor.author | Rak, Janusz | |
dc.contributor.author | Huang, Sidong | |
dc.date.accessioned | 2020-09-02T14:57:37Z | |
dc.date.available | WITHHELD_13_MONTHS | |
dc.date.available | 2020-09-02T14:57:37Z | |
dc.date.issued | 2020-09 | |
dc.identifier.citation | Xue, Yibo; Zhu, Xianbing; Meehan, Brian; Venneti, Sriram; Martinez, Daniel; Morin, Geneviève ; Maïga, Rayelle I ; Chen, Hongbo; Papadakis, Andreas I; Johnson, Radia M; O’Sullivan, Maureen J; Erdreich‐epstein, Anat ; Gotlieb, Walter H; Park, Morag; Judkins, Alexander R; Pelletier, Jerry; Foulkes, William D; Rak, Janusz; Huang, Sidong (2020). "SMARCB1 loss induces druggable cyclin D1 deficiency via upregulation of MIR17HG in atypical teratoid rhabdoid tumors." The Journal of Pathology 252(1): 77-87. | |
dc.identifier.issn | 0022-3417 | |
dc.identifier.issn | 1096-9896 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/156416 | |
dc.description.abstract | Atypical teratoid rhabdoid tumor (ATRT) is a fatal pediatric malignancy of the central neural system lacking effective treatment options. It belongs to the rhabdoid tumor family and is usually caused by biallelic inactivation of SMARCB1, encoding a key subunit of SWI/SNF chromatin remodeling complexes. Previous studies proposed that SMARCB1 loss drives rhabdoid tumor by promoting cell cycle through activating transcription of cyclin D1 while suppressing p16. However, low cyclin D1 protein expression is observed in most ATRT patient tumors. The underlying mechanism and therapeutic implication of this molecular trait remain unknown. Here, we show that SMARCB1 loss in ATRT leads to the reduction of cyclin D1 expression by upregulating MIR17HG, a microRNA (miRNA) cluster known to generate multiple miRNAs targeting CCND1. Furthermore, we find that this cyclin D1 deficiency in ATRT results in marked in vitro and in vivo sensitivity to the CDK4/6 inhibitor palbociclib as a single agent. Our study identifies a novel genetic interaction between SMARCB1 and MIR17HG in regulating cyclin D1 in ATRT and suggests a rationale to treat ATRT patients with FDA- approved CDK4/6 inhibitors. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. | |
dc.publisher | John Wiley & Sons, Ltd | |
dc.subject.other | ATRT | |
dc.subject.other | cyclin D1 | |
dc.subject.other | MIR17HG | |
dc.subject.other | palbociclib | |
dc.subject.other | SMARCB1 | |
dc.title | SMARCB1 loss induces druggable cyclin D1 deficiency via upregulation of MIR17HG in atypical teratoid rhabdoid tumors | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Pathology | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/156416/2/path5493.pdf | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/156416/1/path5493_am.pdf | en_US |
dc.identifier.doi | 10.1002/path.5493 | |
dc.identifier.source | The Journal of Pathology | |
dc.identifier.citedreference | Euskirchen GM, Auerbach RK, Davidov E, et al. Diverse roles and interactions of the SWI/SNF chromatin remodeling complex revealed using global approaches. PLoS Genet 2011; 7: e1002008. | |
dc.identifier.citedreference | Jelinic P, Mueller JJ, Olvera N, et al. Recurrent SMARCA4 mutations in small cell carcinoma of the ovary. Nat Genet 2014; 46: 424 - 426. | |
dc.identifier.citedreference | Young RH, Oliva E, Scully RE. Small cell carcinoma of the ovary, hypercalcemic type. A clinicopathological analysis of 150 cases. Am J Surg Pathol 1994; 18: 1102 - 1116. | |
dc.identifier.citedreference | Foulkes WD, Clarke BA, Hasselblatt M, et al. No small surprise - small cell carcinoma of the ovary, hypercalcaemic type, is a malignant rhabdoid tumour. J Pathol 2014; 233: 209 - 214. | |
dc.identifier.citedreference | Fahiminiya S, Witkowski L, Nadaf J, et al. Molecular analyses reveal close similarities between small cell carcinoma of the ovary, hypercalcemic type and atypical teratoid/rhabdoid tumor. Oncotarget 2016; 7: 1732 - 1740. | |
dc.identifier.citedreference | Xue Y, Meehan B, Fu Z, et al. SMARCA4 loss is synthetic lethal with CDK4/6 inhibition in non- small cell lung cancer. Nat Commun 2019; 10: 557. | |
