Enantiomeric Discrimination by Surface- Enhanced Raman Scattering- Chiral Anisotropy of Chiral Nanostructured Gold Films
dc.contributor.author | Liu, Zexi | |
dc.contributor.author | Ai, Jing | |
dc.contributor.author | Kumar, Prashant | |
dc.contributor.author | You, Enming | |
dc.contributor.author | Zhou, Xiong | |
dc.contributor.author | Liu, Xi | |
dc.contributor.author | Tian, Zhongqun | |
dc.contributor.author | Bouř, Petr | |
dc.contributor.author | Duan, Yingying | |
dc.contributor.author | Han, Lu | |
dc.contributor.author | Kotov, Nicholas A. | |
dc.contributor.author | Ding, Songyuan | |
dc.contributor.author | Che, Shunai | |
dc.date.accessioned | 2020-09-02T14:57:41Z | |
dc.date.available | WITHHELD_12_MONTHS | |
dc.date.available | 2020-09-02T14:57:41Z | |
dc.date.issued | 2020-08-24 | |
dc.identifier.citation | Liu, Zexi; Ai, Jing; Kumar, Prashant; You, Enming; Zhou, Xiong; Liu, Xi; Tian, Zhongqun; Bouř, Petr ; Duan, Yingying; Han, Lu; Kotov, Nicholas A.; Ding, Songyuan; Che, Shunai (2020). "Enantiomeric Discrimination by Surface- Enhanced Raman Scattering- Chiral Anisotropy of Chiral Nanostructured Gold Films." Angewandte Chemie International Edition 59(35): 15226-15231. | |
dc.identifier.issn | 1433-7851 | |
dc.identifier.issn | 1521-3773 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/156417 | |
dc.description.abstract | A surface- enhanced Raman scattering- chiral anisotropy (SERS- ChA) effect is reported that combines chiral discrimination and surface Raman scattering enhancement on chiral nanostructured Au films (CNAFs) equipped in the normal Raman scattering Spectrometer. The CNAFs provided remarkably higher enhancement factors of Raman scattering (EFs) for particular enantiomers, and the SERS intensity was proportional to the enantiomeric excesses (ee) values. Except for molecules with mesomeric species, all of the tested enantiomers exhibited high SERS- ChA asymmetry factors (g), ranging between 1.34 and 1.99 regardless of polarities, sizes, chromophores, concentrations and ee. The effect might be attributed to selective resonance coupling between the induced electric and magnetic dipoles associated with enantiomers and chiral plasmonic modes of CNAFs.Absolution by SERS: A surface- enhanced Raman scattering chiral anisotropy effect is presented that combines chiral discrimination and surface Raman scattering enhancement on chiral nanostructured Au films. It is applied in the normal Raman scattering system to identify the absolute configuration and composition of enantiomers, overcoming disadvantages of polarimeter systems and chromatography. | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.publisher | Cambridge University Press | |
dc.subject.other | chiral anisotropy | |
dc.subject.other | chiral nanostructured Au film | |
dc.subject.other | chiral response | |
dc.subject.other | enantiomeric discrimination | |
dc.subject.other | surface-enhanced Raman scattering | |
dc.title | Enantiomeric Discrimination by Surface- Enhanced Raman Scattering- Chiral Anisotropy of Chiral Nanostructured Gold Films | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Chemistry | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/156417/3/anie202006486-sup-0001-misc_information.pdf | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/156417/2/anie202006486_am.pdf | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/156417/1/anie202006486.pdf | en_US |
dc.identifier.doi | 10.1002/anie.202006486 | |
dc.identifier.source | Angewandte Chemie International Edition | |
dc.identifier.citedreference | S. Abdali, E. W. Blanch, Chem. Soc. Rev. 2008, 37, 980 - 992. | |
dc.identifier.citedreference | K. Banerjee-Ghosh, O. Ben Dor, F. Tassinari, E. Capua, S. Yochelis, A. Capua, S. H. Yang, S. S. P. Parkin, S. Sarkar, L. Kronik, L. T. Baczewski, R. Naaman, Y. Paltiel, Science 2018, 360, 1331 - 1334; | |
dc.identifier.citedreference | S. Dutta, A. J. Gellman, Chem. Soc. Rev. 2017, 46, 7787 - 7839; | |
