Show simple item record

Quantifying the Effect of the Drake Passage Opening on the Eocene Ocean

dc.contributor.authorToumoulin, A.
dc.contributor.authorDonnadieu, Y.
dc.contributor.authorLadant, J.‐b.
dc.contributor.authorBatenburg, S. J.
dc.contributor.authorPoblete, F.
dc.contributor.authorDupont‐nivet, G.
dc.date.accessioned2020-09-02T14:58:04Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-09-02T14:58:04Z
dc.date.issued2020-08
dc.identifier.citationToumoulin, A.; Donnadieu, Y.; Ladant, J.‐b. ; Batenburg, S. J.; Poblete, F.; Dupont‐nivet, G. (2020). "Quantifying the Effect of the Drake Passage Opening on the Eocene Ocean." Paleoceanography and Paleoclimatology 35(8): n/a-n/a.
dc.identifier.issn2572-4517
dc.identifier.issn2572-4525
dc.identifier.urihttps://hdl.handle.net/2027.42/156423
dc.description.abstractThe opening of the Drake Passage (DP) during the Cenozoic is a tectonic event of paramount importance for the development of modern ocean characteristics. Notably, it has been suggested that it exerts a primary role in the onset of the Antarctic Circumpolar Current (ACC) formation, in the cooling of high- latitude South Atlantic waters and in the initiation of North Atlantic Deep Water (NADW) formation. Several model studies have aimed to assess the impacts of DP opening on climate, but most of them focused on surface climate, and only few used realistic Eocene boundary conditions. Here, we revisit the impact of the DP opening on ocean circulation with the IPSL- CM5A2 Earth System Model. Using appropriate middle Eocene (40 Ma) boundary conditions, we perform and analyze simulations with different depths of the DP (0, 100, 1,000, and 2,500 m) and compare results to existing geochemical data. Our experiments show that DP opening has a strong effect on Eocene ocean structure and dynamics even for shallow depths. The DP opening notably allows the formation of a proto- ACC and induces deep ocean cooling of 1.5°C to 2.5°C in most of the Southern Hemisphere. There is no NADW formation in our simulations regardless of the depth of the DP, suggesting that the DP on its own is not a primary control of deepwater formation in the North Atlantic. This study elucidates how and to what extent the opening of the DP contributed to the establishment of the modern global thermohaline circulation.Key PointsA shallow opening of the Drake Passage induces strong changes in ocean properties and dynamicsA proto- ACC is able to form during the Eocene under high levels of pCO2, but a strong ACC requires supplementary geographical changesNorth Atlantic Deep Water is probably not able to form before the separation of the Arctic and Atlantic Oceans
dc.publisherWiley Periodicals, Inc.
dc.publisherOcean Drilling Program
dc.subject.otherAntarctic Circumpolar Current
dc.subject.otherSouthern Ocean
dc.subject.otherneodymium
dc.subject.otherclimate modeling
dc.subject.othergateways
dc.subject.otherEocene
dc.titleQuantifying the Effect of the Drake Passage Opening on the Eocene Ocean
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156423/3/palo20904-sup-0001-2020PA003889-SI.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156423/2/palo20904.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156423/1/palo20904_am.pdfen_US
dc.identifier.doi10.1029/2020PA003889
dc.identifier.sourcePaleoceanography and Paleoclimatology
dc.identifier.citedreferenceRoberts, C. D., LeGrande, A. N., & Tripati, A. K. ( 2009 ). Climate sensitivity to Arctic seaway restriction during the early Paleogene. Earth and Planetary Science Letters, 286 ( 3- 4 ), 576 - 585. https://doi.org/10.1016/j.epsl.2009.07.026
dc.identifier.citedreferenceScher, H. D., Whittaker, J. M., Williams, S. E., Latimer, J. C., Kordesch, W. E. C., & Delaney, M. L. ( 2015 ). Onset of Antarctic Circumpolar Current 30 million years ago as Tasmanian gateway aligned with westerlies. Nature, 523 ( 7562 ), 580 - 583. https://doi.org/10.1038/nature14598
dc.identifier.citedreferenceSepulchre, P., Arsouze, T., Donnadieu, Y., Dutay, J.- C., Jaramillo, C., Le Bras, J., Martin, E., Montes, C., & Waite, A. J. ( 2014 ). Consequences of shoaling of the central American seaway determined from modeling Nd isotopes. Paleoceanography, 29, 176 - 189. https://doi.org/10.1002/2013PA002501
dc.identifier.citedreferenceSepulchre, P., Caubel, A., Ladant, J.- B., Bopp, L., Boucher, O., Braconnot, P., Brockmann, P., Cozic, A., Donnadieu, Y., Estella- Perez, V., Ethé, C., Fluteau, F., Foujols, M.- A., Gastineau, G., Ghattas, J., Hauglustaine, D., Hourdin, F., Kageyama, M., Khodri, M., et al. ( 2019 ). IPSL- CM5A2. An earth system model designed for multi- millennial climate simulations. Geoscientific Model Development Discussions, 1 - 57. https://doi.org/10.5194/gmd-2019-332
dc.identifier.citedreferenceSijp, W. P., & England, M. H. ( 2004 ). Effect of the Drake Passage throughflow on global climate. Journal of Physical Oceanography, 34 ( 5 ), 1254 - 1266. https://doi.org/10.1175/1520-0485(2004)034%3C1254:EOTDPT%3E2.0.CO;2
dc.identifier.citedreferenceSijp, W. P., & England, M. H. ( 2005 ). Role of the Drake Passage in controlling the stability of the Ocean’s Thermohaline circulation. Journal of Climate, 18 ( 12 ), 1957 - 1966. https://doi.org/10.1175/JCLI3376.1
