Show simple item record

Landscape of variable domain of heavy‐chain‐only antibody repertoire from alpaca

dc.contributor.authorTu, Zhui
dc.contributor.authorHuang, Xiaoqiang
dc.contributor.authorFu, Jinheng
dc.contributor.authorHu, Na
dc.contributor.authorZheng, Wei
dc.contributor.authorLi, Yanping
dc.contributor.authorZhang, Yang
dc.date.accessioned2020-09-02T14:58:08Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-09-02T14:58:08Z
dc.date.issued2020-09
dc.identifier.citationTu, Zhui; Huang, Xiaoqiang; Fu, Jinheng; Hu, Na; Zheng, Wei; Li, Yanping; Zhang, Yang (2020). "Landscape of variable domain of heavy‐chain‐only antibody repertoire from alpaca." Immunology 161(1): 53-65.
dc.identifier.issn0019-2805
dc.identifier.issn1365-2567
dc.identifier.urihttps://hdl.handle.net/2027.42/156425
dc.publisherWiley Periodicals, Inc.
dc.publisherHumana Press
dc.subject.othernanobody
dc.subject.otherantibody diversity
dc.subject.otherhigh‐throughput sequencing
dc.subject.otherimmune repertoire
dc.subject.otherprotein design
dc.titleLandscape of variable domain of heavy‐chain‐only antibody repertoire from alpaca
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156425/2/imm13224_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156425/1/imm13224.pdfen_US
dc.identifier.doi10.1111/imm.13224
dc.identifier.sourceImmunology
dc.identifier.citedreferenceMonegal A, Olichon A, Bery N, Filleron T, Favre G, de Marco A. Single domain antibodies with VH hallmarks are positively selected during panning of llama ( Lama glama ) naive libraries. Dev Comp Immunol 2012; 36: 150 – 56.
dc.identifier.citedreferenceAronesty E. Comparison of sequencing utility programs. Open Bioinform Journal 2013; 7: 1 – 8.
dc.identifier.citedreferenceKumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35: 1547 – 49.
dc.identifier.citedreferenceLefranc MP, Giudicelli V, Duroux P, Jabado‐Michaloud J, Folch G, Aouinti S et al. IMGT ®, the international ImMunoGeneTics information system ® 25 years on. Nucleic Acids Res 2015; 43: D413 – 22.
dc.identifier.citedreferenceYe J, Ma N, Madden TL, Ostell JM. IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res 2013; 41: W34 – 40.
dc.identifier.citedreferenceCamacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10: 421.
dc.identifier.citedreferenceCrooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res 2004; 14: 1188 – 90.
dc.identifier.citedreferenceArnaout R, Lee W, Cahill P, Honan T, Sparrow T, Weiand M et al. High‐resolution description of antibody heavy‐chain repertoires in humans. PLoS One 2011; 6: e22365.
dc.identifier.citedreferenceHenry Dunand CJ, Wilson PC. Restricted, canonical, stereotyped and convergent immunoglobulin responses. Philos Trans R Soc Lond B Biol Sci 2015; 370: 20140238.
dc.identifier.citedreferenceChen L, Kutskova YA, Hong F, Memmott JE, Zhong S, Jenkinson MD et al. Preferential germline usage and VH/VL pairing observed in human antibodies selected by mRNA display. Protein Eng Des Sel 2015; 28: 427 – 35.
dc.identifier.citedreferenceJayaram N, Bhowmick P, Martin AC. Germline VH/VL pairing in antibodies. Protein Eng Des Sel 2012; 25: 523 – 29.
dc.identifier.citedreferenceAchour I, Cavelier P, Tichit M, Bouchier C, Lafaye P, Rougeon F. Tetrameric and homodimeric camelid IgGs originate from the same IgH locus. J Immunol 2008; 181: 2001 – 9.
dc.identifier.citedreferenceKabat EA, Wu TT. Identical V region amino acid sequences and segments of sequences in antibodies of different specificities. Relative contributions of VH and VL genes, minigenes, and complementarity‐determining regions to binding of antibody‐combining sites. J Immunol 1991; 147: 1709 – 19.
dc.identifier.citedreferenceDeschacht N, De Groeve K, Vincke C, Raes G, De Baetselier P, Muyldermans S. A novel promiscuous class of camelid single‐domain antibody contributes to the antigen‐binding repertoire. J Immunol 2010; 184: 5696 – 704.