dc.identifier.citedreference | Xue Y, Meehan B, Macdonald E, et al. CDK4/6 inhibitors target SMARCA4- determined cyclin D1 deficiency in hypercalcemic small cell carcinoma of the ovary. Nat Commun 2019; 10: 558. | |
dc.identifier.citedreference | O’Leary B, Finn RS, Turner NC. Treating cancer with selective CDK4/6 inhibitors. Nat Rev 2016; 13: 417 - 430. | |
dc.identifier.citedreference | Sherr CJ, Beach D, Shapiro GI. Targeting CDK4 and CDK6: from discovery to therapy. Cancer Discov 2016; 6: 353 - 367. | |
dc.identifier.citedreference | Clark AS, Karasic TB, DeMichele A, et al. Palbociclib (PD0332991) - a selective and potent cyclin- dependent kinase inhibitor: a review of pharmacodynamics and clinical development. JAMA Oncol 2016; 2: 253 - 260. | |
dc.identifier.citedreference | O’Donnell KA, Wentzel EA, Zeller KI, et al. c- Myc- regulated microRNAs modulate E2F1 expression. Nature 2005; 435: 839 - 843. | |
dc.identifier.citedreference | Raab JR, Runge JS, Spear CC, et al. Co- regulation of transcription by BRG1 and BRM, two mutually exclusive SWI/SNF ATPase subunits. Epigenetics Chromatin 2017; 10: 62. | |
dc.identifier.citedreference | Magnus N, Garnier D, Meehan B, et al. Tissue factor expression provokes escape from tumor dormancy and leads to genomic alterations. Proc Natl Acad Sci U S A 2014; 111: 3544 - 3549. | |
dc.identifier.citedreference | Venneti S, Garimella MT, Sullivan LM, et al. Evaluation of histone 3 lysine 27 trimethylation (H3K27me3) and enhancer of Zest 2 (EZH2) in pediatric glial and glioneuronal tumors shows decreased H3K27me3 in H3F3A K27M mutant glioblastomas. Brain Pathol 2013; 23: 558 - 564. | |
dc.identifier.citedreference | Oruetxebarria I, Venturini F, Kekarainen T, et al. p16 INK4a is required for hSNF5 chromatin remodeler- induced cellular senescence in malignant rhabdoid tumor cells. J Biol Chem 2004; 279: 3807 - 3816. | |
dc.identifier.citedreference | Versteege I, Medjkane S, Rouillard D, et al. A key role of the hSNF5/INI1 tumour suppressor in the control of the G1- S transition of the cell cycle. Oncogene 2002; 21: 6403 - 6412. | |
dc.identifier.citedreference | Roberts CW, Orkin SH. The SWI/SNF complex - chromatin and cancer. Nat Rev Cancer 2004; 4: 133 - 142. | |
dc.identifier.citedreference | Yu Z, Wang C, Wang M, et al. A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol 2008; 182: 509 - 517. | |
dc.identifier.citedreference | Qin X, Wang X, Wang Y, et al. MicroRNA- 19a mediates the suppressive effect of laminar flow on cyclin D1 expression in human umbilical vein endothelial cells. Proc Natl Acad Sci U S A 2010; 107: 3240 - 3244. | |
dc.identifier.citedreference | Trompeter HI, Abbad H, Iwaniuk KM, et al. MicroRNAs MiR- 17, MiR- 20a, and MiR- 106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC. PLoS One 2011; 6: e16138. | |
dc.identifier.citedreference | Zhang Y, Guo X, Li Z, et al. A systematic investigation based on microRNA- mediated gene regulatory network reveals that dysregulation of microRNA- 19a/Cyclin D1 axis confers an oncogenic potential and a worse prognosis in human hepatocellular carcinoma. RNA Biol 2015; 12: 643 - 657. | |
dc.identifier.citedreference | Jonas S, Izaurralde E. Towards a molecular understanding of microRNA- mediated gene silencing. Nat Rev Genet 2015; 16: 421 - 433. | |
dc.identifier.citedreference | Mei S, Qin Q, Wu Q, et al. Cistrome data browser: a data portal for ChIP- Seq and chromatin accessibility data in human and mouse. Nucleic Acids Res 2017; 45: D658 - D662. | |
dc.identifier.citedreference | You JS, De Carvalho DD, Dai C, et al. SNF5 is an essential executor of epigenetic regulation during differentiation. PLoS Genet 2013; 9: e1003459. | |
dc.identifier.citedreference | Raab JR, Resnick S, Magnuson T. Genome- wide transcriptional regulation mediated by biochemically distinct SWI/SNF complexes. PLoS Genet 2015; 11: e1005748. | |