dc.identifier.citedreferenceSijp, W. P., England, M. H., & Huber, M. ( 2011 ). Effect of the deepening of the Tasman gateway on the global ocean. Paleoceanography, 26, PA4207. https://doi.org/10.1029/2011PA002143
dc.identifier.citedreferenceSijp, W. P., England, M. H., & Toggweiler, J. R. ( 2009 ). Effect of ocean gateway changes under greenhouse warmth. Journal of Climate, 22 ( 24 ), 6639 - 6652. https://doi.org/10.1175/2009JCLI3003.1
dc.identifier.citedreferenceSijp, W. P., von der Heydt, A. S., & Bijl, P. K. ( 2016 ). Model simulations of early westward flow across the Tasman gateway during the early Eocene. Climate of the Past, 12 ( 4 ), 807 - 817. https://doi.org/10.5194/cp-12-807-2016
dc.identifier.citedreferenceSijp, W. P., von der Heydt, A. S., Dijkstra, H. A., Flögel, S., Douglas, P. M. J., & Bijl, P. K. ( 2014 ). The role of ocean gateways on cooling climate on long time scales. Global and Planetary Change, 119, 1 - 22. https://doi.org/10.1016/j.gloplacha.2014.04.004
dc.identifier.citedreferenceStärz, M., Jokat, W., Knorr, G., & Lohmann, G. ( 2017 ). Threshold in North Atlantic- Arctic Ocean circulation controlled by the subsidence of the Greenland- Scotland ridge. Nature Communications, 8 ( 1 ), 15681. https://doi.org/10.1038/ncomms15681
dc.identifier.citedreferenceStickley, C. E., Brinkhuis, H., Schellenberg, S. A., Sluijs, A., Röhl, U., Fuller, M., Grauert, M., Huber, M., Warnaar, J., & Williams, G. L. ( 2004 ). Timing and nature of the deepening of the Tasmanian gateway. Paleoceanography, 19, PA4027. https://doi.org/10.1029/2004PA001022
dc.identifier.citedreferenceStoker, M., Leslie, A., Smith, K., à lavsdóttir, J., Johnson, H., & Laberg, J. S. ( 2013 ). Onset of North Atlantic deep water production coincident with inception of the Cenozoic global cooling trend: Comment. Geology, 41 ( 9 ), e291. https://doi.org/10.1130/G33670C.1
dc.identifier.citedreferenceTardif, D., Fluteau, F., Donnadieu, Y., Le Hir, G., Ladant, J.- B., Sepulchre, P., Licht, A., Poblete, F., & Dupont- Nivet, G. ( 2020 ). The onset of Asian monsoons: A modelling perspective [preprint]. Climate of the Past Discussion, 16 ( 3 ), 847 - 865. https://doi.org/10.5194/cp-2019-144
dc.identifier.citedreferenceThomas, D. J. ( 2004 ). Evidence for deep- water production in the North Pacific Ocean during the early Cenozoic warm interval. Nature, 430 ( 6995 ), 65 - 68. https://doi.org/10.1038/nature02639
dc.identifier.citedreferenceThomas, D. J., Korty, R., Huber, M., Schubert, J. A., & Haines, B. ( 2014 ). Nd isotopic structure of the Pacific Ocean 70- 30 ma and numerical evidence for vigorous ocean circulation and ocean heat transport in a greenhouse world. Paleoceanography, 29, 454 - 469. https://doi.org/10.1002/2013PA002535
dc.identifier.citedreferenceToggweiler, J. R., & Bjornsson, H. ( 2000 ). Drake Passage and palaeoclimate. Journal of Quaternary Science, 15 ( 4 ), 319 - 328. https://doi.org/10.1002/1099-1417(200005)15:4%3C319::AID-JQS545%3E3.0.CO;2-C
dc.identifier.citedreferenceToggweiler, J. R., & Samuels, B. ( 1995 ). Effect of Drake Passage on the global thermohaline circulation. Deep Sea Research Part I: Oceanographic Research Papers, 42 ( 4 ), 477 - 500. https://doi.org/10.1016/0967-0637(95)00012-U
dc.identifier.citedreferenceTripati, A., Backman, J., Elderfield, H., & Ferretti, P. ( 2005 ). Eocene bipolar glaciation associated with global carbon cycle changes. Nature, 436 ( 7049 ), 341 - 346. https://doi.org/10.1038/nature03874
dc.identifier.citedreferenceVahlenkamp, M., Niezgodzki, I., De Vleeschouwer, D., Lohmann, G., Bickert, T., & Pälike, H. ( 2018 ). Ocean and climate response to North Atlantic seaway changes at the onset of long- term Eocene cooling. Earth and Planetary Science Letters, 498, 185 - 195. https://doi.org/10.1016/j.epsl.2018.06.031
dc.identifier.citedreferenceValcke, S. ( 2006 ). OASIS3 user’s guide (prism- 2- 5). (Tech. Rep. TR/CMGC/06/73, PRISM Report No 3). Toulouse, France: CERFACS
dc.identifier.citedreferenceVia, R. K., & Thomas, D. J. ( 2006 ). Evolution of Atlantic thermohaline circulation: Early Oligocene onset of deep- water production in the North Atlantic. Geology, 34 ( 6 ), 441. https://doi.org/10.1130/G22545.1
dc.identifier.citedreferenceWright, N. M., Scher, H. D., Seton, M., Huck, C. E., & Duggan, B. D. ( 2018 ). No change in Southern Ocean circulation in the Indian Ocean from the Eocene through late Oligocene. Paleoceanography and Paleoclimatology, 33 ( 2 ), 152 - 167. https://doi.org/10.1002/2017PA003238
dc.identifier.citedreferenceYang, S., Galbraith, E., & Palter, J. ( 2014 ). Coupled climate impacts of the Drake Passage and the Panama seaway. Climate Dynamics, 43 ( 1- 2 ), 37 - 52. https://doi.org/10.1007/s00382-013-1809-6
dc.identifier.citedreferenceZachos, J., Pagani, M., Sloan, L. C., Thomas, E., & Billups, K. ( 2001 ). Trends, rhythms, and aberrations in global climate 65 ma to present. Science, 292 ( 5517 ), 686 - 693. https://doi.org/10.1126/science.1059412
dc.identifier.citedreferenceZhang, X., Prange, M., Steph, S., Butzin, M., Krebs, U., Lunt, D. J., Nisancioglu, K. H., Park, W., Schmittner, A., Schneider, B., & Schulz, M. ( 2012 ). Changes in equatorial Pacific thermocline depth in response to Panamanian seaway closure: Insights from a multi- model study. Earth and Planetary Science Letters, 317- 318, 76 - 84. https://doi.org/10.1016/j.epsl.2011.11.028
