Show simple item record

Experimental metatranscriptomics reveals the costs and benefits of dissolved organic matter photo‐alteration for freshwater microbes

dc.contributor.authorNalven, Sarah G.
dc.contributor.authorWard, Collin P.
dc.contributor.authorPayet, Jérôme P.
dc.contributor.authorCory, Rose M.
dc.contributor.authorKling, George W.
dc.contributor.authorSharpton, Thomas J.
dc.contributor.authorSullivan, Christopher M.
dc.contributor.authorCrump, Byron C.
dc.date.accessioned2020-09-02T14:57:56Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-09-02T14:57:56Z
dc.date.issued2020-08
dc.identifier.citationNalven, Sarah G.; Ward, Collin P.; Payet, Jérôme P. ; Cory, Rose M.; Kling, George W.; Sharpton, Thomas J.; Sullivan, Christopher M.; Crump, Byron C. (2020). "Experimental metatranscriptomics reveals the costs and benefits of dissolved organic matter photo‐alteration for freshwater microbes." Environmental Microbiology 22(8): 3505-3521.
dc.identifier.issn1462-2912
dc.identifier.issn1462-2920
dc.identifier.urihttps://hdl.handle.net/2027.42/156421
dc.publisherJohn Wiley & Sons, Inc.
dc.titleExperimental metatranscriptomics reveals the costs and benefits of dissolved organic matter photo‐alteration for freshwater microbes
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156421/2/emi15121_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156421/1/emi15121.pdfen_US
dc.identifier.doi10.1111/1462-2920.15121
dc.identifier.sourceEnvironmental Microbiology
dc.identifier.citedreferenceSchloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., et al. ( 2009 ) Introducing mothur: open‐source, platform‐independent, community‐supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: 7537 – 7541.
dc.identifier.citedreferenceStrome, D.J., and Miller, M.C. ( 1978 ) Photolytic changes in dissolved humic substances. SIL Proc 1922‐2010 20: 1248 – 1254.
dc.identifier.citedreferenceStubbins, A., Mann, P.J., Powers, L., Bittar, T.B., Dittmar, T., McIntyre, C.P., et al. ( 2017 ) Low photolability of yedoma permafrost dissolved organic carbon. J Geophys Res Biogeo 122: 200 – 211.
dc.identifier.citedreferenceStubbins, A., Spencer, R.G.M., Chen, H., Hatcher, P.G., Mopper, K., Hernes, P.J., et al. ( 2010 ) Illuminated darkness: molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry. Limnol Oceanogr 55: 1467 – 1477.
dc.identifier.citedreferenceTate, K.R., and Newman, R.H. ( 1982 ) Phosphorus fractions of a climosequence of soils in New Zealand tussock grassland. Soil Biol Biochem 14: 191 – 196.
dc.identifier.citedreferenceTranvik, L.J., and Bertilsson, S. ( 2001 ) Contrasting effects of solar UV radiation on dissolved organic sources for bacterial growth. Ecol Lett 4: 458 – 463.
dc.identifier.citedreferenceTurner, B.L., Baxter, R., Mahieu, N., Sjögersten, S., and Whitton, B.A. ( 2004 ) Phosphorus compounds in subarctic Fennoscandian soils at the mountain birch (Betula pubescens)—tundra ecotone. Soil Biol Biochem 36: 815 – 823.
dc.identifier.citedreferenceVallino, J.J., Hopkinson, C.S., and Hobbie, J.E. ( 1996 ) Modeling bacterial utilization of dissolved organic matter: optimization replaces Monod growth kinetics. Limnol Oceanogr 41: 1591 – 1609.
dc.identifier.citedreferenceVershinina, O.A., and Znamenskaya, L.V. ( 2002 ) The Pho regulons of bacteria. Microbiology (Moscow) 71: 15.
dc.identifier.citedreferenceVoelker, B.M., Morel, F.M.M., and Sulzberger, B. ( 1997 ) Iron redox cycling in surface waters: effects of humic substanes and light. Environ Sci Technol 31: 1004 – 1011.