dc.identifier.citedreference | Ventura A, Young AG, Winslow MM, et al. Targeted deletion reveals essential and overlapping functions of the miR- 17~92 family of miRNA clusters. Cell 2008; 132: 875 - 886. | |
dc.identifier.citedreference | Olive V, Bennett MJ, Walker JC, et al. miR- 19 is a key oncogenic component of mir- 17- 92. Genes Dev 2009; 23: 2839 - 2849. | |
dc.identifier.citedreference | Erhard F, Haas J, Lieber D, et al. Widespread context dependency of microRNA- mediated regulation. Genome Res 2014; 24: 906 - 919. | |
dc.identifier.citedreference | Smith ME, Cimica V, Chinni S, et al. Therapeutically targeting cyclin D1 in primary tumors arising from loss of Ini1. Proc Natl Acad Sci U S A 2011; 108: 319 - 324. | |
dc.identifier.citedreference | Smith ME, Cimica V, Chinni S, et al. Rhabdoid tumor growth is inhibited by flavopiridol. Clin Cancer Res 2008; 14: 523 - 532. | |
dc.identifier.citedreference | Mendell JT. miRiad roles for the miR- 17- 92 cluster in development and disease. Cell 2008; 133: 217 - 222. | |
dc.identifier.citedreference | Geoerger B, Bourdeaut F, DuBois SG, et al. A phase I study of the CDK4/6 inhibitor ribociclib (LEE011) in pediatric patients with malignant rhabdoid tumors, neuroblastoma, and other solid tumors. Clin Cancer Res 2017; 23: 2433 - 2441. | |
dc.identifier.citedreference | Reddy AT, Strother DR, Judkins AR, et al. Efficacy of high- dose chemotherapy and three- dimensional conformal radiation for atypical teratoid/rhabdoid tumor: a report from the Children’s Oncology Group trial ACNS0333. J Clin Oncol 2020; 38: 1175 - 1185. | |
dc.identifier.citedreference | Hashizume R, Zhang A, Mueller S, et al. Inhibition of DNA damage repair by the CDK4/6 inhibitor palbociclib delays irradiated intracranial atypical teratoid rhabdoid tumor and glioblastoma xenograft regrowth. Neuro Oncol 2016; 18: 1519 - 1528. | |
dc.identifier.citedreference | Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA- seq aligner. Bioinformatics 2013; 29: 15 - 21. | |
dc.identifier.citedreference | Anders S, Pyl PT, Huber W. HTSeq - a Python framework to work with high- throughput sequencing data. Bioinformatics 2015; 31: 166 - 169. | |
dc.identifier.citedreference | Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA- seq data with DESeq2. Genome Biol 2014; 15: 550. | |
dc.identifier.citedreference | Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge- based approach for interpreting genome- wide expression profiles. Proc Natl Acad Sci U S A 2005; 102: 15545 - 15550. | |
dc.identifier.citedreference | Margol AS, Judkins AR. Pathology and diagnosis of SMARCB1- deficient tumors. Cancer Genet 2014; 207: 358 - 364. | |
dc.identifier.citedreference | Chi SN, Zimmerman MA, Yao X, et al. Intensive multimodality treatment for children with newly diagnosed CNS atypical teratoid rhabdoid tumor. J Clin Oncol 2009; 27: 385 - 389. | |
dc.identifier.citedreference | Versteege I, Sevenet N, Lange J, et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 1998; 394: 203 - 206. | |
dc.identifier.citedreference | Biegel JA, Zhou JY, Rorke LB, et al. Germ- line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res 1999; 59: 74 - 79. | |
dc.identifier.citedreference | Kadoch C, Crabtree GR. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci Adv 2015; 1: e1500447. | |
dc.identifier.citedreference | Wilson BG, Roberts CW. SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer 2011; 11: 481 - 492. | |
dc.identifier.citedreference | Grupenmacher AT, Halpern AL, Bonaldo MF, et al. Study of the gene expression and microRNA expression profiles of malignant rhabdoid tumors originated in the brain (AT/RT) and in the kidney (RTK). Childs Nerv Syst 2013; 29: 1977 - 1983. | |
dc.identifier.citedreference | Erkek S, Johann PD, Finetti MA, et al. Comprehensive analysis of chromatin states in atypical teratoid/rhabdoid tumor identifies diverging roles for SWI/SNF and polycomb in gene regulation. Cancer Cell 2019; 35: 95 - 110 e118. | |