dc.identifier.citedreferenceFlajnik MF, Deschacht N, Muyldermans S. A case of convergence: why did a simple alternative to canonical antibodies arise in sharks and camels? PLoS Biol 2011; 9: e1001120.
dc.identifier.citedreferenceMartin DA, Bradl H, Collins TJ, Roth E, Jack HM, Wu GE. Selection of Ig µ heavy chains by complementarity‐determining region 3 length and amino acid composition. J Immunol 2003; 171: 4663 – 71.
dc.identifier.citedreferenceSoto C, Bombardi RG, Branchizio A, Kose N, Matta P, Sevy AM et al. High frequency of shared clonotypes in human B cell receptor repertoires. Nature 2019; 566: 398 – 2.
dc.identifier.citedreferenceDe Genst E, Saerens D, Muyldermans S, Conrath K. Antibody repertoire development in camelids. Dev Comp Immunol 2006; 30: 187 – 98.
dc.identifier.citedreferenceMiqueu P, Guillet M, Degauque N, Dore JC, Soulillou JP, Brouard S. Statistical analysis of CDR3 length distributions for the assessment of T and B cell repertoire biases. Mol Immunol 2007; 44: 1057 – 64.
dc.identifier.citedreferenceKaplinsky J, Li A, Sun A, Coffre M, Koralov SB, Arnaout R. Antibody repertoire deep sequencing reveals antigen‐independent selection in maturing B cells. Proc Natl Acad Sci USA 2014; 111: E2622 – 29.
dc.identifier.citedreferenceGriffin LM, Snowden JR, Lawson AD, Wernery U, Kinne J, Baker TS. Analysis of heavy and light chain sequences of conventional camelid antibodies from Camelus dromedarius and Camelus bactrianus species. J Immunol Methods 2014; 405: 35 – 6.
dc.identifier.citedreferenceNishio J, Suzuki M, Nanki T, Miyasaka N, Kohsaka H. Development of TCRB CDR3 length repertoire of human T lymphocytes. Int Immunol 2004; 16: 423 – 31.
dc.identifier.citedreferenceGomez‐Tourino I, Kamra Y, Baptista R, Lorenc A, Peakman M. T cell receptor beta‐chains display abnormal shortening and repertoire sharing in type 1 diabetes. Nat Commun 2017; 8: 1792.
dc.identifier.citedreferenceTian M, Cheng C, Chen X, Duan H, Cheng HL, Dao M et al. Induction of HIV neutralizing antibody lineages in mice with diverse precursor repertoires. Cell 2016; 166: 1471 – 84.
dc.identifier.citedreferenceBrender JR, Shultis D, Khattak NA, Zhang Y. An evolution‐based approach to de novo protein design. In: Ilan Samish, (ed.). Methods in Molecular Biology. Clifton: Humana Press, 2017; 1529: 243 – 64.
dc.identifier.citedreferenceMitra P, Shultis D, Zhang Y. EvoDesign: de novo protein design based on structural and evolutionary profiles. Nucleic Acids Res 2013; 41: W273 – 80.
dc.identifier.citedreferenceTowns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A et al. XSEDE: accelerating scientific discovery. Comput Sci Eng 2014; 16: 62 – 4.
dc.identifier.citedreferenceHamers‐Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB et al. Naturally‐occurring antibodies devoid of light‐chains. Nature 1993; 363: 446 – 48.
dc.identifier.citedreferenceGreenberg AS, Avila D, Hughes M, Hughes A, McKinney EC, Flajnik MF. A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 1995; 374: 168 – 73.
dc.identifier.citedreferenceHerce HD, Schumacher D, Schneider AFL, Ludwig AK, Mann FA, Fillies M et al. Cell‐permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells. Nat Chem 2017; 9: 762 – 71.
dc.identifier.citedreferenceBruce VJ, McNaughton BR. Evaluation of nanobody conjugates and protein fusions as bioanalytical reagents. Anal Chem 2017; 89: 3819 – 23.
dc.identifier.citedreferenceBannas P, Hambach J, Koch‐Nolte F. Nanobodies and nanobody‐based human heavy chain antibodies as antitumor therapeutics. Front Immunol 2017; 8: 1603.
dc.identifier.citedreferenceSteeland S, Vandenbroucke RE, Libert C. Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discov Today 2016; 21: 1076 – 13.