dc.identifier.citedreferenceVonk, J.E., and Gustafsson, Ö. ( 2013 ) Permafrost‐carbon complexities. Nat Geosci 6: 675 – 676.
dc.identifier.citedreferenceWagner, G.P., Kin, K., and Lynch, V.J. ( 2012 ) Measurement of mRNA abundance using RNA‐seq data: RPKM measure is inconsistent among samples. Theory Biosci 131: 281 – 285.
dc.identifier.citedreferenceWard, C.P., and Cory, R.M. ( 2020 ) Assessing the prevalence, products, and pathways of dissolved organic matter partial photo‐oxidation in arctic surface waters. Environ Sci Process Impacts 22: 1214 – 1223.
dc.identifier.citedreferenceWard, C.P., and Cory, R.M. ( 2015 ) Chemical composition of dissolved organic matter draining permafrost soils. Geochim Cosmochim Acta 167: 63 – 79.
dc.identifier.citedreferenceWard, C.P., and Cory, R.M. ( 2016 ) Complete and partial photo‐oxidation of dissolved organic matter draining permafrost soils. Environ Sci Technol 50: 3545 – 3553.
dc.identifier.citedreferenceWard, C.P., Nalven, S.G., Crump, B.C., Kling, G.W., and Cory, R.M. ( 2017 ) Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration. Nat Commun 8: 772.
dc.identifier.citedreferenceWard, N.D., Keil, R.G., Medeiros, P.M., Brito, D.C., Cunha, A.C., Dittmar, T., et al. ( 2013 ) Degradation of terrestrially derived macromolecules in the Amazon River. Nat Geosci 6: 530 – 533.
dc.identifier.citedreferenceWeiss, S., Xu, Z.Z., Peddada, S., Amir, A., Bittinger, K., Gonzalez, A., et al. ( 2017 ) Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5: 27.
dc.identifier.citedreferenceWetzel, R.G., Hatcher, P.G., and Bianchi, T.S. ( 1995 ) Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnol Ocean 40: 1369 – 1380.
dc.identifier.citedreferenceWyckoff, E.E., Mey, A.R., Leimbach, A., Fisher, C.F., and Payne, S.M. ( 2006 ) Characterization of ferric and ferrous iron transport Systems in Vibrio cholerae. J Bacteriol 188: 6515 – 6523.
dc.identifier.citedreferenceXie, H., Zafiriou, O.C., Cai, W.J., Zepp, R.G., and Wang, Y. ( 2004 ) Photooxidation and its effects on the carboxyl content of dissolved organic matter in two coastal rivers in the southeastern United States. Environ Sci Technol 38: 4113 – 4119.
dc.identifier.citedreferenceZhang, Y., Gao, J., Wang, L., Liu, S., Bai, Z., Zhuang, X., and Zhuang, G. ( 2018 ). Environmental adaptability and quorum sensing: iron uptake regulation during biofilm formation by paracoccus denitrificans. Appl Environ Microbiol 84: UNSP e00865‐18. https://doi.org/10.1128/aem.00865-18.
dc.identifier.citedreferenceAmes, G.F.L. ( 1986 ) Bacterial periplasmic transport systems: structure, mechanism, and evolution. Annu Rev Biochem 55: 397 – 425.
dc.identifier.citedreferenceBeier, S., Rivers, A.R., Moran, M.A., and Obernosterer, I. ( 2015 ) The transcriptional response of prokaryotes to phytoplankton‐derived dissolved organic matter in seawater. Environ Microbiol 17: 3466 – 3480.
dc.identifier.citedreferenceBenjamini, Y., and Hochberg, Y. ( 1995 ) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57: 289 – 300.
dc.identifier.citedreferenceBertilsson, S., and Tranvik, L.J. ( 2000 ) Photochemical transformation of dissolved organic matter in lakes. Limnol Oceanogr 45: 753 – 762.
dc.identifier.citedreferenceBertilsson, S., and Tranvik, L.J. ( 1998 ) Photochemically produced carboxylic acids as substrates for freshwater bacterioplankton. Limnol Oceanogr 43: 885 – 895.