dc.identifier.citedreferenceZhang, Z.- S., Yan, Q., & Wang, H. ( 2010 ). Has the Drake Passage played an essential role in the Cenozoic cooling? Atmospheric and Oceanic Science Letters, 3 ( 5 ), 288 - 292. https://doi.org/10.1080/16742834.2010.11446884
dc.identifier.citedreferenceZhu, J., Poulsen, C. J., & Tierney, J. E. ( 2019 ). Simulation of Eocene extreme warmth and high climate sensitivity through cloud feedbacks. Science Advances, 5 ( 9 ), eaax1874. https://doi.org/10.1126/sciadv.aax1874
dc.identifier.citedreferenceAbelson, M., Agnon, A., & Almogi- Labin, A. ( 2008 ). Indications for control of the Iceland plume on the Eocene- Oligocene - greenhouse- icehouse- climate transition. Earth and Planetary Science Letters, 265 ( 1- 2 ), 33 - 48. https://doi.org/10.1016/j.epsl.2007.09.021
dc.identifier.citedreferenceAbelson, M., & Erez, J. ( 2017 ). The onset of modern- like Atlantic meridional overturning circulation at the Eocene- Oligocene transition: Evidence, causes, and possible implications for global cooling. Geochemistry, Geophysics, Geosystems, 18, 2177 - 2199. https://doi.org/10.1002/2017GC006826
dc.identifier.citedreferenceAllison, L. C., Johnson, H. L., Marshall, D. P., & Munday, D. R. ( 2010 ). Where do winds drive the Antarctic Circumpolar Current? Geophysical Research Letters, 37, L12605. https://doi.org/10.1029/2010GL043355
dc.identifier.citedreferenceAnagnostou, E., John, E. H., Edgar, K. M., Foster, G. L., Ridgwell, A., Inglis, G. N., Pancost, R. D., Lunt, D. J., & Pearson, P. N. ( 2016 ). Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature, 533 ( 7603 ), 380 - 384. https://doi.org/10.1038/nature17423
dc.identifier.citedreferenceAumont, O., Ethé, C., Tagliabue, A., Bopp, L., & Gehlen, M. ( 2015 ). PISCES- v2: An ocean biogeochemical model for carbon and ecosystem studies. Geoscientific Model Development, 8 ( 8 ), 2465 - 2513. https://doi.org/10.5194/gmd-8-2465-2015
dc.identifier.citedreferenceBaatsen, M., von der Heydt, A. S., Huber, M., Kliphuis, M. A., Bijl, P. K., Sluijs, A., & Dijkstra, H. A. ( 2020 ). The middle- to- late Eocene greenhouse climate, modelled using the CESM 1.0.5. Climate of the Past Discussions, 1 - 44. https://doi.org/10.5194/cp-2020-29
dc.identifier.citedreferenceBarker, P. F. ( 2001 ). Scotia Sea regional tectonic evolution: Implications for mantle flow and palaeocirculation. Earth- Science Reviews, 55 ( 1- 2 ), 1 - 39. https://doi.org/10.1016/S0012-8252(01)00055-1
dc.identifier.citedreferenceBatenburg, S. J., Voigt, S., Friedrich, O., Osborne, A. H., Bornemann, A., Klein, T., Pérez- Díaz, L., & Frank, M. ( 2018 ). Major intensification of Atlantic overturning circulation at the onset of Paleogene greenhouse warmth. Nature Communications, 9 ( 1 ), 4954 - 4958. https://doi.org/10.1038/s41467-018-07457-7
dc.identifier.citedreferenceBeerling, D. J., & Royer, D. L. ( 2011 ). Convergent cenozoic CO2 history. Nature Geoscience, 4 ( 7 ), 418 - 420. https://doi.org/10.1038/ngeo1186
dc.identifier.citedreferenceEagles, G., & Jokat, W. ( 2014 ). Tectonic reconstructions for paleobathymetry in Drake Passage. Tectonophysics, 611, 28 - 50. https://doi.org/10.1016/j.tecto.2013.11.021
dc.identifier.citedreferenceBice, K. L., Scotese, C. R., Seidov, D., & Barron, E. J. ( 2000 ). Quantifying the role of geographic change in Cenozoic Ocean heat transport using uncoupled atmosphere and ocean models. Palaeogeography, Palaeoclimatology, Palaeoecology, 161 ( 3- 4 ), 295 - 310. https://doi.org/10.1016/S0031-0182(00)00072-9
dc.identifier.citedreferenceBijl, P. K., Bendle, J. A. P., Bohaty, S. M., Pross, J., Schouten, S., Tauxe, L., Stickley, C. E., McKay, R. M., Röhl, U., Olney, M., Sluijs, A., Escutia, C., Brinkhuis, H., & Expedition 318 Scientists ( 2013 ). Eocene cooling linked to early flow across the Tasmanian gateway. Proceedings of the National Academy of Sciences, 110 ( 24 ), 9645 - 9650. https://doi.org/10.1073/pnas.1220872110
dc.identifier.citedreferenceBijl, P. K., Schouten, S., Sluijs, A., Reichart, G.- J., Zachos, J. C., & Brinkhuis, H. ( 2009 ). Early Palaeogene temperature evolution of the Southwest Pacific Ocean. Nature, 461 ( 7265 ), 776 - 779. https://doi.org/10.1038/nature08399
dc.identifier.citedreferenceBorrelli, C., Cramer, B. S., & Katz, M. E. ( 2014 ). Bipolar Atlantic Deepwater circulation in the middle- late Eocene: Effects of Southern Ocean gateway openings. Paleoceanography, 29, 308 - 327. https://doi.org/10.1002/2012PA002444
dc.identifier.citedreferenceBrinkhuis, H., Schouten, S., Collinson, M. E., Sluijs, A., Damsté, J. S. S., Dickens, G. R., Huber, M., Cronin, T. M., Onodera, J., Takahashi, K., Bujak, J. P., Stein, R., van der Burgh, J., Eldrett, J. S., Harding, I. C., Lotter, A. F., Sangiorgi, F., van Konijnenburg- van Cittert, H., de Leeuw, J. W., Matthiessen, J., Backman, J., Moran, K., & Expedition 302 Scientists. ( 2006 ). Episodic fresh surface waters in the Eocene Arctic Ocean. Nature, 441 ( 7093 ), 606 - 609. https://doi.org/10.1038/nature04692
dc.identifier.citedreferenceCarter, R. M., McCave, I. N., & Carter, L. ( 2004 ). Leg 181 synthesis: Fronts, flows, drifts, volcanoes, and the evolution of the southwestern gateway to the Pacific Ocean, eastern New Zealand. In C. Richter (Ed.), Proc. ODP, Sci. Results, 181 (pp. 1 - 111 ). College Station, TX: Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.181.210.2004