dc.identifier.citedreferenceBlanc MR, Anouassi A, Ahmed Abed M, Tsikis G, Canepa S, Labas V et al. A one‐step exclusion‐binding procedure for the purification of functional heavy‐chain and mammalian‐type gamma‐globulins from camelid sera. Biotechnol Appl Biochem 2009; 54: 207 – 12.
dc.identifier.citedreferenceLi X, Duan X, Yang K, Zhang W, Zhang C, Fu L et al. Comparative analysis of immune repertoires between Bactrian camel’s conventional and heavy‐chain antibodies. PLoS One 2016; 11: e0161801.
dc.identifier.citedreferenceMuyldermans S, Baral TN, Retamozzo VC, De Baetselier P, De Genst E, Kinne J et al. Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol 2009; 128: 178 – 83.
dc.identifier.citedreferenceDe Genst E, Silence K, Ghahroudi MA, Decanniere K, Loris R, Kinne J et al. Strong in vivo maturation compensates for structurally restricted H3 loops in antibody repertoires. J Biol Chem 2005; 280: 14114 – 21.
dc.identifier.citedreferenceRubelt F, Busse CE, Bukhari SAC, Burckert JP, Mariotti‐Ferrandiz E, Cowell LG et al. Adaptive immune receptor repertoire community recommendations for sharing immune‐repertoire sequencing data. Nat Immunol 2017; 18: 1274 – 78.
dc.identifier.citedreferenceGalson JD, Pollard AJ, Truck J, Kelly DF. Studying the antibody repertoire after vaccination: practical applications. Trends Immunol 2014; 35: 319 – 31.
dc.identifier.citedreferenceYe B, Smerin D, Gao Q, Kang C, Xiong X. High‐throughput sequencing of the immune repertoire in oncology: applications for clinical diagnosis, monitoring, and immunotherapies. Cancer Lett 2018; 416: 42 – 6.
dc.identifier.citedreferenceFridy PC, Li Y, Keegan S, Thompson MK, Nudelman I, Scheid JF et al. A robust pipeline for rapid production of versatile nanobody repertoires. Nat Methods 2014; 11: 1253 – 60.
dc.identifier.citedreferenceTurner KB, Naciri J, Liu JL, Anderson GP, Goldman ER, Zabetakis D. Next‐generation sequencing of a single domain antibody repertoire reveals quality of phage display selected candidates. PLoS One 2016; 11: e0149393.
dc.identifier.citedreferencePearce R, Huang X, Setiawan D, Zhang Y. EvoDesign: designing protein–protein binding interactions using evolutionary interface profiles in conjunction with an optimized physical energy function. J Mol Biol 2019; 431: 2467 – 76.
dc.identifier.citedreferenceShultis D, Mitra P, Huang X, Johnson J, Khattak NA, Gray F et al. Changing the apoptosis pathway through evolutionary protein design. J Mol Biol 2019; 431: 825 – 41.
dc.identifier.citedreferenceCohen RM, Kleinstein SH, Louzoun Y. Somatic hypermutation targeting is influenced by location within the immunoglobulin V region. Mol Immunol 2011; 48: 1477 – 83.
dc.identifier.citedreferenceCui A, Di Niro R, Vander Heiden JA, Briggs AW, Adams K, Gilbert T et al. A model of somatic hypermutation targeting in mice based on high‐throughput Ig sequencing data. J Immunol 2016; 197: 3566 – 74.
dc.identifier.citedreferenceSheng Z, Schramm CA, Kong R, Program NCS, Mullikin JC, Mascola JR et al. Gene‐specific substitution profiles describe the types and frequencies of amino acid changes during antibody somatic hypermutation. Front Immunol 2017; 8: 537.
dc.identifier.citedreferenceTu Z, Xu Y, He QH, Fu JH, Liu X, Tao Y. Isolation and characterisation of deoxynivalenol affinity binders from a phage display library based on single‐domain camelid heavy chain antibodies (VHHs). Food Agric Immunol 2012; 23: 123 – 31.
dc.identifier.citedreferenceTu Z, Xu Y, Liu X, He Q, Tao Y. Construction and biopanning of camelid naive single‐domain antibody phage display library. China Biotechnol 2011; 31: 31 – 6.
dc.identifier.citedreferenceLiu X, Xu Y, Xiong YH, Tu Z, Li YP, He ZY et al. VHH phage‐based competitive real‐time immuno‐polymerase chain reaction for ultrasensitive detection of ochratoxin A in cereal. Anal Chem 2014; 86: 7471 – 77.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.