dc.identifier.citedreferenceBowen J.C., Kaplan L.A., and Cory R.M. ( 2020 ). Photodegradation disproportionately impacts biodegradation of semi‐labile DOM in streams. Limnol Oceanogr 65: 13 – 26.
dc.identifier.citedreferenceBrowning, D.F., and Busby, S.J.W. ( 2004 ) The regulation of bacterial transcription initiation. Nat Rev Microbiol 2: 57 – 65.
dc.identifier.citedreferenceBrzoska, P., Rimmele, M., Brzostek, K., and Boos, W. ( 1994 ) The pho regulon‐dependent Ugp uptake system for glycerol‐3‐phosphate in Escherichia coli is trans inhibited by pi. J Bacteriol 176: 15 – 20.
dc.identifier.citedreferenceBuchan, A., Collier, L.S., Neidle, E.L., and Moran, M.A. ( 2000 ) Key aromatic‐ring‐cleaving enzyme, protocatechuate 3,4‐dioxygenase, in the ecologically important marine Roseobacter lineage. Appl Environ Microbiol 66: 4662 – 4672.
dc.identifier.citedreferenceBugg, T.D.H., Ahmad, M., Hardiman, E.M., and Singh, R. ( 2011 ) The emerging role for bacteria in lignin degradation and bio‐product formation. Curr Opin Biotechnol 22: 394 – 400.
dc.identifier.citedreferenceBushnell, B. ( 2015 ) BBMap short‐read aligner, and other bioinformatics tools. http://bbtools.jgi.doe.gov
dc.identifier.citedreferenceCampanini, B., Pieroni, M., Raboni, S., Bettati, S., Benoni, R., Pecchini, C., et al. ( 2014 ) Inhibitors of the sulfur assimilation pathway in bacterial pathogens as enhancers of antibiotic therapy. Curr Med Chem 22: 187 – 213.
dc.identifier.citedreferenceCaplanne, S., and Laurion, I. ( 2008 ) Effect of chromophoric dissolved organic matter on epilimnetic stratification in lakes. Aquat Sci 70: 123 – 133.
dc.identifier.citedreferenceCaporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., et al. ( 2010 ) QIIME allows analysis of high‐throughput community sequencing data. Nat Methods 7: 335 – 336.
dc.identifier.citedreferenceCavin, J.F., Dartois, V., and Diviès, C. ( 1998 ) Gene cloning, transcriptional analysis, purification, and characterization of phenolic acid decarboxylase from Bacillus subtilis. Appl Environ Microbiol 64: 1466 – 1471.
dc.identifier.citedreferenceNomura, M., Gourse, R., and Baughman, G. ( 1984 ) Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem 53: 75 – 117.
dc.identifier.citedreferenceCole, J.J., Prairie, Y.T., Caraco, N.F., McDowell, W.H., Tranvik, L.J., Striegl, R.G., et al. ( 2007 ) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171 – 184.
dc.identifier.citedreferenceCornelis, P., Matthijs, S., and Van Oeffelen, L. ( 2009 ) Iron uptake regulation in Pseudomonas aeruginosa. Biometals 22: 15 – 22.
dc.identifier.citedreferenceCory, R.M., Crump, B.C., Dobkowski, J.A., and Kling, G.W. ( 2013 ) Surface exposure to sunlight stimulates CO2 release from permafrost soil carbon in the Arctic. Proc Natl Acad Sci U S A 110: 3429 – 3434.
dc.identifier.citedreferenceCory, R.M., and Kaplan, L.A. ( 2012 ) Biological lability of streamwater fluorescent dissolved organic matter. Limnol Oceanogr 57: 1347 – 1360.
dc.identifier.citedreferenceCory, R.M., and Kling, G.W. ( 2018 ) Interactions between sunlight and microorganisms influence dissolved organic matter degradation along the aquatic continuum. Limnol Oceanogr Lett 3: 102 – 116.
dc.identifier.citedreferenceCory, R.M., McKnight, D.M., Chin, Y.P., Miller, P., and Jaros, C.L. ( 2007 ) Chemical characteristics of fulvic acids from Arctic surface waters: microbial contributions and photochemical transformations. J Geophys Res Biogeosciences 112: G04S51 – G04S51.