dc.identifier.citedreferenceCooke, S., & Rohling, E. J. ( 1999 ). Stable oxygen and carbon isotopes in foraminiferal carbonate shells. In B. K. S. Gupta (Ed.), Modern Foraminifera (pp. 239 - 258 ). Netherlands: Springer. https://doi.org/10.1007/0-306-48104-9_14
dc.identifier.citedreferenceCoxall, H. K., Huck, C. E., Huber, M., Lear, C. H., Legarda- Lisarri, A., O’Regan, M., Sliwinska, K. K., van de Flierdt, T., de Boer, A. M., Zachos, J. C., & Backman, J. ( 2018 ). Export of nutrient rich northern component water preceded early Oligocene Antarctic glaciation. Nature Geoscience, 11 ( 3 ), 190 - 196. https://doi.org/10.1038/s41561-018-0069-9
dc.identifier.citedreferenceCramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E., & Miller, K. G. ( 2009 ). Ocean overturning since the late cretaceous: Inferences from a new benthic foraminiferal isotope compilation. Paleoceanography, 24, PA4216. https://doi.org/10.1029/2008PA001683
dc.identifier.citedreferenceCramwinckel, M. J., Huber, M., Kocken, I. J., Agnini, C., Bijl, P. K., Bohaty, S. M., Frieling, J., Goldner, A., Hilgen, F. J., Kip, E. L., & Peterse, F. ( 2018 ). Synchronous tropical and polar temperature evolution in the Eocene. Nature, 559 ( 7714 ), 382 - 386. https://doi.org/10.1038/s41586-018-0272-2
dc.identifier.citedreferenceCristini, L., Grosfeld, K., Butzin, M., & Lohmann, G. ( 2012 ). Influence of the opening of the Drake Passage on the Cenozoic Antarctic ice sheet: A modeling approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 339- 341, 66 - 73. https://doi.org/10.1016/j.palaeo.2012.04.023
dc.identifier.citedreferenceDalziel, I. W. D., Lawver, L. A., Norton, I. O., & Gahagan, L. M. ( 2013 ). The scotia arc: Genesis, evolution, global significance. Annual Review of Earth and Planetary Sciences, 41 ( 1 ), 767 - 793. https://doi.org/10.1146/annurev-earth-050212-124155
dc.identifier.citedreferenceDeConto, R. M., & Pollard, D. ( 2003 ). Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature, 421 ( 6920 ), 245 - 249. https://doi.org/10.1038/nature01290
dc.identifier.citedreferenceDonohue, K. A., Tracey, K. L., Watts, D. R., Chidichimo, M. P., & Chereskin, T. K. ( 2016 ). Mean Antarctic Circumpolar Current transport measured in Drake Passage. Geophysical Research Letters, 43, 11,760 - 11,767. https://doi.org/10.1002/2016GL070319
dc.identifier.citedreferenceDoria, G., Royer, D. L., Wolfe, A. P., Fox, A., Westgate, J. A., & Beerling, D. J. ( 2011 ). Declining atmospheric CO2 during the late middle Eocene climate transition. American Journal of Science, 311 ( 1 ), 63 - 75. https://doi.org/10.2475/01.2011.03
dc.identifier.citedreferenceDouglas, P. M. J., Affek, H. P., Ivany, L. C., Houben, A. J. P., Sijp, W. P., Sluijs, A., Schouten, S., & Pagani, M. ( 2014 ). Pronounced zonal heterogeneity in Eocene southern high- latitude sea surface temperatures. Proceedings of the National Academy of Sciences, 111 ( 18 ), 6582 - 6587. https://doi.org/10.1073/pnas.1321441111
dc.identifier.citedreferenceDufresne, J.- L., Foujols, M.- A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., de Noblet, N., Duvel, J. P., Ethé, C., Fairhead, L., Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J. Y., Guez, L., Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefebvre, M. P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F., Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray, P., Viovy, N., & Vuichard, N. ( 2013 ). Climate change projections using the IPSL- CM5 earth system model: From CMIP3 to CMIP5. Climate Dynamics, 40 ( 9- 10 ), 2123 - 2165. https://doi.org/10.1007/s00382-012-1636-1
dc.identifier.citedreferenceEagles, G. ( 2010 ). South Georgia and Gondwana’s Pacific margin: Lost in translation? Journal of South American Earth Sciences, 30 ( 2 ), 65 - 70. https://doi.org/10.1016/j.jsames.2010.04.004
dc.identifier.citedreferenceEagles, G., Livermore, R., & Morris, P. ( 2006 ). Small basins in the Scotia Sea: The Eocene Drake Passage gateway. Earth and Planetary Science Letters, 242 ( 3- 4 ), 343 - 353. https://doi.org/10.1016/j.epsl.2005.11.060
dc.identifier.citedreferenceEagles, G., & Scott, B. G. C. ( 2014 ). Plate convergence west of Patagonia and the Antarctic peninsula since 61Ma. Global and Planetary Change, 123, 189 - 198. https://doi.org/10.1016/j.gloplacha.2014.08.002
dc.identifier.citedreferenceElsworth, G., Galbraith, E., Halverson, G., & Yang, S. ( 2017 ). Enhanced weathering and CO2 drawdown caused by latest Eocene strengthening of the Atlantic meridional overturning circulation. Nature Geoscience, 10 ( 3 ), 213 - 216. https://doi.org/10.1038/ngeo2888
dc.identifier.citedreferenceEngland, M. H., Hutchinson, D. K., Santoso, A., & Sijp, W. P. ( 2017 ). Ice- atmosphere feedbacks dominate the response of the climate system to Drake Passage closure. Journal of Climate, 30 ( 15 ), 5775 - 5790. https://doi.org/10.1175/JCLI-D-15-0554.1
dc.identifier.citedreferenceEstebenet, M. S. G., Guerstein, G. R., & Alperin, M. I. ( 2014 ). Dinoflagellate cyst distribution during the middle Eocene in the Drake Passage area: Paleoceanographic implications. Ameghiniana, 51 ( 6 ), 500 - 509. https://doi.org/10.5710/AMGH.06.08.2014.2727