dc.identifier.citedreference | P. Lesot, C. Aroulanda, H. Zimmermann, Z. Luz, Chem. Soc. Rev. 2015, 44, 2330 - 2375. | |
dc.identifier.citedreference | Â | |
dc.identifier.citedreference | L. D. Barron, Molecular Light Scattering and Optical Activity, Cambridge University Press, Cambridge, 1982; | |
dc.identifier.citedreference | N. Berova, L. Di Bari, G. Pescitelli, Chem. Soc. Rev. 2007, 36, 914 - 931; | |
dc.identifier.citedreference | L. Yang, C. S. Kwan, L. L. Zhang, X. H. Li, Y. Han, K. C. F. Leung, Y. G. Yang, Z. F. Huang, Adv. Funct. Mater. 2019, 29, 8; | |
dc.identifier.citedreference | B. T. Thole, P. Carra, F. Sette, G. Vanderlaan, Phys. Rev. Lett. 1992, 68, 1943 - 1946; | |
dc.identifier.citedreference | L. A. Nafie, Vibrational Optical Activity: Principles and Applications, Blackwell Science Publ, Oxford, 2011; | |
dc.identifier.citedreference | N. Berova, K. Nakanishi, R. W. Woody, Circular dichroism: principles and applications, Wiley-VCH, Weinheim, 2000; | |
dc.identifier.citedreference | N. Bouldi, N. J. Vollmers, C. G. Delpy-Laplanche, Y. Joly, A. Juhin, P. Sainctavit, C. Brouder, M. Calandra, L. Paulatto, F. Mauri, U. Gerstmann, Phys. Rev. B 2017, 96, 12. | |
dc.identifier.citedreference | Â | |
dc.identifier.citedreference | D. Sofikitis, L. Bougas, G. E. Katsoprinakis, A. K. Spiliotis, B. Loppinet, T. P. Rakitzis, Nature 2014, 514, 76 - 79; | |
dc.identifier.citedreference | S. Beaulieu, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Geneaux, A. G. Harvey, F. Legare, Z. Masin, L. Nahon, A. F. Ordonez, S. Petit, B. Pons, Y. Mairesse, O. Smirnova, V. Blanchet, Nat. Phys. 2018, 14, 484 - 489. | |
dc.identifier.citedreference | Â | |
dc.identifier.citedreference | K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, Phys. Rev. Lett. 1997, 78, 1667 - 1670; | |
dc.identifier.citedreference | S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, Z. Q. Tian, Nat. Rev. Mater. 2016, 1, 16; | |
dc.identifier.citedreference | M. Fleischmann, P. J. Hendra, A. J. McQuillan, Chem. Phys. Lett. 1974, 26, 163 - 166. | |
dc.identifier.citedreference | Â | |
dc.identifier.citedreference | M. Moskovits, Rev. Mod. Phys. 1985, 57, 783 - 826; | |
dc.identifier.citedreference | E. C. Le Ru, P. G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy, Elsevier, Amsterdam, 2009. | |
dc.identifier.citedreference | L. D. Barron, A. D. Buckingham, Annu. Rev. Phys. Chem. 1975, 26, 381 - 396. | |
dc.identifier.citedreference | J. He, Y. Wang, Y. Feng, X. Qi, Z. Zeng, Q. Liu, W. S. Teo, C. L. Gan, H. Zhang, H. Chen, ACS Nano 2013, 7, 2733 - 2740. | |
dc.identifier.citedreference | Â | |
dc.identifier.citedreference | Y. H. Zhu, J. T. He, C. Shang, X. H. Miao, J. F. Huang, Z. P. Liu, H. Y. Chen, Y. Han, J. Am. Chem. Soc. 2014, 136, 12746 - 12752; | |
dc.identifier.citedreference | A. H. Boerdijk, Philips Res. Rep. 1952, 7, 303 - 313; | |
dc.identifier.citedreference | J. Yan, W. C. Fang, J. Y. Kim, J. Lu, P. Kumar, Z. Z. Mu, X. C. Wu, X. M. Mao, N. A. Kotov, Chem. Mater. 2020, 32, 476 - 488. | |
dc.identifier.citedreference | P. Oleynikov, Cryst. Res. Technol. 2011, 46, 569 - 579. | |
dc.identifier.citedreference | Â | |
dc.identifier.citedreference | J. Zhou, J. An, B. Tang, S. P. Xu, Y. X. Cao, B. Zhao, W. Q. Xu, J. J. Chang, J. R. Lombardi, Langmuir 2008, 24, 10407 - 10413; | |
dc.identifier.citedreference | C. G. Khoury, T. Vo-Dinh, J. Phys. Chem. C 2008, 112, 18849 - 18859. | |
dc.identifier.citedreference | M. Yang, R. Alvarez-Puebla, H. S. Kim, P. Aldeanueva-Potel, L. M. Liz-Marzan, N. A. Kotov, Nano Lett. 2010, 10, 4013 - 4019. | |
dc.identifier.citedreference | Â | |
dc.identifier.citedreference | J. Shen, Y. Okamoto, Chem. Rev. 2016, 116, 1094 - 1138; | |
dc.identifier.citedreference | T. D. James, K. Sandanayake, S. Shinkai, Nature 1995, 374, 345 - 347; | |
dc.identifier.citedreference | D. Patterson, M. Schnell, J. M. Doyle, Nature 2013, 497, 475 - 478; | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.