dc.identifier.citedreferenceCory, R.M., McNeill, K., Cotner, J.B., Amado, A.M., Purcell, J.M., and Marshall, A.G. ( 2010 ) Singlet oxygen in the coupled photo‐ and biochemical oxidation of dissolved organic matter. Environ Sci Technol 44: 3683 – 3689.
dc.identifier.citedreferenceCory, R.M., Ward, C.P., Crump, B.C., and Kling, G.W. ( 2014 ) Sunlight controls water column processing of carbon in arctic fresh waters. Science 345: 925 – 928.
dc.identifier.citedreferenceCotner, J.B., and Heath, R.T. ( 1990 ) Iron redox effects on photosensitive phosphorus release from dissolved humic materials. Limnol Oceanogr 35: 1175 – 1181.
dc.identifier.citedreferenceCronan, J.E., Jr., and Rock, C.O. ( 2008 ) Biosynthesis of membrane lipids. EcoSal Plus 3: 612 – 636.
dc.identifier.citedreferenceCrump, B.C., Baross, J.A., and Simenstad, C.A. ( 1998 ) Dominance of particle‐attached bacteria in the Columbia River estuary, USA. Aquat Microb Ecol 14: 7 – 18.
dc.identifier.citedreferenceCrump, B.C., Kling, G.W., Bahr, M., and Hobbie, J.E. ( 2003 ) Bacterioplankton community shifts in an Arctic lake correlate with seasonal changes in organic matter source. Appl Environ Microbiol 69: 2253 – 2268.
dc.identifier.citedreferenceDong, Y., Geng, J., Liu, J., Pang, M., Awan, F., Lu, C., and Liu, Y. ( 2019 ) Roles of three TonB systems in the iron utilization and virulence of the Aeromonas hydrophila Chinese epidemic strain NJ‐35. Appl Microbiol Biotechnol 103: 4203 – 4215.
dc.identifier.citedreferenceEdgar, R.C. ( 2013 ) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10: 996 – 998.
dc.identifier.citedreferenceFaust, B.C., and Zepp, R.G. ( 1993 ) Photochemistry of aqueous iron(III)‐ polycarboxylate complexes: roles in the chemistry of atmosphere. Environ Sci Technol 27: 2517 – 2522.
dc.identifier.citedreferenceFerenci, T. ( 1999 ) Regulation by nutrient limitation Ferenci. Curr Opin Microbiol 2: 208 – 213.
dc.identifier.citedreferenceFranchini, A.G., and Egli, T. ( 2006 ) Global gene expression in Escherichia coli K‐12 during short‐term and long‐term adaptation to glucose‐limited continuous culture conditions. Microbiology 152: 2111 – 2127.
dc.identifier.citedreferenceFuchs, G., Boll, M., and Heider, J. ( 2011 ) Microbial degradation of aromatic compounds‐ from one strategy to four. Nat Rev Microbiol 9: 803 – 816.
dc.identifier.citedreferenceFujii, M., Imaoka, A., Yoshimura, C., and Waite, T.D. ( 2014 ) Effects of molecular composition of natural organic matter on ferric iron Complexation at Circumneutral pH. Environ Sci Technol 48: 4414 – 4424.
dc.identifier.citedreferenceGareis, J.A.L., and Lesack, L.F.W. ( 2018 ) Photodegraded dissolved organic matter from peak freshet river discharge as a substrate for bacterial production in a lake‐rich great Arctic delta. Arct Sci 4: 557 – 583.
dc.identifier.citedreferenceGareis, J.A.L., Lesack, L.F.W., and Bothwell, M.L. ( 2010 ) Attenuation of in situ UV radiation in Mackenzie Delta lakes with varying dissolved organic matter compositions. Water Resour Res 46: 1 – 14.
dc.identifier.citedreferenceGifford, S.M., Becker, J.W., Sosa, O.A., Repeta, D.J., and DeLong, E.F. ( 2016 ) Quantitative transcriptomics reveals the growth‐ and nutrient‐ dependent response of a streamlined marine methylotroph to methanol and naturally occurring dissolved organic matter. mBio 7: 1 – 15.