dc.identifier.citedreferenceExon, N. F., Brinkhuis, H., Robert, C. M., Kennett, J. P., Hill, P. J., & Macphail, M. K. ( 2004 ). Tectono- sedimentary history of uppermost cretaceous through Oligocene sequences from the Tasmanian region: A temperate Antarctic margin. In N. F. Exon, J. P. Kennett, & M. J. Malone (Eds.), The Cenozoic Southern Ocean: Tectonics, sedimentation, and climate change between Australia and Antarctica, Geophysical Monograph Series (Vol. 151, pp. 319 - 344 ). Washington, DC: American Geophysical Union. https://doi.org/10.1029/151GM18
dc.identifier.citedreferenceFarnsworth, A., Lunt, D. J., O’Brien, C. L., Foster, G. L., Inglis, G. N., Markwick, P., Pancost, R. D., & Robinson, S. A. ( 2019 ). Climate sensitivity on geological timescales controlled by nonlinear feedbacks and ocean circulation. Geophysical Research Letters, 46, 9880 - 9889. https://doi.org/10.1029/2019GL083574
dc.identifier.citedreferenceFichefet, T., & Morales- Maqueda, M. A. ( 1997 ). Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. Journal of Geophysical Research, 102 ( C6 ), 12,609 - 12,646. https://doi.org/10.1029/97JC00480
dc.identifier.citedreferenceFiring, Y. L., Chereskin, T. K., & Mazloff, M. R. ( 2011 ). Vertical structure and transport of the Antarctic Circumpolar Current in Drake Passage from direct velocity observations. Journal of Geophysical Research, 116, C08015. https://doi.org/10.1029/2011JC006999
dc.identifier.citedreferencevan de Flierdt, T., Frank, M., Halliday, A. N., Hein, J. R., Hattendorf, B., Günther, D., & Kubik, P. W. ( 2004 ). Deep and bottom water export from the Southern Ocean to the Pacific over the past 38 million years. Paleoceanography, 19, PA1020. https://doi.org/10.1029/2003PA000923
dc.identifier.citedreferenceFrank, M., Whiteley, N., van de Flierdt, T., Reynolds, B. C., & O’Nions, K. ( 2006 ). Nd and Pb isotope evolution of deep water masses in the eastern Indian Ocean during the past 33 Myr. Chemical Geology, 226 ( 3- 4 ), 264 - 279. https://doi.org/10.1016/j.chemgeo.2005.09.024
dc.identifier.citedreferenceGalindo- Zaldívar, J., Puga, E., Bohoyo, F., González, F. J., Maldonado, A., Martos, Y. M., Pérez, L. F., Ruano, P., Schreider, A. A., Somoza, L., Suriñach, E., & Antonio, D. de F. ( 2014 ). Reprint of - Magmatism, structure and age of dove basin (Antarctica): A key to understanding south scotia arc development- . Global and Planetary Change, 123, 249 - 268. https://doi.org/10.1016/j.gloplacha.2014.11.002
dc.identifier.citedreferenceGent, P. R., Large, W. G., & Bryan, F. O. ( 2001 ). What sets the mean transport through Drake Passage? Journal of Geophysical Research, 106 ( C2 ), 2693 - 2712. https://doi.org/10.1029/2000JC900036
dc.identifier.citedreferenceGoldner, A., Herold, N., & Huber, M. ( 2014 ). Antarctic glaciation caused ocean circulation changes at the Eocene- Oligocene transition. Nature, 511 ( 7511 ), 574 - 577. https://doi.org/10.1038/nature13597
dc.identifier.citedreferenceHague, A. M., Thomas, D. J., Huber, M., Korty, R., Woodard, S. C., & Jones, L. B. ( 2012 ). Convection of North Pacific deep water during the early Cenozoic. Geology, 40 ( 6 ), 527 - 530. https://doi.org/10.1130/G32886.1
dc.identifier.citedreferenceHaynes, S. J., MacLeod, K. G., Ladant, J.- B., Guchte, A. V., Rostami, M. A., Poulsen, C. J., & Martin, E. E. ( 2020 ). Constraining sources and relative flow rates of bottom waters in the late cretaceous Pacific Ocean. Geology, 48 ( 5 ), 509 - 513. https://doi.org/10.1130/G47197.1
dc.identifier.citedreferenceHill, D. J., Haywood, A. M., Valdes, P. J., Francis, J. E., Lunt, D. J., Wade, B. S., & Bowman, V. C. ( 2013 ). Paleogeographic controls on the onset of the Antarctic Circumpolar Current. Geophysical Research Letters, 40, 5199 - 5204. https://doi.org/10.1002/grl.50941
dc.identifier.citedreferenceHohbein, M. W., Sexton, P. F., & Cartwright, J. A. ( 2012 ). Onset of North Atlantic deep water production coincident with inception of the Cenozoic global cooling trend. Geology, 40 ( 3 ), 255 - 258. https://doi.org/10.1130/G32461.1
dc.identifier.citedreferenceHollis, C. J., Taylor, K. W. R., Handley, L., Pancost, R. D., Huber, M., Creech, J. B., Hines, B. R., Crouch, E. M., Morgans, H. E. G., Crampton, J. S., Gibbs, S., Pearson, P. N., & Zachos, J. C. ( 2012 ). Early Paleogene temperature history of the Southwest Pacific Ocean: Reconciling proxies and models. Earth and Planetary Science Letters, 349- 350, 53 - 66. https://doi.org/10.1016/j.epsl.2012.06.024
dc.identifier.citedreferenceHouben, A. J., Bijl, P. K., Sluijs, A., Schouten, S., & Brinkhuis, H. ( 2019 ). Late Eocene Southern Ocean cooling and invigoration of circulation preconditioned Antarctica for full- scale glaciation. Geochemistry, Geophysics, Geosystems, 20, 2214 - 2234. https://doi.org/10.1029/2019GC008182
dc.identifier.citedreferenceHourdin, F., Grandpeix, J.- Y., Rio, C., Bony, S., Jam, A., Cheruy, F., Rochetin, N., Fairhead, L., Idelkadi, A., Musat, I., Dufresne, J.- L., Lahellec, A., Lefebvre, M.- P., & Roehrig, R. ( 2013 ). LMDZ5B: The atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Climate Dynamics, 40 ( 9- 10 ), 2193 - 2222. https://doi.org/10.1007/s00382-012-1343-y
dc.identifier.citedreferenceHuber, M., Brinkhuis, H., Stickley, C. E., Döös, K., Sluijs, A., Warnaar, J., Schellenberg, S. A., & Williams, G. L. ( 2004 ). Eocene circulation of the Southern Ocean: Was Antarctica kept warm by subtropical waters? Paleoceanography, 19, PA4026. https://doi.org/10.1029/2004PA001014
dc.identifier.citedreferenceHuber, M., & Caballero, R. ( 2011 ). The early Eocene equable climate problem revisited. Climate of the Past, 7 ( 2 ), 603 - 633. https://doi.org/10.5194/cp-7-603-2011