dc.identifier.citedreference | Chun HE, Lim EL, Heravi- Moussavi A, et al. Genome- wide profiles of extra- cranial malignant rhabdoid tumors reveal heterogeneity and dysregulated developmental pathways. Cancer Cell 2016; 29: 394 - 406. | |
dc.identifier.citedreference | Johann PD, Erkek S, Zapatka M, et al. Atypical teratoid/rhabdoid tumors are comprised of three epigenetic subgroups with distinct enhancer landscapes. Cancer Cell 2016; 29: 379 - 393. | |
dc.identifier.citedreference | Torchia J, Picard D, Lafay- Cousin L, et al. Molecular subgroups of atypical teratoid rhabdoid tumours in children: an integrated genomic and clinicopathological analysis. Lancet Oncol 2015; 16: 569 - 582. | |
dc.identifier.citedreference | Torchia J, Golbourn B, Feng S, et al. Integrated (epi)- genomic analyses identify subgroup- specific therapeutic targets in CNS rhabdoid tumors. Cancer Cell 2016; 30: 891 - 908. | |
dc.identifier.citedreference | Ho B, Johann PD, Grabovska Y, et al. Molecular subgrouping of atypical teratoid/rhabdoid tumors (ATRT) - a reinvestigation and current consensus. Neuro Oncol 2020; 22: 613 - 624. | |
dc.identifier.citedreference | Chun HE, Johann PD, Milne K, et al. Identification and analyses of extra- cranial and cranial rhabdoid tumor molecular subgroups reveal tumors with cytotoxic T cell infiltration. Cell Rep 2019; 29: 2338 - 2354- e2337. | |
dc.identifier.citedreference | Zhang ZK, Davies KP, Allen J, et al. Cell cycle arrest and repression of cyclin D1 transcription by INI1/hSNF5. Mol Cell Biol 2002; 22: 5975 - 5988. | |
dc.identifier.citedreference | Musgrove EA, Caldon CE, Barraclough J, et al. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 2011; 11: 558 - 572. | |
dc.identifier.citedreference | Tsikitis M, Zhang Z, Edelman W, et al. Genetic ablation of cyclin D1 abrogates genesis of rhabdoid tumors resulting from Ini1 loss. Proc Natl Acad Sci U S A 2005; 102: 12129 - 12134. | |
dc.identifier.citedreference | McKenna ES, Sansam CG, Cho YJ, et al. Loss of the epigenetic tumor suppressor SNF5 leads to cancer without genomic instability. Mol Cell Biol 2008; 28: 6223 - 6233. | |
dc.identifier.citedreference | Betz BL, Strobeck MW, Reisman DN, et al. Re- expression of hSNF5/INI1/BAF47 in pediatric tumor cells leads to G1 arrest associated with induction of p16ink4a and activation of RB. Oncogene 2002; 21: 5193 - 5203. | |
dc.identifier.citedreference | Doan DN, Veal TM, Yan Z, et al. Loss of the INI1 tumor suppressor does not impair the expression of multiple BRG1- dependent genes or the assembly of SWI/SNF enzymes. Oncogene 2004; 23: 3462 - 3473. | |
dc.identifier.citedreference | Venneti S, Le P, Martinez D, et al. p16 INK4A and p14 ARF tumor suppressor pathways are deregulated in malignant rhabdoid tumors. J Neuropathol Exp Neurol 2011; 70: 596 - 609. | |
dc.identifier.citedreference | Klein EA, Assoian RK. Transcriptional regulation of the cyclin D1 gene at a glance. J Cell Sci 2008; 121: 3853 - 3857. | |
dc.identifier.citedreference | Alao JP. The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol Cancer 2007; 6: 24. | |
dc.identifier.citedreference | Hasselblatt M, Nagel I, Oyen F, et al. SMARCA4 - mutated atypical teratoid/rhabdoid tumors are associated with inherited germline alterations and poor prognosis. Acta Neuropathol 2014; 128: 453 - 456. | |
dc.identifier.citedreference | Ramos P, Karnezis AN, Craig DW, et al. Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4. Nat Genet 2014; 46: 427 - 429. | |
dc.identifier.citedreference | Witkowski L, Carrot- Zhang J, Albrecht S, et al. Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type. Nat Genet 2014; 46: 438 - 443. | |
dc.identifier.citedreference | KupryjaÅ czyk J, Dansonka- Mieszkowska A, Moes- Sosnowska J, et al. Ovarian small cell carcinoma of hypercalcemic type - evidence of germline origin and SMARCA4 gene inactivation. A pilot study. Pol J Pathol 2013; 64: 238 - 246. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.