dc.identifier.citedreferenceGomez‐Saez, G.V., Pohlabeln, A.M., Stubbins, A., Marsay, C.M., and Dittmar, T. ( 2017 ) Photochemical alteration of dissolved organic sulfur from Sulfidic Porewater. Environ Sci Technol 51: 14144 – 14154.
dc.identifier.citedreferenceGonsior, M., Hertkorn, N., Conte, M.H., Cooper, W.J., Bastviken, D., Druffel, E., and Schmitt‐Kopplin, P. ( 2014 ) Photochemical production of polyols arising from significant photo‐transformation of dissolved organic matter in the oligotrophic surface ocean. Mar Chem 163: 10 – 18.
dc.identifier.citedreferenceGonsior, M., Peake, B.M., Cooper, W.T., Podgorski, D., D’Andrilli, J., and Cooper, W.J. ( 2009 ) Photochemically induced changes in dissolved organic matter identified by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry. Environ Sci Technol 43: 698 – 703.
dc.identifier.citedreferenceGulvik, C.A., and Buchan, A. ( 2013 ) Simultaneous catabolism of plant‐derived aromatic compounds results in enhanced growth for members of the Roseobacter lineage. Appl Environ Microbiol 79: 3716 – 3723.
dc.identifier.citedreferenceHarke, M.J., and Gobler, C.J. ( 2013 ) Global transcriptional responses of the toxic Cyanobacterium, Microcystis aeruginosa, to nitrogen stress, phosphorus stress, and growth on organic matter. PLoS ONE 8: e69834.
dc.identifier.citedreferenceHerlemann, D.P.R., Manecki, M., Meeske, C., Pollehne, F., Labrenz, M., Schulz‐Bull, D., et al. ( 2014 ) Uncoupling of bacterial and terrigenous dissolved organic matter dynamics in decomposition experiments. PLoS ONE 9: e93945.
dc.identifier.citedreferenceHockaday, W.C., Purcell, J.M., Marshall, A.G., Baldock, J.A., and Hatcher, P.G. ( 2009 ) Electrospray and photoionization mass spectrometry for the characterization of organic matter in natural waters: a qualitative assessment: characterization of organic matter in natural waters. Limnol Oceanogr Methods 7: 81 – 95.
dc.identifier.citedreferenceHuntemann, M., Ivanova, N.N., Mavromatis, K., James Tripp, H., Paez‐Espino, D., Palaniappan, K., et al. ( 2015 ) The standard operating procedure of the DOE‐JGI microbial genome annotation pipeline (MGAP v.4). Stand Genomic Sci 10: 1 – 6.
dc.identifier.citedreferenceHyatt, D., Chen, G.L., LoCascio, P.F., Land, M.L., Larimer, F.W., and Hauser, L.J. ( 2010 ) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11: 119.
dc.identifier.citedreferenceJudd, K.E., Crump, B.C., and Kling, G.W. ( 2007 ) Bacterial responses in activity and community composition to photo‐oxidation of dissolved organic matter from soil and surface waters. Aquat Sci 69: 96 – 107.
dc.identifier.citedreferenceJudd, K.E., Crump, B.C., and Kling, G.W. ( 2006 ) Variation in dissolved organic matter controls bacterial production and community composition. Ecology 87: 2068 – 2079.
dc.identifier.citedreferenceKaiser, E., and Sulzberger, B. ( 2004 ) Phototransformation of riverine dissolved organic matter (DOM) in the presence of abundant iron: effect on DOM bioavailability. Limnol Oceanogr 49: 540 – 554.
dc.identifier.citedreferenceKanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., et al. ( 2008 ) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36: D480 – D484.
dc.identifier.citedreferenceKieber, D.J., and Mopper, K. ( 1987 ) Photochemical formation of glyoxylic and pyruvic acids in seawater. Mar Chem 21: 135 – 149.
dc.identifier.citedreferenceKoch, B.P., and Dittmar, T. ( 2006 ) From mass to structure: an aromaticity index for high‐resolution mass data of natural organic matter. Rapid Commun Mass Spectrom 20: 926 – 932.