dc.identifier.citedreferenceHuber, M., Sloan, L. C., & Shellito, C. ( 2003 ). Early Paleogene oceans and climate: A fully coupled modeling approach using the NCAR CCSM. In S. L. Wing, P. D. Gingerich, B. Schmitz, & E. Thomas (Eds.), Causes and consequences of globally warm climates in the Early Paleogene (Vol. 369, pp. 25 - 47 ). Boulder, CO: Geological Society of America. https://doi.org/10.1130/0-8137-2369-8.25
dc.identifier.citedreferenceHuck, C. E., van de Flierdt, T., Bohaty, S. M., & Hammond, S. J. ( 2017 ). Antarctic climate, Southern Ocean circulation patterns, and deep water formation during the Eocene. Paleoceanography, 32, 674 - 691. https://doi.org/10.1002/2017PA003135
dc.identifier.citedreferenceHutchinson, D. K., Coxall, H. K., Lunt, D. J., Steinthorsdottir, M., de Boer, A. M., Baatsen, M., von der Heydt, A., Huber, M., Kennedy- Asser, A. T., Kunzmann, L., Ladant, J.- B., Lear, C. H., Moraweck, K., Pearson, P. N., Piga, E., Pound, M. J., Salzmann, U., Scher, H. D., Sijp, W. P., et al. ( 2020 ). The Eocene- Oligocene transition: A review of marine and terrestrial proxy data, models and model- data comparisons. Climate of the Past Discussions. https://doi.org/10.5194/cp-2020-68
dc.identifier.citedreferenceHutchinson, D. K., Coxall, H. K., O’Regan, M., Nilsson, J., Caballero, R., & de Boer, A. M. ( 2019 ). Arctic closure as a trigger for Atlantic overturning at the Eocene- Oligocene transition. Nature Communications, 10 ( 1 ), 3797. https://doi.org/10.1038/s41467-019-11828-z
dc.identifier.citedreferenceHutchinson, D. K., de Boer, A. M., Coxall, H. K., Caballero, R., Nilsson, J., & Baatsen, M. ( 2018 ). Climate sensitivity and meridional overturning circulation in the late Eocene using GFDL CM2.1. Climate of the Past, 14 ( 6 ), 789 - 810. https://doi.org/10.5194/cp-14-789-2018
dc.identifier.citedreferenceInglis, G. N., Farnsworth, A., Lunt, D., Foster, G. L., Hollis, C. J., Pagani, M., Jardine, P. E., Pearson, P. N., Markwick, P., Galsworthy, A. M. J., Raynham, L., Taylor, K. W. R., & Pancost, R. D. ( 2015 ). Descent toward the icehouse: Eocene Sea surface cooling inferred from GDGT distributions. Paleoceanography, 30, 1000 - 1020. https://doi.org/10.1002/2014PA002723
dc.identifier.citedreferenceJakobsson, M., Backman, J., Rudels, B., Nycander, J., Frank, M., Mayer, L., Jokat, W., Sangiorgi, F., O’Regan, M., Brinkhuis, H., King, J., & Moran, K. ( 2007 ). The early Miocene onset of a ventilated circulation regime in the Arctic Ocean. Nature, 447 ( 7147 ), 986 - 990. https://doi.org/10.1038/nature05924
dc.identifier.citedreferenceKatz, M. E., Cramer, B. S., Toggweiler, J. R., Esmay, G., Liu, C., Miller, K. G., Rosenthal, Y., Wade, B. S., & Wright, J. D. ( 2011 ). Impact of Antarctic Circumpolar Current development on late Paleogene Ocean structure. Science, 332 ( 6033 ), 1076 - 1079. https://doi.org/10.1126/science.1202122
dc.identifier.citedreferenceKennedy- Asser, A. T., Farnsworth, A., Lunt, D. J., Lear, C. H., & Markwick, P. J. ( 2015 ). Atmospheric and oceanic impacts of Antarctic glaciation across the Eocene- Oligocene transition. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373 ( 2054 ), 20140419. https://doi.org/10.1098/rsta.2014.0419
dc.identifier.citedreferenceKennedy- Asser, A. T., Lunt, D. J., Farnsworth, A., & Valdes, P. J. ( 2019 ). Assessing mechanisms and uncertainty in modeled climatic change at the Eocene- Oligocene transition. Paleoceanography and Paleoclimatology, 34 ( 1 ), 16 - 34. https://doi.org/10.1029/2018PA003380
dc.identifier.citedreferenceKennett, J. P. ( 1977 ). Cenozoic evolution of Antarctic glaciation, the circum- Antarctic Ocean, and their impact on global paleoceanography. Journal of Geophysical Research, 82 ( 27 ), 3843 - 3860. https://doi.org/10.1029/JC082i027p03843
dc.identifier.citedreferenceKrinner, G., Viovy, N., de Noblet- Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., & Prentice, I. C. ( 2005 ). A dynamic global vegetation model for studies of the coupled atmosphere- biosphere system. Global Biogeochemical Cycles, 19, GB1015. https://doi.org/10.1029/2003GB002199
dc.identifier.citedreferenceKuhlbrodt, T., Griesel, A., Montoya, M., Levermann, A., Hofmann, M., & Rahmstorf, S. ( 2007 ). On the driving processes of the Atlantic meridional overturning circulation. Reviews of Geophysics, 45, RG2001. https://doi.org/10.1029/2004RG000166
dc.identifier.citedreferenceLadant, J.- B., Donnadieu, Y., Bopp, L., Lear, C. H., & Wilson, P. A. ( 2018 ). Meridional contrasts in productivity changes driven by the opening of Drake Passage. Paleoceanography and Paleoclimatology, 33 ( 3 ), 302 - 317. https://doi.org/10.1002/2017PA003211
dc.identifier.citedreferenceLadant, J.- B., Donnadieu, Y., & Dumas, C. ( 2014a ). Links between CO2, glaciation and water flow: Reconciling the Cenozoic history of the Antarctic Circumpolar Current. Climate of the Past, 10 ( 6 ), 1957 - 1966. https://doi.org/10.5194/cp-10-1957-2014
dc.identifier.citedreferenceLadant, J.- B., Donnadieu, Y., Lefebvre, V., & Dumas, C. ( 2014b ). The respective role of atmospheric carbon dioxide and orbital parameters on ice sheet evolution at the Eocene- Oligocene transition. Paleoceanography, 29, 810 - 823. https://doi.org/10.1002/2013PA002593