dc.identifier.citedreferenceKraakman, L.S., Griffioen, G., Zerp, S., Groeneveld, P., Thevelein, J.M., Mager, W.H., and Planta, R.J. ( 1993 ) Growth‐related expression of ribosomal protein genes in Saccharomyces cerevisiae. Mol Gen Genet MGG 239: 196 – 204.
dc.identifier.citedreferenceLahtvee, P.J., Adamberg, K., Arike, L., Nahku, R., Aller, K., and Vilu, R. ( 2011 ) Multi‐omics approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates. Microb Cell Fact 10: 1 – 12.
dc.identifier.citedreferenceLeón‐Sobrino, C., Ramond, J.B., Maggs‐Kölling, G., and Cowan, D.A. ( 2019 ) Nutrient acquisition, rather than stress response over diel cycles, drives microbial transcription in a hyper‐arid namib desert soil. Front Microbiol 10: 1054.
dc.identifier.citedreferenceLi, D., Liu, C.M., Luo, R., Sadakane, K., and Lam, T.W. ( 2015 ) MEGAHIT: an ultra‐fast single‐node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31: 1674 – 1676.
dc.identifier.citedreferenceLi, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. ( 2009 ) The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078 – 2079.
dc.identifier.citedreferenceLogue, J.B., Stedmon, C.A., Kellerman, A.M., Nielsen, N.J., Andersson, A.F., Laudon, H., et al. ( 2016 ) Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. ISME J 10: 533 – 545.
dc.identifier.citedreferenceMadar, D., Dekel, E., Bren, A., Zimmer, A., Porat, Z., and Alon, U. ( 2013 ) Promoter activity dynamics in the lag phase of Escherichia coli. BMC Syst Biol 7: 136.
dc.identifier.citedreferenceMann, P.J., Davydova, A., Zimov, N., Spencer, R.G.M., Davydov, S., Bulygina, E., et al. ( 2012 ) Controls on the composition and lability of dissolved organic matter in Siberia’s Kolyma River basin. J Geophys Res Biogeo 117: 1 – 15.
dc.identifier.citedreferenceMatsumoto, Y., Murakami, Y., Tsuru, S., Ying, B., and Yomo, T. ( 2013 ) Growth rate‐coordinated transcriptome reorganization in bacteria. BMC Genomics 14: 808.
dc.identifier.citedreferenceMcCarren, J., Becker, J.W., Repeta, D.J., Shi, Y., Young, C.R., Malmstrom, R.R., et al. ( 2010 ) Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc Natl Acad Sci 107: 16420 – 16427.
dc.identifier.citedreferencede Menezes, A., Clipson, N., and Doyle, E. ( 2012 ) Comparative metatranscriptomics reveals widespread community responses during phenanthrene degradation in soil. Environ Microbiol 14: 2577 – 2588.
dc.identifier.citedreferenceMoran, M.A., and Zepp, R.G. ( 1997 ) Role of photoreduction in the formation of bioogically labile compounds from dissolved organic matter. Limnol Oceanogr 42: 1307 – 1316.
dc.identifier.citedreferenceNayfach, S., Bradley, P.H., Wyman, S.K., Laurent, T.J., Williams, A., Eisen, J.A., et al. ( 2015 ) Automated and accurate estimation of gene family abundance from shotgun Metagenomes. PLoS Comput Biol 11: 1 – 29.
dc.identifier.citedreferenceNoinaj, N., Guillier, M., Barnard, T.J., and Buchanan, S.K. ( 2010 ) TonB‐dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64: 43 – 60.
dc.identifier.citedreferenceOssola, R., Tolu, J., Clerc, B., Erickson, P.R., Winkel, L.H.E., and McNeill, K. ( 2019 ) Photochemical production of sulfate and Methanesulfonic acid from dissolved organic sulfur. Environ Sci Technol 53: 13191 – 13200.
dc.identifier.citedreferencePage, S.E., Logan, J.R., Cory, R.M., and McNeill, K. ( 2014 ) Evidence for dissolved organic matter as the primary source and sink of photochemically produced hydroxyl radical in arctic surface waters. Env Sci Process Impacts 16: 807 – 822.
dc.identifier.citedreferencePiłsyk, S., and Paszewski A. ( 2009 ) Sulfate permeasesphylogenetic diversity of sulfate transport. Acta Biochim Pol 56: 375 – 384.
dc.identifier.citedreferenceR Core Development Team. ( 2011 ) R: A Language and Environment for Statistical Computing. Vienna, Austria. R Foundation for Statistical Computing. http://www.R-project.org.
dc.identifier.citedreferenceRaymond, P.A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., et al. ( 2013 ) Global carbon dioxide emissions from inland waters. Nature 503: 355 – 359.
dc.identifier.citedreferenceReader, H.E., and Miller, W.L. ( 2014 ) The efficiency and spectral photon dose dependence of photochemically induced changes to the bioavailability of dissolved organic carbon. Limnol Oceanogr 59: 182 – 194.
dc.identifier.citedreferenceRitchie, J.D., and Perdue, E.M. ( 2003 ) Proton‐binding study of standard and reference fulvic acids, humic acids, and natural organic matter. Geochim Cosmochim Acta 67: 85 – 96.
dc.identifier.citedreferenceRobinson, M.D., and Oshlack, A. ( 2010 ) A scaling normalization method for differential expression analysis of RNA‐seq data. Genome Biol 11: R25.
dc.identifier.citedreferenceRolfe, M.D., Beek, A.T., Graham, A.I., Trotter, E.W., Asif, H.M.S., Sanguinetti, G., et al. ( 2011 ) Transcript profiling and inference of Escherichia coli K‐12 ArcA activity across the range of physiologically relevant oxygen concentrations. J Biol Chem 286: 10147 – 10154.
dc.identifier.citedreferenceRowland, J.C., Jones, C.E., Altmann, G., Bryan, R., Crosby, B.T., Geernaert, G.L., et al. ( 2010 ) Arctic landscapes in transition: responses to thawing permafrost. Eos Trans Am Geophys Union 91: 229 – 236.
dc.identifier.citedreferenceSatinsky, B.M., Fortunato, C.S., Doherty, M., Smith, C.B., Sharma, S., Ward, N.D., et al. ( 2015 ) Metagenomic and metatranscriptomic inventories of the lower Amazon River, May 2011. Microbiome 3: 39.
dc.identifier.citedreferenceSatinsky, B.M., Smith, C.B., Sharma, S., Ward, N.D., Krusche, A.V., Richey, J.E., et al. ( 2017 ) Patterns of bacterial and archaeal gene expression through the lower Amazon River. Front Mar Sci 4: 253.
dc.identifier.citedreferenceScott, M., Mateescu, E.M., Zhang, Z., and Hwa, T. ( 2010 ) Interdependence of cell growth origins and consequences. Science 330: 1099 – 1102.
dc.identifier.citedreferenceShi, Y., McCarren, J., and Delong, E.F. ( 2012 ) Transcriptional responses of surface water marine microbial assemblages to deep‐sea water amendment. Environ Microbiol 14: 191 – 206.
dc.identifier.citedreferenceSleighter, R.L., Cory, R.M., Kaplan, L.A., Abdulla, H.A.N., and Hatcher, P.G. ( 2014 ) A coupled geochemical and biogeochemical approach to characterize the bioreactivity of dissolved organic matter from a headwater stream. J Geophys Res G Biogeosciences 119: 1520 – 1537.
dc.identifier.citedreferenceŠmejkalová, T., Edwards, M.E., and Dash, J. ( 2016 ) Arctic lakes show strong decadal trend in earlier spring ice‐out. Sci Rep 6: 38449.
dc.identifier.citedreferenceSoutourina, O.A., and Bertin, P.N. ( 2003 ) Regulation cascade of flagellar expression in gram‐negative bacteria. FEMS Microbiol Rev 27: 505 – 523.
dc.identifier.citedreferenceStenson, A.C., Marshall, A.G., and Cooper, W.T. ( 2003 ) Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra. Anal Chem 75: 1275 – 1284.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.