dc.identifier.citedreferenceLangton, S. J., Rabideaux, N. M., Borrelli, C., & Katz, M. E. ( 2016 ). Southeastern Atlantic deep- water evolution during the late- middle Eocene to earliest Oligocene (ocean drilling program site 1263 and Deep Sea drilling project site 366). Geosphere, 12 ( 3 ), 1032 - 1047. https://doi.org/10.1130/GES01268.1
dc.identifier.citedreferenceLe Houedec, S., Meynadier, L., & Allègre, C. J. ( 2016 ). Seawater Nd isotope variation in the Western Pacific Ocean since 80Ma (ODP 807, Ontong Java plateau). Marine Geology, 380, 138 - 147. https://doi.org/10.1016/j.margeo.2016.07.005
dc.identifier.citedreferenceLe Houedec, S., Meynadier, L., Cogné, J.- P., Allègre, C. J., & Gourlan, A. T. ( 2012 ). Oceanwide imprint of large tectonic and oceanic events on seawater Nd isotope composition in the Indian Ocean from 90 to 40 ma. Geochemistry, Geophysics, Geosystems, 13, Q06008. https://doi.org/10.1029/2011GC003963
dc.identifier.citedreferenceLefebvre, V., Donnadieu, Y., Sepulchre, P., Swingedouw, D., & Zhang, Z.- S. ( 2012 ). Deciphering the role of southern gateways and carbon dioxide on the onset of the Antarctic Circumpolar Current. Paleoceanography, 27, PA4201. https://doi.org/10.1029/2012PA002345
dc.identifier.citedreferenceLiu, Z., He, Y., Jiang, Y., Wang, H., Liu, W., Bohaty, S. M., & Wilson, P. A. ( 2018 ). Transient temperature asymmetry between hemispheres in the Palaeogene Atlantic Ocean. Nature Geoscience, 11 ( 9 ), 656 - 660. https://doi.org/10.1038/s41561-018-0182-9
dc.identifier.citedreferenceLiu, Z., Pagani, M., Zinniker, D., DeConto, R., Huber, M., Brinkhuis, H., Shah, S. R., Leckie, R. M., & Pearson, A. ( 2009 ). Global cooling during the Eocene- Oligocene climate transition. Science, 323 ( 5918 ), 1187 - 1190. https://doi.org/10.1126/science.1166368
dc.identifier.citedreferenceLivermore, R., Nankivell, A., Eagles, G., & Morris, P. ( 2005 ). Paleogene opening of Drake Passage. Earth and Planetary Science Letters, 236 ( 1- 2 ), 459 - 470. https://doi.org/10.1016/j.epsl.2005.03.027
dc.identifier.citedreferenceLunt, D. J., Bragg, F., Chan, W.- L., Hutchinson, D. K., Ladant, J.- B., Niezgodzki, I., Steinig, S., Zhang, Z., Zhu, J., Abe- Ouchi, A., de Boer, A. M., Coxall, H. K., Donnadieu, Y., Knorr, G., Langebroek, P. M., Lohmann, G., Poulsen, C. J., Sepulchre, P., Tierney, J., et al. ( 2020 ). DeepMIP: Model intercomparison of early Eocene climatic optimum (EECO) large- scale climate features and comparison with proxy data. Climate of the Past Discussions. https://doi.org/10.5194/cp-2019-149
dc.identifier.citedreferenceLunt, D. J., Farnsworth, A., Loptson, C., Foster, G. L., Markwick, P., O’Brien, C. L., Pancost, R. D., Robinson, S. A., & Wrobel, N. ( 2016 ). Palaeogeographic controls on climate and proxy interpretation. Climate of the Past, 12 ( 5 ), 1181 - 1198. https://doi.org/10.5194/cp-12-1181-2016
dc.identifier.citedreferenceLunt, D. J., Huber, M., Anagnostou, E., Baatsen, M. L. J., Caballero, R., DeConto, R., Dijkstra, H. A., Donnadieu, Y., Evans, D., Feng, R., Foster, G. L., Gasson, E., von der Heydt, A. S., Hollis, C. J., Inglis, G. N., Jones, S. M., Kiehl, J., Kirtland Turner, S., Korty, R. L., Kozdon, R., Krishnan, S., Ladant, J. B., Langebroek, P., Lear, C. H., LeGrande, A. N., Littler, K., Markwick, P., Otto- Bliesner, B., Pearson, P., Poulsen, C. J., Salzmann, U., Shields, C., Snell, K., Stärz, M., Super, J., Tabor, C., Tierney, J. E., Tourte, G. J. L., Tripati, A., Upchurch, G. R., Wade, B. S., Wing, S. L., Winguth, A. M. E., Wright, N. M., Zachos, J. C., & Zeebe, R. E. ( 2017 ). The DeepMIP contribution to PMIP4: Experimental design for model simulations of the EECO, PETM, and pre- PETM (version 1.0). Geoscientific Model Development, 10 ( 2 ), 889 - 901. https://doi.org/10.5194/gmd-10-889-2017
dc.identifier.citedreferenceMadec, G. ( 2008 ). NEMO ocean engine. Technical note, IPSL, available at http://www.nemo-ocean.eu/content/download/11245/56055/file/NEMO_book_v3_2.pdf
dc.identifier.citedreferenceMadec, G., & Imbard, M. ( 1996 ). A global ocean mesh to overcome the north pole singularity. Climate Dynamics, 12 ( 6 ), 381 - 388. https://doi.org/10.1007/BF00211684
dc.identifier.citedreferenceMarshall, D. P., Munday, D. R., Allison, L. C., Hay, R. J., & Johnson, H. L. ( 2016 ). Gill’s model of the Antarctic Circumpolar Current, revisited: The role of latitudinal variations in wind stress. Ocean Modelling, 97, 37 - 51. https://doi.org/10.1016/j.ocemod.2015.11.010
dc.identifier.citedreferenceMartin, E. E., & Scher, H. ( 2006 ). A Nd isotopic study of southern sourced waters and Indonesian throughflow at intermediate depths in the Cenozoic Indian Ocean. Geochemistry, Geophysics, Geosystems, 7, Q09N02. https://doi.org/10.1029/2006GC001302
dc.identifier.citedreferenceMaxbauer, D. P., Royer, D. L., & LePage, B. A. ( 2014 ). High Arctic forests during the middle Eocene supported by moderate levels of atmospheric CO2. Geology, 42 ( 12 ), 1027 - 1030. https://doi.org/10.1130/G36014.1
dc.identifier.citedreferenceMcKinley, C. C., Thomas, D. J., LeVay, L. J., & Rolewicz, Z. ( 2019 ). Nd isotopic structure of the Pacific Ocean 40- 10 ma, and evidence for the reorganization of deep North Pacific Ocean circulation between 36 and 25 ma. Earth and Planetary Science Letters, 521, 139 - 149. https://doi.org/10.1016/j.epsl.2019.06.009
dc.identifier.citedreferenceMeredith, M. P., Woodworth, P. L., Chereskin, T. K., Marshall, D. P., Allison, L. C., Bigg, G. R., Donohue, K., Heywood, K. J., Hughes, C. W., Hibbert, A., Hogg, A. M. C., Johnson, H. L., Jullion, L., King, B. A., Leach, H., Lenn, Y.- D., Morales Maqueda, M. A., Munday, D. R., Naveira Garabato, A. C., Provost, C., Sallée, J. B., & Sprintall, J. ( 2011 ). Sustained monitoring of the Southern Ocean at Drake Passage: Past achievements and future priorities. Reviews of Geophysics, 49, RG4005. https://doi.org/10.1029/2010RG000348
dc.identifier.citedreferenceMikolajewicz, U., Maier- Reimer, E., Crowley, T. J., & Kim, K.- Y. ( 1993 ). Effect of drake and Panamanian gateways on the circulation of an ocean model. Paleoceanography, 8 ( 4 ), 409 - 426. https://doi.org/10.1029/93PA00893
dc.identifier.citedreferenceMunday, D. R., Johnson, H. L., & Marshall, D. P. ( 2015 ). The role of ocean gateways in the dynamics and sensitivity to wind stress of the early Antarctic Circumpolar Current. Paleoceanography, 30, 284 - 302. https://doi.org/10.1002/2014PA002675
dc.identifier.citedreferenceNajjar, R. G., Nong, G. T., Seidov, D., & Peterson, W. H. ( 2002 ). Modeling geographic impacts on early Eocene Ocean temperature. Geophysical Research Letters, 29 ( 15 ), 1750. https://doi.org/10.1029/2001GL014438
dc.identifier.citedreferenceNong, G. T., Najjar, R. G., Seidov, D., & Peterson, W. H. ( 2000 ). Simulation of ocean temperature change due to the opening of Drake Passage. Geophysical Research Letters, 27 ( 17 ), 2689 - 2692. https://doi.org/10.1029/1999GL011072
dc.identifier.citedreferencePagani, M., Huber, M., Liu, Z., Bohaty, S. M., Henderiks, J., Sijp, W., Krishnan, S., & DeConto, R. M. ( 2011 ). The role of carbon dioxide during the onset of Antarctic glaciation. Science, 334 ( 6060 ), 1261 - 1264. https://doi.org/10.1126/science.1203909
dc.identifier.citedreferencePagani, M., Huber, M., & Sageman, B. ( 2014 ). 6.13- Greenhouse climates. In H. D. Holland, & K. K. Turekian (Eds.), Treatise on geochemistry ( 2nd ed., pp. 281 - 304 ). Oxford: Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.01314-0
dc.identifier.citedreferencePagani, M., Zachos, J. C., Freeman, K. H., Tipple, B., & Bohaty, S. M. ( 2005 ). Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science, 309 ( 5734 ), 600 - 603. https://doi.org/10.1126/science.1110063
dc.identifier.citedreferencePearson, P. N., Foster, G. L., & Wade, B. S. ( 2009 ). Atmospheric carbon dioxide through the Eocene- Oligocene climate transition. Nature, 461 ( 7267 ), 1110 - 1113. https://doi.org/10.1038/nature08447
dc.identifier.citedreferencePearson, P. N., & Palmer, M. R. ( 2000 ). Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 406 ( 6797 ), 695 - 699. https://doi.org/10.1038/35021000
dc.identifier.citedreferencePérez- Díaz, L., & Eagles, G. ( 2017 ). South Atlantic paleobathymetry since early cretaceous. Scientific Reports, 7 ( 1 ), 11819 - 11816. https://doi.org/10.1038/s41598-017-11959-7
dc.identifier.citedreferencePfister, P. L., Stocker, T. F., Rempfer, J., & Ritz, S. P. ( 2014 ). Influence of the central American seaway and Drake Passage on ocean circulation and neodymium isotopes: A model study. Paleoceanography, 29, 1214 - 1237. https://doi.org/10.1002/2014PA002666
dc.identifier.citedreferenceRintoul, S. R., Hughes, C. W., & Olbers, D. ( 2001 ). Chapter 4.6 The Antarctic Circumpolar Current system. In G. Siedler, J. Church, & J. Gould (Eds.), Ocean circulation and climate: Observing and modelling the global ocean (Vol. 77, pp. 271 - 302 ). San Diego: Academic Press. https://doi.org/10.1016/S0074-6142(01)80124-8
dc.identifier.citedreferenceSagoo, N., Valdes, P., Flecker, R., & Gregoire, L. J. ( 2013 ). The early Eocene equable climate problem: Can perturbations of climate model parameters identify possible solutions? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371 ( 2001 ), 20130123. https://doi.org/10.1098/rsta.2013.0123
dc.identifier.citedreferenceSauermilch, I., Whittaker, J. M., Bijl, P. K., Totterdell, J. M., & Jokat, W. ( 2019 ). Tectonic, oceanographic, and climatic controls on the cretaceous- Cenozoic sedimentary record of the Australian- Antarctic Basin. Journal of Geophysical Research: Solid Earth, 124, 7699 - 7724. https://doi.org/10.1029/2018JB016683
dc.identifier.citedreferenceScher, H. D., Bohaty, S. M., Zachos, J. C., & Delaney, M. L. ( 2011 ). Two- stepping into the icehouse: East Antarctic weathering during progressive ice- sheet expansion at the Eocene- Oligocene transition. Geology, 39 ( 4 ), 383 - 386. https://doi.org/10.1130/G31726.1
dc.identifier.citedreferenceScher, H. D., & Martin, E. E. ( 2004 ). Circulation in the Southern Ocean during the Paleogene inferred from neodymium isotopes. Earth and Planetary Science Letters, 228 ( 3- 4 ), 391 - 405. https://doi.org/10.1016/j.epsl.2004.10.016
dc.identifier.citedreferenceScher, H. D., & Martin, E. E. ( 2006 ). Timing and climatic consequences of the opening of Drake Passage. Science, 312 ( 5772 ), 428 - 430. https://doi.org/10.1126/science.1120044
dc.identifier.citedreferenceScher, H. D., & Martin, E. E. ( 2008 ). Oligocene deep water export from the North Atlantic and the development of the Antarctic Circumpolar Current examined with neodymium isotopes. Paleoceanography, 23, PA1205. https://doi.org/10.1029/2006PA001400
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.